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Modelling of epidemics by the lattice Boltzmann method1

Alessandro De Rosis∗2

Department of Mechanical, Aerospace and Civil Engineering3

The University of Manchester, Manchester, M13 9PL United Kingdom4

(Dated: July 23, 2020)5

In this paper, we demonstrate that the lattice Boltzmann method can be successfully adopted to6

investigate the dynamics of epidemics. Numerical simulations prove the excellent accuracy properties7

of the approach that recovers the solution of the popular SIR model. Because spatial effects are8

naturally accounted for in the lattice Boltzmann formulation, the present scheme appears to be more9

competitive than traditional solution procedures. Interestingly, it allows us to simulate scenarios10

characterized by selective lockdown configurations.11

PACS numbers: 47.11.-j, 82.40.Ck12
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I. MOTIVATION14

During its history, the mankind has seen the rise,15

spread and outbreak of a rich variety of infectious dis-16

eases which have affected a significant portion of pop-17

ulation. The first ever registered case is the Plague of18

Athens, a typhoid fever that has killed nearly 100 00019

people in Greece around 430 B.C. [1]. Diseases in-20

duced by the Yersinia pestis bacterium, Variola virus21

and zoonotic viruses (as the swine and avian flu) are22

among the most famous and dramatic epidemics that23

have appeared through the centuries.24

A deep understanding of the process leading to the25

spread of a disease is instrumental to contain, delay and26

mitigate its potential outbreak and it is also helpful to27

evaluate strategies to control an epidemic [2, 3] . The28

first empirical quantitative study of human deaths and29

diseases has been carried out by Graunt in 1662 [4], who30

discussed demographic problems in Britain and listed the31

number and causes of deaths of London parishes. After32

a century, Bernoulli provided a deterministic model to33

defend the practice of inoculating against smallpox [5].34

In 1927, a seminal contribution to the modelling of35

epidemics has been proposed by Kermack et al. [6], who36

introduced a simple yet effective compartmental model.37

Specifically, a certain population of fixed size is divided38

into three groups: susceptibles (S), who can get the dis-39

eases; infected (I), who have the disease; and recovered40

(R), who were infected and then have become immune.41

Nowadays, their so-called SIR model represents the most42

consolidated approach to predict the time evolution of a43

disease. It consists of solving three equations:44

∂S
∂t

= −βSI
N

,45

∂I
∂t

=
βSI
N
− γI,46

∂R
∂t

= γI, (1)47
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where t is the time, N = S + I + R is the total pop-48

ulation, positive constants β and γ are the contact and49

recovery rates, respectively. Consistently, it is possible50

to define the famous reproduction number R0 = β/γ.51

The original formulation provided by the SIR model can52

be further enriched by accounting for maternally-derived53

immunity, vaccinations, exposition and incubation times,54

among the others.55

One of the major assumptions behind Eqs. (1) is that56

environmental conditions are considered homogeneous.57

However, individual organisms typically interact with the58

surrounding physical environment and other organisms.59

Climate and chemical composition, as well as other envi-60

ronmental factors, can vary from a place to another and61

can affect the dynamics of populations and communities.62

Therefore, spatial effects can play an important role in63

the spread of epidemics. Notably, Mollison [7] investi-64

gated spatial models for epidemic spread. It should be65

noted that this paper deals with spatial effects and not66

spatial epidemiology. The latter term is nowadays used to67

describe the geographic variation of disease incidence in68

relation to demographic or socio-economic factors, with69

time scales much larger than the ones associated with the70

propagation of infectious diseases [8]. Building on the pi-71

oneering work by Turing [9], many studies addressed the72

importance of spatial effects, showing how population dif-73

fusion impacts the formation of spatial patterns [10–17].74

Here, it is suggested to account for spatial effects by75

modifying Eqs. (1) as follows:76

∂S
∂t

= −βSI
N

+ dS∇2S,77

∂I
∂t

=
βSI
N
− γI + dI∇2I,78

∂R
∂t

= γI + dR∇2R, (2)79

where S = S(x, t), I = I(x, t), R = R(x, t), x = [x, y]80

being the spatial coordinate in two dimensions. More-81

over, dS , dI and dR are the diffusion coefficients of pop-82

ulations S, I and R, respectively, and ∇2 =
∂2

∂x2
+

∂2

∂y2
83

is the Laplacian operator. From a biological and be-84
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havioural perspective, the diffusion of individuals can85

be connected to several aspects, such as food/medicine86

hunting or leaving zones with high infection risks. From a87

mathematical viewpoint, Eqs. (2) represent a set of three88

reaction-diffusion equations, where the last term of each89

right-hand side is the diffusive part and the remaining90

terms at the same side account for reaction processes.91

It should be noted that the solution of Eqs. (2) requires92

the estimation of second-order derivative by finite differ-93

ences that can involve a non-negligible amount of com-94

putational time.95

Interestingly, Ponce Dawson et al. [18] showed that an96

robust alternative to solve a reaction-diffusion equation is97

represented by the lattice Boltzmann method (LBM) [19–98

21]. The aim of this paper is to propose, test and vali-99

date an LB formulation that can be successfully employed100

to perform accurate simulations of the dynamics of epi-101

demics. In SEC. II, the adopted methodology is outlined102

and accompanied by a Chapman-Enskog expansion and103

a linear stability analysis. Its accuracy is confirmed by104

numerical results in SEC. III, where the capability to105

simulate a selective lockdown in an urban scenario is also106

shown. Eventually, some concluding remarks are given in107

SEC. IV.108

II. METHODOLOGY109

In this section, the LB scheme to simulate the spread-110

ing of epidemics is presented. The Chapman-Enskog111

expansion demonstrates that our methodology recovers112

Eqs. (2). Eventually, a von Neumann linear stability113

analysis shows that the stability of the algorithm dete-114

riorates for vanishing values of the diffusivity and high115

values of the contact and recovery rates.116

A. Lattice Boltzmann method for epidemics117

The governing lattice Boltzmann equation (LBE) pre-118

dicts the space-time evolution of the particle distribu-119

tion functions fki colliding and streaming along the links120

ci = [cix, ciy] of the D2Q9 Cartesian lattice, where121

i = 0, . . . , 8, k = S, I, R and122

cix = [0,−1,−1,−1, 0, 1, 1, 1, 0],123

ciy = [0, 1, 0,−1,−1,−1, 0, 1, 1]. (3)124

The LBEs read as follows:

fki (x+ci, t+1) = fki (x, t)+Ωk
i,NR(x, t)+Ωk

i,R(x, t), (4)

where the non-reactive (NR) parts obey the BGK ap-
proximation [22], that is

Ωk
i,NR =

1

τk
(
fki,eq − fki

)
. (5)

Particle distributions relax to an equilibrium state de-
fined as [23, 24]

fki,eq = wiρ
k, (6)

where

ρk =
∑
i

fki (7)

is the density of population k. The weights associated to
the D2Q9 lattice [25] are

wi = [4/9, 1/36, 1/9, 1/36, 1/9, 1/36, 1/9, 1/36, 1/9] (8)

and the relaxation time is

τk = 3dk +
1

2
. (9)

Depending on the considered group, the reactive (R)125

parts of the LBEs assume different expressions, i.e.126

ΩSi,R = wi

(
−βρ

SρI

ρN

)
,127

ΩIi,R = wi

(
βρSρI

ρN
− γρI

)
,128

ΩRi,R = wiγρ
I , (10)129

with ρN =
∑
k

ρk.130

Two advantages of the LBM can be immediately ap-131

preciated: (i) the reactive part is simply introduced by132

adding an external source term projected through the133

weights into the distributions space, and (ii) the diffu-134

sion term in Eqs. (2) is directly and naturally accounted135

for in the non-reactive part (i.e., the collision) without136

requiring the computation of any spatial derivatives.137

B. Chapman-Enskog expansion138

We provide a formal proof that the LBEs in Eqs. (4)
recover the SIR equations in Eqs. (2) by performing the
Chapman-Enskog expansion. To this end, let us rewrite
Eq. (4) as

fki (x + εci, t+ ε) =fki (x, t) +
1

τk
[
fki,eq(x, t)− fki

(
x, t)]

+ Ωk
i,R(x, t), (11)

where ε is a small parameter. Using the Taylor expan-
sion, it can be rewritten as

fki (x+εci, t+ε)−fki (x, t) =
∑
n

εn

n!

(
∂

∂t
+ ci

∂

∂x

)n

fki (x, t).

(12)
It is also assumed that

fki =
∑
n

εnf
(k,n)
i , (13)

where f
(k,0)
i = fki,eq. Changes at different time scales are

discussed by introducing tn = εnt and

∂

∂t
=
∑
n

εn
∂

∂tn
. (14)
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Indeed, the equation of order ε is

∆f
(k,0)
i = − 1

τk
f
(k,1)
i + Ω

(k,1)
i,R , (15)

where ∆ =
∂

∂t0
+ ci

∂

∂x
.

The equation of order ε2 is

∂

∂t1
f
(k,0)
i +C2∆2f

(k,0)
i +τk∆Ω

(k,1)
i,R = − 1

τk
f
(k,2)
i +Ω

(k,2)
i,R .

(16)
Under the conditions∑

i

fki,eq =
∑
i

fki ,
∑
i

f
(k,0)
i ci = 0, (17)

let us take a summation over i of Eq. (15), that results
in

∂

∂t0
ρk =

∑
i

Ω
(k,1)
i,R = R(k,1), (18)

where R(k,1) is the reaction term at the right-hand sides
of Eqs. (2) and

Ω
(k,1)
i,R = wiR

(k,1). (19)

By taking the summation over i of Eq. (16), we have

∂

∂t1
ρk + C2

∑
i

∆2f
(k,0)
i +

∑
i

τ∆Ω
(k,1)
i,R =

∑
i

Ω
(k,2)
i,R .

(20)
Now, let us write

π
(k,0)
l,m =

∑
i

f
(k,0)
i cilcim = λkδl,mρ

k, (21)

where l and m span the Eulerian basis, δl,m is the Kro-
necker delta and

λk =
dk

ε (τ − 1/2)
. (22)

Eq. (20) becomes

∂

∂t1
ρk + C2λ

k∇2ρk = 0. (23)

Therefore, taking (15)+(16)×ε and summing over i allow
us to write

∂

∂t
ρk + εC2

∂2

∂xl∂xm
π
(k,0)
l,m =

∑
i

Ω
(k,1)
i,R , (24)

that becomes

∂

∂t
ρk = R(k,1) + dk∇2ρk. (25)

One can immediately appreciate the equivalence between139

Eq. (25) and any of Eqs. (2).140

C. Linear stability analysis141

Here, the results of a von Neumann linear stability
analysis are presented. We notice that many efforts have
been devoted to investigate the stability of the sole col-
lision operator in the case of LB schemes able to recover
the Navier-Stokes equations [26–32]. Interestingly, few
works [33, 34] show a linear stability analysis when a
force (source) term is considered. Here, we need to ac-
count for both the collision operator and the source term,
that are the non-reactive and reactive parts of the gov-
erning LB equation, respectively.
For simplicity, let us consider just the equation for the
evolution of the recovered people. To lighten the nota-
tion, the superscript R will be implicitly assumed in the
rest of this section. Therefore, we can say

fi(x + ci, t+ 1) = fi(x, t) +
1

τ
(fi,eq − fi) + wiγρ, (26)

that can be rewritten as

fi(x + ci, t+ 1) =

(
1− 1

τ

)
fi(f(x, t)) +

1

τ
fi,eq(f(x, t))

+ Si(f(x, t)), (27)

where f = [f0, . . . , f8] is a vector collecting the particle
distribution functions and Si collects the source reactive
term. Distributions can be rearranged as

fi(x, t) = f ′i + δfi(x, t), (28)

where f ′i = fi,eq(ρ = 1) is an unperturbed solution of142

Eq. (27) and δfi(x, t) are small perturbations. Lineariza-143

tion takes place as follows [33, 34]:144

fi,eq(f) = fi,eq(f ′ + δf) ≈ fi,eq(f ′) +

8∑
s=0

∂fi,eq
∂fs

(f ′)δfs,145

Si(f) = Si(f
′ + δf) ≈ Si(f

′) +

8∑
s=0

∂Si

∂fs
(f ′)δfs, (29)146

where f ′ = [f ′0, . . . , f
′
8]. This allows us to write

Si(x + ci, t+ 1) =

(
1− 1

τ

)
Si(x, t) +

1

τ

8∑
s=0

Aisδfs(x, t)

+

8∑
s=0

Bisδfs(x, t), (30)

where147

Ais =
∂fi,eq
∂fs

=
∂fi,eq
∂ρ

∂ρ

∂fs
,148

Bis =
∂Si

∂fs
=
∂Si

∂ρ

∂ρ

∂fs
(31)149

are Jacobi matrices. The solution of Eq. (30) can be
given as

Si(x, t) = Fi(t) exp (ιΘ · x) , (32)
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where ι is the imaginary unit, Θ = (θx, θy) with θx,y ∈
[−π, π]. The following system is obtained

Fi(t+ 1) =

8∑
s=0

GisFs(t), (33)

where Gis are the component of a transition matrix G150

defined as [33, 34]151

Gis =

[(
1− 1

τ

)
+

1

τ
Ais +Bis

]
exp (ιΘ · ci) , if i = s,152

Gis =

[
1

τ
Ais +Bis

]
exp (ιΘ · ci) , if i 6= s. (34)153

Hence, the solution is stable if the maximum complex154

modulus of the eigenvalues of G is smaller than 1. By155

varying γ ∈ [0 : 2] and τ ∈ [0.5 : 2], we compute this156

quantity by the QR-algorithm and it is plotted in FIG. 1.157

Some considerations should be drawn. Independently158
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FIG. 1. Linear stability analysis: Map of the maximum com-
plex modulus of the eigenvalues of G.

159

160

from the value of the recovery rate γ, the solution be-161

comes unstable if τ → 0.5 (i.e., in the limit of vanishing162

diffusivity). The optimal zone is found when 0.7 ≤ τ ≤ 1163

and γ ≤ 1, where minima of the complex modulus are164

localized. Progressively larger maxima of the complex165

modulus arise as τ and γ grow, with the latter having a166

more prominent deleterious effect. For the sake of com-167

pleteness, some of the values shown in FIG. 1 are reported168

in TABLE I too.169170

III. RESULTS AND DISCUSSION171

In this Section, we first demonstrate that the devised172

approach is consistent with the classical SIR model. Sec-173

ondly, the effect of the diffusion in the spreading of epi-174

demics is discussed. Finally, an urban scenario repre-175

sentative of Midtown Manhattan is investigated with a176

selective lockdown configuration.177

A. Recovery of the SIR model178

The accuracy and reliability of the present method is179

assessed by comparing the results from LB simulations180

to the predictions obtained by the solution of Eqs. (1).181

In the latter, a population of N = 40 000 individu-182

als is assumed where a certain fraction I(t = 0) =183

0.1%, 1%, 10% is initially infected. Moreover, the re-184

covery rate is set to γ = 5 days−1 and the reproduction185

number is varied as R0 = 1.5, 3, 5. In order to convert186

the problem to the LB world, a square domain is consid-187

ered where each side has length
√
N = 200. Then, the188

system is initialized as follows:189

ρI(t = 0) = I(t = 0),190

ρS(t = 0) = 1− I(t = 0),191

ρR(t = 0) = 0. (35)192

Since the original SIR model is diffusion-free, to achieve193

the same scenario the diffusion coefficient should be set194

to low values, i.e. dS = dI = dR = 10−5.195

In FIG. 2, the time evolution of the fraction of infected196

people (also known as epidemic curve) is plotted for the197

aforementioned values of R0 and I(t = 0). One can198199

immediately appreciate the excellent agreement between200

findings from the two approaches, with a maximum rel-201

ative discrepancy of ∼ 0.02% [35].202

B. Effect of the diffusivity203

Here, the role of the diffusion on the dynamics of epi-204

demics is elucidated. Let us first assume a common value205

for all the diffusion coefficients, i.e. dS = dI = dR = d.206

Let us consider the same square domain of dimensions207

200 × 200 as before. At the beginning of the simula-208

tions, the fraction of infected people occupies a small209

circular region of radius r = 20 with its center located at210

(xc, yc) = (100, 100), while the rest of the domain is com-211

posed of susceptible persons. In other words, ρI(t = 0) =212

1 and ρS(t = 0) = 0 if (x−xc)2+(y−y2c ) < r2, otherwise213

ρI(t = 0) = 0 and ρS(t = 0) = 1. It corresponds to have214

the ∼ 3.14% of the population initially infected. The re-215

production number R0 varies as before and three values216

of d are used, i.e. d = 0.0005, 0.001, 0.01. In FIG. 3,217

the epidemic curves are drawn for all the combinations218

of R0 and d. We observe that, as the diffusion increases,219

the peak of the infection grows and appears progressively220

earlier. Indeed, the diffusion (movement) of individuals221

promotes and accelerate the spread of the disease. Our222

results corroborate the observations that isolation and223

social distancing are a good measure to contain, delay224

and mitigate the spread of an infection.225226

Eventually, the dynamics of epidemics when groups227

diffuse/move differently is dissected. By setting R0 = 5,228

two configurations are investigated. In the former, the229

diffusion coefficient associated to infected individuals is230

kept fixed to dI = 0.001, while the other two assume the231
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@
@@γ
τ

0.50 0.75 1.00 1.25 1.50 1.75 2.00

0.00 1.3693 0.4336 0.5000 0.5850 0.6479 0.6950 0.7312
0.25 1.4090 0.5184 0.6250 0.7087 0.7699 0.8156 0.8509
0.50 1.4124 0.6389 0.7500 0.8328 0.8928 0.9375 0.9718
0.75 1.3973 0.7609 0.8750 0.9572 1.0162 1.0600 1.0937
1.00 1.3758 0.8837 1.0000 1.0817 1.1399 1.1831 1.2162
1.25 1.3539 1.0070 1.1250 1.2063 1.2639 1.3065 1.3392
1.50 1.3339 1.1307 1.2500 1.3309 1.3881 1.4302 1.4625
1.75 1.3162 1.2547 1.3750 1.4557 1.5124 1.5541 1.5861
2.00 1.3009 1.3789 1.5000 1.5804 1.6368 1.6782 1.7099

TABLE I. Linear stability analysis: Maximum complex modulus of the eigenvalues of G for different combinations of τ and γ.

same value that varies as dS = dR = 0.0005, 0.001, 0.1.232

Making reference to FIG. 4, the spatio-temporal evolu-233

tion of the epidemic is substantially insensitive to changes234

of the diffusion coefficient associated to susceptible (and235

recovered) people. Interestingly, findings depicted in236237

FIG. 5 are considerably more appealing. Here, results238

from the latter configuration are reported, where dS =239

dR is enforced to 0.001, while the other coefficient varies240

as dI = 0.0005, 0.001 and 0.1. The detrimental role241

played by the spread of infected individuals clearly stems.242

In fact, the peak of the epidemic curve assumes higher243

values and moves to an earlier time as dI increases. This244

corroborates data in [17], where it has been found that245

the fraction of infected people increases along with the246

increase of the corresponding diffusion coefficient. Based247

on our observations, we can conclude that isolating in-248

fected individuals is more important than applying the249

same action on healthy persons.250251

C. Urban scenario with selective lockdown252

In the last numerical experiment, we focus on a very253

particular situation, that is the spreading of an epidemic254

in Midtown Manhattan. Specifically, a portion of Man-255

hattan is selected as it is bounded by the 23rd Street256

to the 59 Street vertically and by the Hudson and East257

Rivers horizontally. This corresponds to an area of ∼258

8.7 km2 that has a population density of 28 000 ab/km2.259

The choice of this particular zone is inspired by the fact260

that its roads network reminds and fits the Cartesian LB261

lattice. γ = 5 days−1 and R0 = 2.5 are set. At the begin-262

ning of the simulation, the 10% of the population of the263

area is assumed to be infected and randomly distributed.264

An uniform diffusivity d = 0.01 (in lattice units) is im-265

posed. The map of the infected people is depicted in266

FIG. 6 for different days, with the peak shown at Day267

17. Interestingly, the outlined methodology allows us to268269

simulate scenarios characterized by a selective lockdown,270

where the diffusion/movement of people is reduced (or271

even prevented) in a certain specific region of the compu-272

tational domain. To this end, we run a second simulation273

with the same configuration as above, but we assign a dif-274

fusivity reduced by a factor 100 to the area corresponding275

to the Hell’s Kitchen district. The resultant simulation276

is characterized by non-uniform values of the diffusivity.277

The Hell’s Kitchen district area goes from the 34th Street278

to the 59 Street vertically, and from the Hudson River to279

the 8th Avenue to the horizontally. FIG. 7 shows the280

map of infected people at different days. The important281

role played by the reduced diffusivity is clearly visible.282

Indeed, one can immediately appreciate that the spread-283

ing of the epidemic is considerably delayed and mitigated284

in the Hell’s Kitchen district. This result is much more285286

emphasized in FIG. 8, where the map of infected people is287

sketched in the two configurations at Day 12. The colour288

contrast manifests the corresponding very different den-289

sity of infected people between Hell’s Kitchen and the290

rest of Midtown Manhattan. The epidemic curve in the291292

two configurations are reported in FIG. 9. We found that293

the adoption of a reduced diffusivity in a certain specific294

region leads to a global peak reduction of ∼ 13%.295296

It should also be noted that the zero-diffusivity case is297

not sufficient to capture the lockdown physics. In fact,298

in a qualitatively perfect lockdown condition, people stop299

interacting with each other and the contact rate should300

also go to zero, while the present model keeps β as a con-301

stant. The interested reader can refer to [36] for a more302

detailed discussion related to this aspect.303

IV. CONCLUSIONS304

In this paper, we proposed a lattice Boltzmann method305

to model the dynamics of epidemics. The governing306

reaction-diffusion LB equations accurately recovers the307

solution of the popular SIR model. This has been numeri-308

cally demonstrated by means of simulations and theoret-309

ically proved by the Chapman-Enskog expansion. The310

von Neumann linear stability analysis highlights the pos-311

sible stability limits of the scheme. Given the intrinsic312

nature of the approach, spatial effects are directly and313

naturally accounted for without the need of computing314

any derivatives. The methodology results in a simple al-315

gorithmic procedure to successfully unravel the dynam-316

ics of epidemics and to study containment strategies, as317

a selective lockdown in an urban scenario (as shown).318

Intriguingly, the diffusivity can be linked to the mobil-319
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FIG. 2. Time evolution of the fraction of infected people for
different values of R0, i.e 1.5 (top), 3 (center) and 5 (bottom)
and I(t = 0), i.e. 0.1% (solid line and squares), 1% (dash-
dotted line and circles) and 10% (dotted line and triangles.)
Lines and symbols correspond to results obtained by the SIR
model (see Eqs. (1)) and the present LB one, respectively.

ity of a certain area, hence allowing us to simulate more320

realistic configurations.321
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FIG. 3. Time evolution of the fraction of infected people for
different values of R0, i.e 1.5 (top), 3 (center) and 5 (bottom)
and d, i.e. 0.0005 (blue dash-dotted line), 0.001 (red dotted)
and 0.01 (black solid line.)
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FIG. 4. Time evolution of the fraction of infected people at
dI = 0.001 and dS = dR = 0.0005 (blue dash-dotted line),
0.001 (red dotted line) and 0.1 (black solid line).
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FIG. 5. Time evolution of the fraction of infected people at
dS = dR = 0.001 and dI = 0.0005 (blue dash-dotted line),
0.001 (red dotted line) and 0.01 (black solid line).
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FIG. 6. Uniform diffusivity: Map of the percentage fraction of infected people in Midtown Manhattan at different days.
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FIG. 7. Non-uniform diffusivity: Map of the percentage fraction of infected people in Midtown Manhattan at different days.
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FIG. 8. Uniform vs non-uniform diffusivities: Map of the
percentage fraction of infected people in Midtown Manhattan
at Day 12.
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FIG. 9. Time evolution of the fraction of infected people by
uniform (black solid line) and non-uniform (red dotted line)
diffusivities.
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[21] T. Krüger, H. Kusumaatmaja, A. Kuzmin, O. Shardt,370

G. Silva, and E. M. Viggen, The Lattice Boltzmann371

Method: Principles and Practice (Springer International372

Publishing, 2017).373

[22] P. Bhatnagar, E. Gross, and M. Krook, Phys. Rev. 94,374

511 (1954).375

[23] R. Blaak and P. M. Sloot, Computer Physics Communi-376

cations 129, 256 (2000).377

[24] J. Zhang and G. Yan, Journal of Scientific Computing378

52, 1 (2012).379

[25] J. Latt, Tufts University , 1 (2007).380

[26] J. D. Sterling and S. Chen, J. Comput. Phys. 123, 196381

(1996).382

[27] P. C. Philippi, L. A. Hegele Jr, L. O. Dos Santos, and383

R. Surmas, Phys. Rev. E 73, 056702 (2006).384

[28] D. Siebert, L. Hegele Jr, and P. Philippi, Phys. Rev. E385

77, 026707 (2008).386

[29] C. Coreixas, G. Wissocq, G. Puigt, J.-F. Boussuge, and387

P. Sagaut, Phys. Rev. E 96, 033306 (2017).388

[30] C. Coreixas, High-order extension of the recursive reg-389

ularized lattice Boltzmann method, Ph.D. thesis, INP390

Toulouse (2018).391

[31] S. A. Hosseini, C. Coreixas, N. Darabiha, and392

D. Thévenin, Physical Review E 99, 063305 (2019).393

[32] A. De Rosis and K. H. Luo, Phys. Rev. E 99, 013301394

(2019).395

[33] S. A. Mikheev and G. V. Krivovichev, in Journal of396

Physics: Conference Series, Vol. 1038 (IOP Publishing,397

2018) p. 012040.398

[34] G. V. Krivovichev, Applied Mathematics and Computa-399

tion 348, 25 (2019).400

[35] See Supplemental Material at [URL will be inserted by401

publisher] for four scripts: (i) StabilityAnalysis.m to per-402

form the linear stability analysis, (ii) Units.m to do the403

conversion from physical units to the LB one, (iii) SIR.m404

to solve Eqs. (1) and (iv) main.cpp is a C++ program405

with the implementation of our proposed methodology.406

[36] S. Kaushal, A. S. Rajput, S. Bhattacharya,407

M. Vidyasagar, A. Kumar, M. K. Prakash, and408

S. Ansumali, arXiv preprint arXiv:2006.00045 (2020).409


