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Abstract: The use of electrically conductive materials to impart electrical properties to substrates
for cell attachment proliferation and differentiation represents an important strategy in the field of
tissue engineering. This paper discusses the concept of electro-active structures and their roles in
tissue engineering, accelerating cell proliferation and differentiation, consequently leading to tissue
regeneration. The most relevant carbon-based materials used to produce electro-active structures are
presented, and their main advantages and limitations are discussed in detail. Particular emphasis is put
on the electrically conductive property, material synthesis and their applications on tissue engineering.
Different technologies, allowing the fabrication of two-dimensional and three-dimensional structures
in a controlled way, are also presented. Finally, challenges for future research are highlighted.
This review shows that electrical stimulation plays an important role in modulating the growth
of different types of cells. As highlighted, carbon nanomaterials, especially graphene and carbon
nanotubes, have great potential for fabricating electro-active structures due to their exceptional
electrical and surface properties, opening new routes for more efficient tissue engineering approaches.

Keywords: carbon nanotubes; electro-active scaffolds; graphene; tissue engineering

1. Introduction

Tissue engineering is a relatively novel discipline, aiming at improving or replacing biological
tissues. The use of scaffolds, physical substrates for cell attachment, proliferation and differentiation,
is the most common strategy for tissue engineering [1–4]. These scaffolds must be designed according
to specific requirements to create the appropriate environment for cell attachment, proliferation and
differentiation. They must be biocompatible and biodegradable (the degradation rate must match
the regeneration rate of the new tissue [1–4]), with proper geometry, morphology, porosity and pore
interconnectivity [1–4]. Scaffolds must have adequate mechanical properties depending on the type of
tissue, appropriate surface characteristics and must be easily sterilized [1–4]. A scaffold’s capacity to
stimulate cells is also another important requirement.

Electrical signals are critical physiological stimuli that strongly affect cell behavior due to the
cell proliferation impact on the cell membrane potential [5,6]. Electrical stimulations can redirect the
alignment of random cells [7,8]. Some types of cells are aligned perpendicular to the vector’s direction
of the electric field to minimize the field gradient go through the cell. Other cells are aligned parallel to
the field vectors due to the electrical stimulation that causes rearrangement of the cell cytoskeleton.
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Additionally, the spreading direction of cells is also affected by the electric field [9]. Some types of cells
migrate toward the cathode, while others toward the anode. Electrical stimulations may also affect the
recognition of electrical signals and signal transduction within individual cells, gap junction intercellular
communication, role of extracellular matrix and regulation of gene expression [10]. Based on these
effects, applied electrical stimulations affect not only cells’ directional migration, but also cell adhesion
and differentiation, DNA synthesis and protein secretion [11–15]. These mechanisms can contribute to
both angiogenesis and osteogenesis [16–19].

Bassett et al. presented the first evidence of the electrical stimulation impact on tissues,
by investigating the effects of electric current on bone regeneration in adult dogs [20]. Tissue regeneration
induced by electrical stimulation was also observed in rats with sciatic nerve injuries [21].
Other researchers also observed that electrical stimulation significantly increased the DNA synthesis
of osteoblasts [22], improved the contractile behavior of engineered cardiac tissue [23] and improved
both myogenic differentiation and deposition of type 1 collagen [24]. Moreover, electric fields and
electrical stimulations can improve the healing, wound recovery and regeneration of damaged spin
cords and nerves [25].

Polymeric tissue engineering scaffolds can be fabricated with or without the incorporation of
fillers, aiming to enhance mechanical or biological. Several researchers investigated the incorporation
of conductive carbon nanomaterials (e.g., graphene and carbon nanotubes) into different polymer
matrices to produce tissue engineering scaffolds [26–30]. Due to the high electrical conductivity
nature of these carbon nanomaterials, these scaffolds have great potential to be used together with
electrical stimulation, functioning as electro-active scaffolds for dose-promoting tissue regeneration [31].
The incorporation of conductive materials allows the transmission of electrical signals from external
sources through the cell-seeded scaffolds, without compromising their mechanical, biological and
degradation behavior [32]. These electrically conductive composites consist of conductive fillers
blended with nonconductive biocompatible and biodegradable materials or polymer/ceramic materials.
These scaffolds can be easily processed through relatively low-cost fabrication strategies, and their
mechanical and electrical properties can be easily tailored. The electrical conductive properties of these
structures can be empirically described according to the following equation [33]:

σ = σ0(p− pc)
t (1)

where σ represents the electrical conductivity of the composite material, σ0 represents the scaling factor,
a proportionality constant related to the intrinsic conductivity of the filler, p represents the volume
fraction of the filler, pc represents the percolation threshold and t represents the critical exponent related
to the dimensionality of the conductive networks in the composite material. Composites with high pc

present high melt viscosity and inferior mechanical properties, being also more difficult to process [34,35].
The appropriate conductivity for intracellular activity was proposed to be 10−7–10−2 S/cm, depending
on tissue [36].

Different processing techniques have been explored to produce scaffolds with different
dimensionalities and architectures. The so-called conventional fabrication methods produce scaffolds
by using fiber bonding, gas foaming, high-pressure processing, hydrocarbon templating, liquid–liquid
phase separation, melt moulding, membrane lamination, polymer or ceramic fiber composite foam,
solvent casting and particulate leaching methods [37]. These methods are relatively simple, but they
do not allow us to control the pore architecture and pore interconnectivity, and the produced structures
present limited mechanical properties and, in some cases, residual solvents [38].

Electrospinning and additive manufacturing are other relevant fabrication techniques.
Electrospinning has been widely used to fabricate electro-active structures, in which process polymer
and conducting materials are dissolved in a suitable solvent, and the polymer solution is dropped
via a needle [1,2]. This technology allows us to fabricate 2D membranes [39–41], or 3D scaffolds
through dry jet-wet electrospinning, even with simultaneous coating [42,43]. Centrifugal spinning and
pressured gyration can also be used for tissue engineering applications [44]. Additive manufacturing
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describes a group of processes that create structures by joining material in a layer by layer approach.
According to the American Society for Testing and Materials, additive manufacturing comprises seven
techniques: material extrusion, material jetting, binder jetting, vat photopolymerization, powder bed
fusion, directed energy deposition and sheet lamination (Table 1) [45]. However, only material
extrusion, material jetting, binder jetting, vat photopolymerization and powder bed fusion can be used
for the fabrication of biocompatible and biodegradable scaffolds. In the field of tissue engineering,
additive manufacturing is the most relevant fabrication process, as it allows us to create scaffolds with
precise control of the pore size, pore shape, pore distribution and pore interconnectivity.

Table 1. Additive manufacturing techniques.

Methods Working Principle

Material extrusion

An additive manufacturing process in which polymers or
polymer-based composites in the form of pellets or

filaments are melted and selectively dispensed trough a
nozzle or orifice

Material jetting Polymeric droplets or bioinks (hydrogels containing cells
and growth factors) are selectively deposited

Binder jetting
An additive manufacturing process in which a liquid
binding material (e.g., colloidal system) is selectively

deposited to join powder materials

Vat photopolymerization
An additive manufacturing process in which a liquid

photopolymer is polymerized or cured (transition from
liquid to solid), using a light source (laser or lamp)

Powder bed fusion
An additive manufacturing technique in which thermal
energy from a laser or an electron beam is used to fuse in

a selective way material in a powder form

Directed energy deposition A technique in which focused thermal energy is used to
fuse materials as the material is being deposited

Sheet lamination Sheets of materials (e.g., paper, polymers, ceramics and
metals) are cut and bonded together, to form a 3D object

This paper overviews the current state-of-the-art of using carbon nanomaterials (graphene,
graphene oxide and carbon nanotubes) for the fabrication of electro-active structures (e.g., 3D porous
scaffolds and membranes) for tissue engineering applications. Electrical properties and synthesis
methods of these carbon nanomaterials are presented. A wide range of fabrication techniques are
considered, and several tissue engineering applications are discussed in detail. Future perspectives
and developments are also presented.

2. Carbon Nanomaterials for Electro-Active Scaffolds

Carbon nanomaterials (CNMs) exhibit vast structural diversity, owing to carbon atom’s capability
of covalently bonding at diverse hybridization states (sp, sp2 and sp3) with other carbon atoms
and non-metallic elements [46]. The resulting allotropes are classified according to the number of
dimensions, i.e., 0D, 1D and 2D, with known models such as quantum dots, nanotubes and graphene,
respectively [47]. The electrical properties of carbon are highly influenced by the nanostructure
anisotropy and its degree of replication [48]. All sp2 carbon materials are intrinsically anisotropic
as it contains delocalized last non-hybridized valence π-electrons in a plane perpendicular to its
basal plane. The mobility within the lattice and the dynamics in one particular configuration create
“electronic layers”, responsible for the high 2D electric conductance [49]. CNMs are of similar size-scale
to biological molecules, and thus can be effective platforms for enhancing biological activities within
living organisms. Specifically, high surface area-to-mass ratio CNMs such as graphene and carbon
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nanotubes (CNTs) (Figure 1a–c), maximize the scaffold potential for cellular development, interacting
with biomolecules such as DNA, enzymes, proteins and peptides [50,51].
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Consequently, the charge transport at such high value of carrier mobility is essentially ballistic on the 
micrometer scale, at room temperature [56], making graphene a useful material for biosensing and 
biomedical applications [68]. 

Figure 1. Schematic illustrations of the structures of (a) graphene, (b) single-walled carbon nanotube
and (c) multi-walled carbon nanotube. (d) σ and π orbitals in carbon sp2 honeycomb lattice [52];
(e) overlapping sigma bonds in sp2 array of single-layer graphene. Reproduced with permission from
Jorio et al., Advanced Materials, published by Wiley-VCH, 2011.

2.1. Graphene

Discovered in 2004, single-layer graphene is an atomically thin film of carbon atoms bonded
together in a planar 2D structure. As illustrated in Figure 1d,e, each carbon atoms are sp2 (planar)
hybridized having covalent σ bonds with three nearest carbon atoms, forming a robust honeycomb
lattice. This makes graphene currently the strongest known material with Young’s modulus of
~1.0 TPa [53]. Moreover, the exceptional light absorption properties make graphene a promising
candidate for phototransistors with high responsivity and sensitivity [54].

2.1.1. Electrical Properties

The ambipolar field effect on few-layers graphene, which corresponds to the availability of carriers
to be tuned continuously between holes and electrons by supplying the required gate bias, was first
observed by Novoselov et al. [55]. For positive gate bias, the Fermi level rises above the Dirac point,
hence promoting electrons into the conduction band. On the contrary, the Fermi level drops below the
Dirac point under negative gate bias, thus introducing holes into the valence band [56].

Besides the ambipolar field effect, graphene also shows the quantum Hall effect (QHE) and an
extremely high carrier mobility [57–64]. As a 2D material with zero bandgaps, the electrons in graphene
will be confined, leading to a quantum mechanically enhanced transport phenomena, known as
QHE. However, the QHE in graphene is half-integer QHE instead of integer QHE, which is different
than what is usually observed in conventional semiconductors [57]. This difference is attributed to
the unique electronic properties of graphene that exhibits electron-hole degeneracy and massless
Dirac fermions [57,65]. The observable QHE even at room temperature further indicates the extreme
electronic quality of graphene [66].

This extraordinary electronic property is caused by the high quality of its 2D crystal lattice. In other
words, graphene with higher defects density will have lower carrier mobility, since these defects act as
the scattering centers, which inhibit charge transport [56]. Perpendicular to the graphene plane are the
π-bonds that form delocalized electron states across the plane. Due to the easy movement of electrons in
these π-states, high carrier mobility of ~200,000 cm2 V−1s−1 has been attained for suspended graphene
and ~500,000 cm2 V−1s−1 for graphene-based field-effect transistor [63,64,67]. Consequently, the charge
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transport at such high value of carrier mobility is essentially ballistic on the micrometer scale, at room
temperature [56], making graphene a useful material for biosensing and biomedical applications [68].

2.1.2. Materials Synthesis

Graphene can be produced by using top-down and bottom-up synthesis methods. Top-down
synthesis methods of graphene are generally detachment or exfoliation from existing graphite
crystals [69]. Exfoliation can be done mechanically (Scotch Tape method) [70], in liquid phase,
exploiting ultrasounds to graphite or graphite oxide sheets by using chemicals with matching surface
energy [67,71–73], or by electrical arc-discharge between two graphitic electrodes (Figure 2) [74].
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Figure 2. Graphene top-down synthesis methods. Schematic of (a) arc discharge [75] and (b) chemical
vapour deposition (CVD) setup [76]; (c) micromechanical exfoliation of graphite [77] and TEM image [78];
(d) the deoxygenation of exfoliated graphene oxide (GO) under alkaline conditions [79]. Reproduced
with permission from Fan et al., Journal of Applied Physics, published by American Institute of Physics,
2015; Kumar and Lee, Advances in Graphene Science, published by Books on Demand, 2013; Singh et al.,
Progress in Materials Science, published by Elsevier, 2011; Meyer et al., Nature, published by Nature,
2007; and Fan et al., Advanced Materials, published by Wiley-VCH, 2008.

Mechanical exfoliation (repeated peeling), the first reported approach for graphene fabrication,
was initially described by Novoselov et al. [55]. Moreover, the electrical field effect of single-layered
graphene from the mechanical exfoliation of small mesas of highly oriented pyrolytic graphite was
also observed [55].

Liquid-phase exfoliation (LPE) is another synthesis method being characterized by its low cost,
ease of operation and minimal environmental impact. Manna et al. demonstrated single- and
few-layers of graphene nanosheets synthesis from bulk materials by a surfactant-free LPE, using water
as the co-solvent with N-methylpyrrolidinone (NMP) [73]. Authors proved that interactions in both
solid–solvent and solvent–solvent interactions could influence the LPE process [72]. Layered-materials
(solid) and solvent system (liquid) interaction improves the exfoliation efficiency by minimizing
solid–liquid interfacial energy (γsl), maximizing solid–liquid interfacial work of adhesion (Wsl) at the
optical mw. Moreover the water–NMP (liquid–liquid) heteroassociation prevents the recombination
of exfoliated layers, and the bulky (NMP·2H2O)n aggregates are able to provide intersheet repulsive
forces, separating the nanosheets with non-overlapping Leonard–Jones (L–J) potentials. Briefly, 50 mg
of bulk materials were placed in 14 mL centrifuge tubes with an initial concentration of 5 mg/mL
for exfoliation. The materials were batch sonicated for 6 h at the power of 100 W and a frequency
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of 37 kHz. Every 30 min, the positions of each sample tubes were changed to achieve uniform
power distribution and the water of bath sonicator was replaced to maintain the temperature between
27 and 37 ◦C during the sonication process. The dispersions were stored overnight and centrifuged
at 3000 rpm for 30 min. According to TEM measurement, the lateral size of the exfoliated graphene
was 500–2000 nm, the optimal water–NMP mixed solvent mass fraction was 0.2–0.3, which result
to 0.43 (~8.6% by mass) mg/mL of exfoliated graphene nanosheets [72]. However, limited scalability,
controllability and size of graphene or other 2D materials are the main limitations in the LPE process [80].

Oxidation-reduction (redox) is another top-down synthesis method. GOs produced by Hummers
method can be reduced into graphene with different kinds of reducing agents, such as N2H4 and
NaBH4 [80,81]. Nevertheless, the Hummers method suffers from some drawbacks, including high
oxidants consumption, inevitable intercalating agents, long process time, high cost and poor
scalability [82]. Schniepp et al. utilized a different approach to produce single layer graphene
sheets [83], based on a redox method combined with thermal treatment, which mainly attributed
to the interstices between the graphene sheets due to the CO2 expansion during rapid heating of
GOs. Therefore, complete graphite oxidation and extremely rapid heating of GOs are fundamentally
required. Briefly, natural flake graphite was oxidized in a mixture solution of sulfuric acid, nitric acid
and KClO3 for more than 96 h. After the 0.34 nm intergraphene spacing disappears, and a new spacing
of 0.65–0.75 nm range appears (depend on GOs water content), the GOs are dried and purged with
argon for thermal exfoliation. The rapid heating rate of 2000 ◦C/min to 1050 ◦C would split the GOs
into several individual sheets through CO2 evolution. Successful exfoliation was confirmed when
all diffraction peaks were eliminated. Atomic force microscopy (AFM) measurements show that the
produced graphene sheets are well dispersed at an average density of about 50 flakes per 100 µm2

and exhibit a lateral extent of a few hundred nanometers. The representative height varies at two
length scales, 2 nm for the flat areas with respect to HOPG and 10 nm for the several large, meandering
wrinkles [83].

On the other hand, bottom-up synthesis deal with directly growing graphene layers on substrate
surfaces. This method includes epitaxial growth on silicon carbide crystal and chemical vapour
deposition (CVD) where graphene from a hydrocarbon source precipitates from the transition metal
surface [84,85]. Synthesis through CVD is the most viable method in terms of operational control,
complexity and throughput [69].

Due to the ease of controllability and scalability, graphene films with large area and high quality
can be obtained via CVD process [86]. Figure 3a–c shows a typical CVD process, which involves the
deposition of volatile precursors on the exposed substrate surface to produce the desired graphene
or 2D materials films. Depending on the substrate’s catalytic ability, the growth of graphene is
governed by two instances: heterogeneous catalysis (governs the growth process for substrates with
high catalytic ability) and gas reaction (governs the growth process for substrates with low catalytic
ability). Heterogeneous catalysis is more suitable for high-quality graphene films fabrication [87].
Therefore, the key parameters in the CVD process are the catalyst, precursor, flow rate, temperature,
pressure and time.

The graphene growth on the metal substrate based on heterogeneous catalysis CVD process
consists of four steps:

1. Adsorption and catalytic decomposition of precursor gas.
2. Diffusion and dissolution of decomposed carbon species on the surface and into the bulk metal.
3. Segregation of dissolved carbon atoms onto the metal surface.
4. Surface nucleation and growth of graphene.

Another different route occurs for metal with poor carbon affinity (e.g., Cu), in which the
decomposition of carbon precursors was directly followed by graphene formation, realized by
diffusion of carbon atoms on the metal surface. These two routes coexist in all graphene CVD system,
but dominant depends on the properties of metal substrates [88].
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Figure 3. (a) Sketch drawing of typical CVD system for graphene fabrication; (b) elementary steps
involved in CVD process (red arrow represents good metal to carbon affinity, while blue arrow
represents poor metal to carbon affinity); (c) schematic illustration of four elementary steps connected
together and coexistence of two routes for carbon precursors conversion to graphene [88]; (d) example of
CVD synthesis of patterned graphene films on thin nickel films [89]. Reproduced with permission from
Yan et al., Accounts of Chemical Research, published by American Chemical Society, 2013; and Kim et al.,
Nature, published by Nature, 2009.

Somani et al. reported that few-layered graphene could be obtained by CVD synthesis on nickel
sheets [90]. Similarly, Kim et al. reported that graphene obtained by CVD synthesis on thin nickel films
yielded good electronic properties comparable to exfoliated graphene. Briefly, as shown in Figure 3d,
an electron-beam evaporator deposit thin layers of nickel with a thickness larger than 300 nm on
SiO2/Si substrates. The samples were heated to 1000 ◦C in a quartz tube under an argon atmosphere.
After flowing the reaction gas mixtures (CH4:H2:Ar = 50:65:200 standard cubic centimeters per minute
(sccm) ), the samples were rapidly cooled to room temperature (~10 ◦C/s), using flowing argon, which is
essential to prevent the multi-layers formation and efficiently separate graphene layers in the later
process [89]. Li et al. also utilized copper foils as a catalytic substrate to improve graphene layer
homogeneity with >95% consisted of a single layer [91].

Different synthesis methods significantly affect the properties of graphene such as surface area,
number of layers, lateral dimension, surface chemistry, hydrophilicity and purity. These parameters
also have an impact on the biological effects of graphene [92]. It is reported that with the decrease of
lateral size of graphene nanosheets, the viability of bacteria is also decreased [93]. Besides the C/O ratio
(for GO), structural defects, dopants and metallic residues also influence the biological properties of
the produced graphene scaffolds [94,95].
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2.1.3. Tissue Engineering Applications

After production, graphene can be reformed into zero-dimensional nanomaterial, rolled into
one-dimensional nanotube or manipulated into 3D graphite [51]. Dispersed graphene and graphene
oxide (GO) and its interaction with target cells have been explored [96–98]. Multiple reports have
indicated that graphene is an outstanding platform for promoting the adhesion, proliferation and
differentiation of different cell types, such as mesenchymal stem cells (MSCs), neural stem cells (NSCs),
embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) [99–102]. In the case of neural
cells, graphene was found to be capable of forming a functional neural network as demonstrated by
Serrano et al. where GO 3D scaffolds were fabricated through a biocompatible freeze-casting process
named ice segregation-induced self-assembly (ISISA) [103]. Positive results, such as improved neural
network interconnection and an increase in dendrites, axons and synaptic connections, were observed.
Graphene also has great potential for neural interfacing, promoting the neurite sprouting and outgrowth
of hippocampal neurons in primary culture [100]. Heo et al. investigated neural cell-to-cell interactive
reactions on graphene/poly (ethylene terephthalate) films with SHSY5Y human neuroblastoma cells,
followed by electrical stimulation at low and high magnitude [101]. As shown in Figure 4, cell-to-cell
interactions can be classified into either cell-to-cell decoupling (CD) or cell-to-cell coupling (CC).
Furthermore, the CC group can be divided into newly formed cell-to-cell coupling (NCC) and
strengthened cell-to-cell coupling (SCC). Cell-to-cell wavering (CW) was also covered. Low electrical
field stimulation (4.5 mV/mm), resulted in the highest percentage of CC effect, including NCC and
SCC. With high electrical field stimulation (450 mV/mm), the main reaction of cells was CD and CW.
These results show that cell-to-cell decoupling is enhanced under high stimulation, while non-contact
weak electric field stimulation also enables cell-to-cell coupling without cellular death [101].
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Figure 4. Representative images and analysis of cellular response to electrical stimulation; “f1” to
“f40” corresponds to the 1st to 40th image taken during stimulation, using an optical microscope;
“f1” cell shapes are outlined in black. The final shapes are then represented by different colors (red for
cell-to-cell coupling (CC), green for cell-to-cell decoupling (CD) and blue for cell-to-cell wavering
(CW)). (Top, low stimulation) Stimulation at 4.5 mV/mm where CC categorization was observed in the
majority of the cells, also with clear newly formed cell-to-cell coupling (NCC) and strengthened
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cell-to-cell coupling (SCC). (Bottom, high stimulation) Stimulation at 450 mV/mm, where CD and CW
categorized cells are more evident. Scale bar represents 30 mm [101]. Reproduced with permission
from Heo et al., Biomaterials, published by Elsevier, 2011.

Tang et al. examined the development of neural network from human neural stem cells
(hNSCs) differentiation at graphene by comparing fluorescence images from day 1 to day 14 [104].
After seeding, it was possible to observe that the cells were able to adhere to the substrates. As indicated
in Figure 5a–d, one day after cell seeding, cells are able to migrate, to different directions from
neurospheres. After 14 days, high portions of the neurites contacted each other resulting in subsequent
synapse formation. A study comparing cell differentiation on glass and graphene substrates was also
conducted by Feng et al. [102]. As shown in Figure 5e–h, after one month, higher hNSCs adhesion and
differentiation were observed with graphene substrate. The results show that the differentiation of
hNSCs more toward to neuron than glial cells, and graphene functioned as a good cell adhesion layer
during the long term differentiation process [105].
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hMSCs proliferation. Moreover, it was also observed that the expressions of certain neuronal-specific 
markers such as glial fibrillary acidic protein (GFAP), neuron-specific class III β-tubulin (Tuj1) and 
microtubule-associated protein 2 (MAP2) significantly increased after 14 days of cell differentiation 
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Zhang et al. developed an approach which successfully added graphene into regenerated silk 
fibroin (RSF) scaffolds. As Figure 6 shows, biological evaluation of SCs and PC12 cells shows that the 
fabricated scaffolds, with the lowest resistance of 54.9 ± 20.3 Ω/sq., can effectively promote the 
attachment, proliferation and differentiation of the cells. The neurite growth of PC12 cells can also be 
simulated by the scaffolds [107]. Zhao et al. [108] and Yang et al. [109] also evaluated the 
graphene/silk fibroin (SF) conductive fibrous scaffolds fabricated by electrospinning. The results 
show that scaffolds with higher graphene concentrations exhibited higher currents and thus, higher 
conductivity [108]. However, the graphene concentration higher than 3 wt.% shows negative effects 
on cell proliferation [109]. 

Figure 5. (a–d) Immunostaining (B-tubulin) of hNSCs differentiation developing neural networks on
graphene substrates [104]. (e,f) Bright-field and (g,h) fluorescence microscopy images of immunostained
differentiated hNSCs on glass and graphene substrates, after one month of cell culture. DAPI (blue)
for nuclei, TUJ1 (green) for neural cells and GFAP (red) for astroglial cells [105]. Reproduced with
permission from Tang et al., Biomaterials, published by Elsevier, 2013; and Park et al., Advanced Materials,
published by Wiley-VCH, 2011.

Jakus et al. prepared a custom-sized nerve conduit based on graphene and poly (lactide-co-
glycolide) (PLG), using an extrusion-based additive manufacturing technology [106]. Results show
that by increasing the graphene concentration from 20 vol.% (or ~32 wt.%) to 60 vol.% (or ~75 wt.%),
strain decreased from 210% to 81%, and conductivity increased from 200 to 600 S/m, increasing also
hMSCs proliferation. Moreover, it was also observed that the expressions of certain neuronal-specific
markers such as glial fibrillary acidic protein (GFAP), neuron-specific class III β-tubulin (Tuj1) and
microtubule-associated protein 2 (MAP2) significantly increased after 14 days of cell differentiation [106].

Zhang et al. developed an approach which successfully added graphene into regenerated silk
fibroin (RSF) scaffolds. As Figure 6 shows, biological evaluation of SCs and PC12 cells shows that
the fabricated scaffolds, with the lowest resistance of 54.9 ± 20.3 Ω/sq., can effectively promote
the attachment, proliferation and differentiation of the cells. The neurite growth of PC12 cells can
also be simulated by the scaffolds [107]. Zhao et al. [108] and Yang et al. [109] also evaluated the
graphene/silk fibroin (SF) conductive fibrous scaffolds fabricated by electrospinning. The results
show that scaffolds with higher graphene concentrations exhibited higher currents and thus,
higher conductivity [108]. However, the graphene concentration higher than 3 wt.% shows negative
effects on cell proliferation [109].
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scanning confocal microscope  images of PC12 cells cultured on (c) regenerated silk fibroin (RSF), (d) 
RSF/G-1mg, (e) RSF/G-2mg and (f) RSF/G-4mg for four days, without ES (white ellipses indicate 
axons). (g–j) Laser scanning confocal microscope  images of PC12 cells cultured on RSF/G-2mg 
scaffolds for four days with voltages of (g) 10 mV, (h) 50 mV and (i) 100 mV. (j) The proportion of 
PC12 neurite-bearing cells. (k) Average axon length of PC12 cells with and without ES (* P < 0.05). (g–
k) ES time is 6 h [107]. Reproduced with permission from Zhang et al., Carbon, published by Elsevier, 
2019. 

For bone tissue engineering applications, Wang et al. [110–113] explored the use of an extrusion-
based additive manufacturing system to produce poly(ε-caprolactone) (PCL)/graphene scaffolds. 
The effect of adding graphene to the polymeric scaffolds was studied form a morphological, 
physiochemical and biological point (Figure 7). Results show that the addition of small quantities of 
graphene has a positive impact in terms of mechanical properties, cytocompatibility and stimulating 
cell proliferation. PCL/graphene scaffolds with a squared pore size of 350 μm were produced by 
using a screw-assisted extrusion additive manufacturing system. The results show that by increasing 
the graphene content from 0 to 0.78 wt.%, the compression modulus increased from 82.2 ± 6.8 MPa 
to 128.7 ± 6.9 MPa. Cell proliferation of human adipose-derived stem cells (hADSCs) was also 

Figure 6. (a,b) Schematic representation of the cell culture device (a) without electrical stimulation (ES)
and (b) with ES. The right-hand side of (b) shows the ES experimental design, where black lines indicate
periods without ES, and yellow lines indicate periods with ES. (c–f) Representative laser scanning
confocal microscope images of PC12 cells cultured on (c) regenerated silk fibroin (RSF), (d) RSF/G-1mg,
(e) RSF/G-2mg and (f) RSF/G-4mg for four days, without ES (white ellipses indicate axons). (g–j) Laser
scanning confocal microscope images of PC12 cells cultured on RSF/G-2mg scaffolds for four days
with voltages of (g) 10 mV, (h) 50 mV and (i) 100 mV. (j) The proportion of PC12 neurite-bearing cells.
(k) Average axon length of PC12 cells with and without ES (* p < 0.05). (g–k) ES time is 6 h [107].
Reproduced with permission from Zhang et al., Carbon, published by Elsevier, 2019.

For bone tissue engineering applications, Wang et al. [110–113] explored the use of an
extrusion-based additive manufacturing system to produce poly(ε-caprolactone) (PCL)/graphene
scaffolds. The effect of adding graphene to the polymeric scaffolds was studied form a morphological,
physiochemical and biological point (Figure 7). Results show that the addition of small quantities of
graphene has a positive impact in terms of mechanical properties, cytocompatibility and stimulating
cell proliferation. PCL/graphene scaffolds with a squared pore size of 350 µm were produced by using
a screw-assisted extrusion additive manufacturing system. The results show that by increasing the
graphene content from 0 to 0.78 wt.%, the compression modulus increased from 82.2 ± 6.8 MPa to
128.7 ± 6.9 MPa. Cell proliferation of human adipose-derived stem cells (hADSCs) was also significantly
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increased due to the presence of graphene. Other studies also show that graphene can be used to
accelerate the osteogenic differentiation of hADSCs [114,115].
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(e) biological characterization (Alamar Blue assay); (f) scanning electron microscopy (SEM, left) and
confocal microscopy images (right) of cell-seeded scaffolds [110–112]. Reproduced with permission
from Wang et al., International Journal of Bioprinting, published by Whioce Publishing Pte. Ltd., 2016;
Materials, published by MDPI, 2016; and 2nd International Conference on Progress in Additive Manufacturing,
published by Research Publishing, 2016.

Further in vivo investigations were conducted based on a male Wistar rats’ model [32,116].
Six testing groups were considered: NBR (natural bone regeneration), NBR+ES (natural bone
regeneration with electrical stimulation), PCL (PCL scaffolds), PCL+ES (PCL scaffolds with electrical
stimulation), PCL/G (PCL composite scaffolds containing 0.78 wt.% of graphene) and PCL/G+ES group
(PCL composite scaffolds containing 0.78 wt.% of graphene with electrical stimulation) as shown
in Figure 8. Results show that the scaffold-based strategy, especially scaffolds containing graphene
and combined with electrical stimulation, present better results in terms of bone regeneration than
the natural bone repair (NBR) group. After 60 days of implantation, scaffolds containing graphene
promoted higher connective tissue formation and bone mineralized tissue formation than NBR group
and PCL group. Additionally, PCL+ES (31% of cumulative tissue formation), PCL/G (38.2%) and
PCL/G+ES (41.2%) allowed for more new-formed tissue than the NBR group (17.6%) (Figure 8).
After 120 days of implantation, the applied electrical stimulation allows for high levels of new and
more organized bone formation.
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produced by using screw-assisted extrusion-based additive manufacturing system with PCL as the 
polymeric matrix. Experimental results showed that the addition of both graphene and GO enhances 
the mechanical properties of PCL scaffolds, allowing to obtain scaffolds with compressive modulus 
in the same order of magnitude as human trabecular bone. In vitro biological studies were conducted, 

For cartilage tissue engineering applications, Liao et al. [119] fabricated scaffolds composed of 
chondroitin sulfate methacryloyl, poly(ethylene glycol) (PEG) methyl ether-ε-caprolactone-acryloyl 
chloride and graphene oxide (CSMA/PECA/GO), using a thermal-initiated free-radical 
polymerization method. In vitro biological assessments suggested that the seeded chondrocytes were 

Figure 8. Photomicrography of the defect area after 60 and 120 days of in vivo bone regeneration test.
(a) Attained with hematoxylin and eosin at 50× g magnification. (b) Stained with Masson Trichrome at
100× g magnification showing areas of the bone defect. In these images, it is possible to observe the
bone edge (B.E), scaffold (S), connective tissue (C.T), bone tissue (B.T), graphene nanosheets (*) and
matured/organized tissue (O.T) [32]. Reproduced with permission from Wang et al., Materials Science
and Engineering: C, published by Elsevier, 2019.

Hou et al. proposed a novel concept of dual-functional scaffold (Figure 9) for both bone cancer
treatment and bone regeneration, using graphene and GO fillers [117,118]. The scaffolds were produced
by using screw-assisted extrusion-based additive manufacturing system with PCL as the polymeric
matrix. Experimental results showed that the addition of both graphene and GO enhances the
mechanical properties of PCL scaffolds, allowing to obtain scaffolds with compressive modulus in
the same order of magnitude as human trabecular bone. In vitro biological studies were conducted,
using both hADSCs and bone cancer cells Saos-2. Results show that scaffolds with GO fillers showed
greater inhibition ability than scaffolds with graphene fillers. Furthermore, scaffolds containing high
dose (5, 7 and 9 wt.%) of graphene showed greater inhibition ability on Saos-2 cells than hADSCs.
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International Journal of Bioprinting, published by Whioce Publishing Pte. Ltd., 2020; and 3D Printing and
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For cartilage tissue engineering applications, Liao et al. [119] fabricated scaffolds composed of
chondroitin sulfate methacryloyl, poly(ethylene glycol) (PEG) methyl ether-ε-caprolactone-acryloyl
chloride and graphene oxide (CSMA/PECA/GO), using a thermal-initiated free-radical polymerization
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method. In vitro biological assessments suggested that the seeded chondrocytes were able to attach
proliferate. Moreover, for the in vivo biological assessment on osteochondral defects of a rabbit model,
compared to the scaffold without cells, scaffolds with cell injection induced higher volume of newly
formed cartilage/bone tissues [119].

Hitscherich et al. investigated the potential of PCL/graphene scaffold for cardiac tissue engineering
applications. The scaffolds were prepared through electrospinning considering different graphene
concentrations (0.01% and 0.5%). Electrical stimulation results show that the impedance of the scaffolds
decreased by increasing the graphene contents. In vitro studies indicate that the fabricated scaffolds
were biocompatible, able to support stem cell-derived cardiomyocytes, and to improve the Ca2+

handling properties of mouse embryonic stem cell derived cardiomyocytes (mES-CM). This can be
explained by the local conductive pathways of the scaffolds which facilitated signal propagation
and interaction between cells [120]. Bahrami et al. reported that three-dimensional graphene foams,
produced by using a CVD method, could reach an electrical conductivity of 9 S/cm−1, thus stimulating
a high level of the cardiac-specific genes Conx43 and TrpT-2 after seven days of cell seeding without
the use of external electrical stimulation [121].

Additional biological studies using graphene electro-active structures are summarized in Table 2.
However, further research is still required. The cytotoxicity introduced from graphene into these
substrates is still under investigation. Research reported layered graphene sheets up to 5 µm in
lateral dimension can be internalized by macrophages by adhering initially, gradually spreading and
covering few-layered graphene (FLG) surface, without perturbation of their plate-like shape (Figure 10).
As featured by Liao et al. [97], using human erythrocytes and skin fibroblasts, further modifying size,
shape and surface chemistry of graphene, can highly influence the cytotoxicity. In addition, cover the
graphene surface with biocompatible polymers can be regarded as a common method to reduce the
cytotoxicity, this can also improve the solubility, stability and retention time in the blood stream [98].
Furthermore, graphene cytotoxicity is also closely associated with the biocompatibility of its surface
functionalization, non-functionalized counterparts were found to be more toxic [122]. However, longer
term studies need to be conducted, such as preclinical studies considering different animal models [96].

Table 2. Studies using graphene electro-active structures.

Electro-Active
Structures

Electrical Stimulation
Settings Cell Line Outcome Reference

Cellulose/graphene
scaffold

100 mV/mm of DC for
1 h/day

Human adipose
stem cells

Increased proliferation,
mineral deposition and

ALP expression
Li et al., 2020 [123]

Reduced graphene
oxide-coated

ApF/poly(l-lactide-co-
ε-caprolactone) scaffold

100 mV/cm for 1 h/day SCs and PC12 cells

Promoted SC migration,
proliferation, myelin gene
expression, neurotrophin

secretion and induced
PC12 cell differentiation

Wang et al., 2019
[124]

Polypyrrole/graphene
nanofibrous scaffold

Forward potential
varied from 0.1 to

1 V/cm while reverse
potential changed from
−0.1 to −1 V/cm

Retinal ganglion
cells

led to 137% improvement
in cell length with a

significantly enhanced
antiaging effect for RGCs

Yan et al., 2016
[125]

Graphene scaffold
Square waveform with

1 Hz and 10 µA for
30 min/day

Human
Rett-derived

neuronal
progenitor cells

Improved cell maturation Nguyen et al., 2018
[126]

Graphene membrane
Intensity of

100 mV/mm with 1 ms
duration at 10 or 1 Hz

PC-12 nerve Cell
Promoted neurite

extension and length
growth

Meng et al., 2014
[127]

Graphene membrane Pulse of 15 V, duration
50–100 ms C2C12 Myoblasts High degree of myogenic

differentiation
Bajaj et al., 2014

[128]
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Table 2. Cont.

Electro-Active
Structures

Electrical Stimulation
Settings Cell Line Outcome Reference

Bacterial
Cellulose/Poly(3,4-

ethylenedioxythiophene)
(PEDOT)/GO membrane

0.5 V cm−1 for
1–100 ms lower than

0.6 V
PC12 neural cells

Promoted cell orientation
and development of PC12

cells

Chen et al., 2016
[129]

Graphene-based
membrane

8 V at 1 Hz with 10 ms
duration

Mouse C2C12
myoblast cells

Enhanced differentiation
of skeletal muscle cells

Ahadian et al., 2014
[130]

Methoxy PEG/rGO
membrane

1–100 ms monophasic
anodic pulses, 10 s

duration, 0.6 V pulse
potential

PC12 neural cells
Predominant increase in

cell percentage with higher
action potentials

Zhang et al., 2014
[131]

Poly(lactic-co-glycolic
acid) (PLGA)/GO

membrane

100 mV at 20, 100 and
500 Hz for 1 h/day Neural stem cells

Promoted proliferation,
differentiation and neurite

elongation in NSCs
Fu et al., 2019 [132]

Rolled GO foam 100 ms cathodic
voltage pulses

Human neural
stem cells

More proliferation of
hNSCs and their

accelerated differentiation
into neurons

Akhavan et al.,
2016 [133]

Graphene-based foam

−0.2–0.8 V, 1–100 ms
monophasic cathodic

pulses at 10 s intervals,
20–30 µA threshold

Neural stem cell
Supported cell growth and
enhanced differentiation to

neurons than astrocytes
Li et al., 2013 [134]

Graphene-based
substrate 0.3 V at 1 Hz

Human
mesenchymal stem

cells

Did not create a cytotoxic
environment

Balikov et al., 2016
[135]

Graphene-based
substrate

100 mV at 50 Hz for
10 min/day

Mesenchymal stem
cells

Transdifferentiation
of msCs to SC-like

phenotypes solely without
the need for additional
chemical growth factors

Das et al., 2017
[136]

Graphene/polyacrylamide
hydrogel membrane

5 V with 10 ms
duration at 1 Hz for

4 h/day

Mouse C2C12
myoblast cells

Increased myogenic gene
expression levels of

myoblasts
Jo et al., 2017 [137]

CS/oxidized
hydroxyethyl

cellulose/rGO/asiaticoside
liposome-based

hydrogel membrane

250 mV for 8 h RSC 96 cells, PC12
cells, NIH/3 T3 cells

Promoted nerve
regeneration

Zheng et al., 2019
[138]

Graphene crosslinked
collagen cryogel

membrane

1 V for 5 min at
0.20 V/mm BM-MSCs

Promoted proliferation of
cells, aiding neural

connections establishment,
increase

immune-modulatory
secretions

Agarwal et al., 2021
[139]
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Figure 10. Human THP-1 macrophages internalization of few-layered graphene (FLG). Untreated 
cells were exposed to (a) 550 nm, (b) 800 nm and (c) 5 μm FLG sizes. For interaction to become more 
apparent under light microscopy, cells were stained with blue. (d,e) Macrophage interaction with FLG 
[140]. Reproduced with permission from Sanchez et al., Chemical Research in Toxicology, published by 
American Chemical Society, 2011. 

2.2. Carbon Nanotubes 

Carbon nanotubes (CNTs) are cylindrical tubes of sp2 bonded carbon atoms, conceptually 
regarded as rolled-up sheets of graphene [141]. CNTs are considered 1D and highly anisotropic 
materials as their aspect ratio (length/diameter) frequently exceed 10,000 with ends un/capped by 
semi-fullerene molecules (pentagonal ring defect) [46]. CNTs can be classified as single-walled carbon 
nanotube (SWCNT) or multi-walled carbon nanotube (MWCNT) depending on the number of 
concentrically arranged graphene layers [142,143]. SWCNT diameter typically ranges from 0.4 to 2 
nm [46], while MWCNTs outer diameter varies from 2 to 30 nm with an interlayer spacing of 0.34–
0.39 nm creating a coaxial nanotube assembly resembling a Russian-doll [144]. According to the 
chirality (the orientation of graphene lattice with respect to tube axis), SWCNTs are classified as 
armchair, zigzag and chiral (Figure 11a). Since CNTs are basically graphene in different dimensions, 
CNTs also present similar electrical, thermal and optical properties due to the extended sp2 carbon 
and tunable physical properties. 

Figure 10. Human THP-1 macrophages internalization of few-layered graphene (FLG). Untreated cells
were exposed to (a) 550 nm, (b) 800 nm and (c) 5 µm FLG sizes. For interaction to become more
apparent under light microscopy, cells were stained with blue. (d,e) Macrophage interaction with
FLG [140]. Reproduced with permission from Sanchez et al., Chemical Research in Toxicology, published
by American Chemical Society, 2011.

2.2. Carbon Nanotubes

Carbon nanotubes (CNTs) are cylindrical tubes of sp2 bonded carbon atoms, conceptually regarded
as rolled-up sheets of graphene [141]. CNTs are considered 1D and highly anisotropic materials as
their aspect ratio (length/diameter) frequently exceed 10,000 with ends un/capped by semi-fullerene
molecules (pentagonal ring defect) [46]. CNTs can be classified as single-walled carbon nanotube
(SWCNT) or multi-walled carbon nanotube (MWCNT) depending on the number of concentrically
arranged graphene layers [142,143]. SWCNT diameter typically ranges from 0.4 to 2 nm [46],
while MWCNTs outer diameter varies from 2 to 30 nm with an interlayer spacing of 0.34–0.39 nm
creating a coaxial nanotube assembly resembling a Russian-doll [144]. According to the chirality
(the orientation of graphene lattice with respect to tube axis), SWCNTs are classified as armchair,
zigzag and chiral (Figure 11a). Since CNTs are basically graphene in different dimensions, CNTs also
present similar electrical, thermal and optical properties due to the extended sp2 carbon and tunable
physical properties.
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Figure 11. (a) Single-walled carbon nanotubes (SWCNTs) configuration [145]. Three common systems
for carbon nanotube (CNT) synthesis: (b) arc-discharge [146], (c) laser ablation [147] and (d) thermal
CVD [148]. Reproduced with permission from Grobert, Materials Today, published by Elsevier, 2007.

2.2.1. Electrical Properties

Contrary to graphene, QHE does not exist in CNTs. The properties of CNTs can be tuned
by controlling the diameter, length, single-walled or multi-walled, surface functionalization and
chirality [149,150]. Doping CNT with heteroatoms such as nitrogen or boron is also an effective way to
control its electrical properties [151], thermal properties [152] and chemical properties [153].

The structure of SWCNTs can be represented by the chirality indices (n,m), which are equivalent
to the diameter (d) and the chiral angle (α) [143,154]. Figure 12 describes different rolled-up vectors of
honeycomb graphene structures, resulting in different chirality indices. The m index is assigned to
mth hexagon from the origin, whereas the n index is ascribed as α. Therefore, CNTs structure can be
uniquely determined when the diameter and the angle are known [143]. Armchair SWCNTs exhibit
a metallic behavior as they have finite density of states at Fermi level, while chiral SWCNTs exhibit
a semiconductor behavior given a zero density of state of the small bandgap featured in their band
structure [46]. MWCNTs are less reactive than SWCNTs because of the larger outer diameter and lower
curvature [141].
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2.2.2. Materials Synthesis

Three different methods can be used to synthesize CNTs (MWCNTs and SWCNTs) (Figure 11b–d):
CVD [155,156], carbon arc-discharge [157] and laser ablation [158]. In some methods, such as
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arc-discharge and laser ablation, MWCNTs are synthesized in the absence of a catalyst, and SWCNTs are
synthesized in the presence of carbon electrodes containing catalytic metal particles [159]. As mentioned,
the electronic properties of CNTs are strongly related to their chirality and CVD is the most widely used
synthesis method, allowing large-scale production of CNTs and the control of SWCNT chirality [155,160].
CVD techniques include plasma-enhanced (PE) oxygen assisted CVD [161], microwave plasma
(MPECVD) [162] and radio frequency (RF-CVD) [163]. Among all of these methods, the most powerful
and standardized method is the catalytic chemical vapour deposition [46].

The key factor in controlling the chirality of SWCNTs in these CVD methods is the initial nucleation
stage, in which the hemispherical cap composed of six pentagons are formed [164], and the chirality of
an SWCNTs is determined [165]. Therefore, the structure of each nanotube can be defined by controlling
key parameters such as catalysts [155,160,166–170], feedstock [171], temperatures [172], pressure [167],
gas compositions [172,173] and reaction time [169]. Among these parameters, the catalysts seem to
play a dominant role in obtaining specific nanotubes chirality [155].

Many metal catalysts such as bimetallic catalysts have been used for catalytic chiral specific
CNTs growth [167,174]. However, the catalyst size and composition were hardly independently
controlled. Chiang et al. [155] designed a system that consists of a two-step process, using bimetallic
NiFe as the catalyst. As shown in Figure 13a, the bimetallic nanocatalysts were synthesized in a
continuous-flow atmospheric pressure microplasma and nanotube growth in a tubular flow furnace.
The as-synthesized nanocatalysts were introduced into a tubular flow furnace with 0.5 sccm C2H2

and 50 sccm H2 and heated at 600 ◦C. The chiral indices of the produced SWCNTs with different
nanocatalysts compositions were analyzed by photoluminescence (PL) characterization (Figure 13b–e).
The narrowest (n, m) distribution was obtained for SWCNTs grown with Ni0.27Fe0.73 nanocatalysts
with dominating structure of (8, 4) and smaller fractions of (7, 5), (6, 5), (7,6) and (8, 3) [155].
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synthesis of compositionally tuned bimetallic nanoparticles and (2) thermal growth of CNTs [160].
Contour plots of the photoluminescence as a function of excitation and emission for SWCNTs samples
grown with (b) Ni, (c) Ni0.67Fe0.33, (d) Ni0.5Fe0.5 and (e) Ni0.27Fe0.73 nanocatalysts at a constant mean
particle diameter of 2.0 nm. The chiral indices are indicated as (n, m) for each corresponding peak [155].
Reproduced with permission from Chiang et al., ACS Nano, published by American Chemical Society,
2009; and Nature Materials, published by Nature Publishing Group, 2009.

The key point in achieving nanotube with specific chiral indices is to maximize the structural
match between the nanocatalysts crystal planes and the end structure of nanotube chirality [168–170].
Yang et al. [170] reported several SWCNTs template synthesis with specific chirality (n, m), using W6Co7

alloy nanocatalysts. Briefly, SWCNT growth was performed in a quartz reactor with an inner diameter
of 2.1 cm by using an ethanol CVD method. The precursor solution was dropped onto the SiO2/Si
substrates and was calcined at 700 ◦C in an air containing tube furnace for 3 min. After purging the
system with Ar, two hydrogen flows (80 cm3/min and then 200 cm3/min) were introduced through a
water bubbler (ice-water bath) to reduce the calcined catalyst precursors, using a TPR method from
800 to 1050 ◦C, for 4 min. Then 200 cm3/min of H2 flow was introduced into the system to remove the
water vapour prior to the nanotube growth. Finally, CNT can be grown by flowing 200–300 cm3/min
of Ar through an ethanol bubbler and 20–50 cm3/min of H2 for 10 min, followed by cooling under
atmospheric H2 and Ar, respectively [170].

The W6Co7 alloy nanocatalysts were reduced from W39Co6Ox under different temperature and
gaseous phase environments to tune the intermetallic W6Co7 nanocrystals. Under optimized CVD
conditions, the (0 0 12), (1 1 6) and (1 0 10) crystal plane of W6Co7 individually favors the growth of
(12, 6), zigzag (16, 0) and (14, 4) SWCNTs, respectively [168–170]. Therefore, as shown in Figure 14,
by combining the optimized CVD conditions and the catalyst template effect, proper kinetic and
thermodynamic conditions can be achieved for high chirality selective growth of SWCNTs [175].
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and growth kinetics [175]. (c–e) Density functional theory (DFT) simulation of interfaces between
the catalyst’s crystal planes and the corresponding SWCNT end structure chirality in side views.
(f–h) SWCNTs chiral maps obtained from Raman measurements that show the relative abundances
of various chiralities [168–170]. Reproduced with permission from Yang et al., Nature, published by
Nature, 2014; Accounts of Chemical Research, published by American Chemical Society, 2016; Journal of
the American Chemical Society, American Chemical Society, 2015; and ACS Nano, published by American
Chemical Society, 2017.

The synthesis process of CNTs will affect the biological properties as a consequent of different
lengths and diameters (aspect ratios) of the produced CNT. It is reported that a high aspect ratio has a
detrimental effect on cells [176]. This is due to the fact that cells cannot completely swallow high aspect
ratio CNTs, which results in cell damage and the release of harmful oxygen radicals and hydrolytic
enzymes [177,178]. Additionally, the presence of residual heavy metals due to the use of metallic
catalysts during the synthesis process also affect the biocompatibility of CNTs [179,180].

2.2.3. Tissue Engineering Applications

Reports show that carbon nanotubes are excellent functioning fillers for electro-active scaffolds
relevant to a wide range of tissue engineering applications. When in contact with CNTs, cells have
been found to become more electrically active, mature and better interconnected. The high aspect ratio
of CNTs can structurally simulate certain elongated biomolecules (e.g., for building artificial neural
networks or nerve tissue engineering, CNT has the capability of boosting effect on neuron activity,
modulating the immune response) useful to mimic the morphology of heart and nerve tissues [181–184].

For heart tissue engineering applications, Shin et al. and Ahadian et al. [181,185] investigated the
use of gelatin methacryloyl (GelMA) hydrogel structures containing CNTs. Using a dielectrophoresis
method, Ahadian et al. [185] were able to align the CNTs in GelMA pre-polymer solution
(final GelMA concentration of 5% (w/v)), while Shin et al. [181] produced GelMA containing random
CNTs (0, 1, 3 and 5 mg/mL). Although both systems produced positive results in promoting cell
differentiation, their behavior under electrical stimulation was. As shown in Figure 15, mouse embryoid
bodies (EBs) cultured on the CNTs/GelMA substrate differentiated more toward cardiomyocytes than
EBs cultured on pure GelMA and GelMA containing random CNTs. The different impact of electrical
stimulation on these substrates (GelMA with no CNTs, randomly dispersed CNTs and aligned CNTs)
is because of the higher electrical conductance of CNT containing GelMA in the direction of applied
electrical stimulation.
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rat myocardial cells showed no cytotoxic due to the presence of MWCNTs [186]. He et al. also used 
H9C2 cells to assess PCL–polyethylene oxide (PEO)/MWCNT scaffolds [187]. In this case, scaffolds 
were fabricated with a fiber diameter of 10 μm, vertical pores of around 800 μm but almost no 
porosity in the lateral sides, and different concentrations of MWCNT (0, 0.5 and 1.5 w/v%), using an 
electrohydrodynamic 3D printing system. The PCL solution was prepared by using acetic acid, and 
PEO was added to modulate the viscosity. Biological results show that the addition of MWCNT 
facilitate cell alignment but had a negative effect on cell attachment, due to its agglomeration in the 
printed fibers, compared to PCL–PEO scaffolds. 

Kharaziha et al. [188] reported that the addition of CNT into poly(glycerol sebacate):gelatin (PG) 
nanofibrous scaffolds up to 1.5% could significantly increase the electrical conductivity. As Figure 16 
shows, the excitation threshold decreased and both the maximum capture rate and mechanical 
properties increased by increasing the CNTs content. Fabricated CNT–PG scaffolds also significantly 
stimulate spontaneous and synchronous beating activity than the compared PG scaffolds [188]. 
Similarly, Pok et al. [189] demonstrated that the addition of SWCNTs into chitosan-based hydrogel 

Figure 15. (a) Cardiac differentiation analysis by applying DAPI (blue) and Troponin I (green) staining
on pure GelMA and CNT–GelMA with embryoid bodies, by Ahadian et al. Low cardiac differentiation
is indicated by low expression of Troponin T [185]. (Right) Cardiac cell phenotype examination on
the hydrogels by Shin et al. showed more aggregated Troponin I presence on (b) GelMA substrates
than on (c) CNT–GelMA substrates. (d) Confocal images of GelMA and 1 mg/mL CNT–GelMA
with cardiomyocytes cultured for five days [181]. Reproduced with permission from Ahadian et al.,
Acta Biomaterialia, published by Elsevier, 2016; and Shin et al., ACS Nano, published by American
Chemical Society, 2013.

Ho et al. fabricated 3D porous PCL/MWCNT scaffolds with filament distance ranging from
300 to 450 µm with an extrusion-based additive manufacturing system [186]. Authors extensively
investigated the effect of adding MWCNT to PCL (1%, 3% and 5% w/w%) on both mechanical and
biological properties of the scaffolds. Nano-indentation studies showed a gradual enhancement in the
elastic modulus (increased from 0.51 ± 0.18 GPa for PCL scaffold to 0.87 ± 0.10 GPa for PCL scaffolds
containing 5% of MWCNT), hardness (increased from 0.057 ± 0.010 GPa to 0.072 ± 0.003 GPa) and
maximum peak load (increased from 1.16 to 1.34 mN). The addition of MWCNTs also contributes
to increase the crystallinity level of printed filament, broadening the crystallization peak, due to
the restricted mobility of polymer chains in the nanocomposite matrix. MTT assay with H9C2 rat
myocardial cells showed no cytotoxic due to the presence of MWCNTs [186]. He et al. also used
H9C2 cells to assess PCL–polyethylene oxide (PEO)/MWCNT scaffolds [187]. In this case, scaffolds
were fabricated with a fiber diameter of 10 µm, vertical pores of around 800 µm but almost no
porosity in the lateral sides, and different concentrations of MWCNT (0, 0.5 and 1.5 w/v%), using
an electrohydrodynamic 3D printing system. The PCL solution was prepared by using acetic acid,
and PEO was added to modulate the viscosity. Biological results show that the addition of MWCNT
facilitate cell alignment but had a negative effect on cell attachment, due to its agglomeration in the
printed fibers, compared to PCL–PEO scaffolds.

Kharaziha et al. [188] reported that the addition of CNT into poly(glycerol sebacate):gelatin (PG)
nanofibrous scaffolds up to 1.5% could significantly increase the electrical conductivity. As Figure 16
shows, the excitation threshold decreased and both the maximum capture rate and mechanical
properties increased by increasing the CNTs content. Fabricated CNT–PG scaffolds also significantly
stimulate spontaneous and synchronous beating activity than the compared PG scaffolds [188].
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Similarly, Pok et al. [189] demonstrated that the addition of SWCNTs into chitosan-based hydrogel
improves the conductivity of the produced scaffold. Results show that scaffolds with SWCNTs
concentration lower than 175 ppm did not exhibit any cytotoxicity with neonatal rat ventricular
myocytes (NRVM), while scaffolds with concentrations higher than 69 ppm supported the NRVM beat
at a consistent rate of 310 beats/min, which is close to rat hearts [189]. Mehdikhani et al. prepared
PCL/PEG scaffold samples with and without MWCNTs, using solvent casting and freeze-drying
technique. As reported, the conductivity of the scaffold was significantly increased with the addition of
MWCNTs, changing from 0.0 S/m (PCL/Polyethylene terephthalate glycol (PETG) scaffold) to 0.45 S/m
(fibrin coating containing 1 wt.% MWCNTs). Moreover, fabricated scaffolds are able to sustain viable
myoblasts, showing high potential for myocardial tissue engineering [190].
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Figure 16. Electrophysiological functions of engineered cardiac constructs. (A) Beating frequency
(BPM) of constructs as a function of CNT concentration and incubation time. (B) Representative
spontaneous contraction patterns of CMs cultured on poly(glycerol sebacate):gelatin (PG) scaffolds
and CNT incorporated scaffolds recorded after seven days of cultivation. (C) Phase-contrast images
indicating organized tissue construct and non-continuous aligned tissue (red arrows) on the CNT–PG
and PG scaffolds, respectively after seven days of culture. (D) Representative contraction patterns of
electrically stimulated CMs on PG scaffold compared to CNT–PG scaffold after seven days of culture
(frequency = 1). (E) Excitation threshold and (F) maximum capture rate of CMs seeded on scaffolds,
indicating that increasing the CNT concentration and aligned structures significantly reduced excitation
threshold and enhanced maximum capture rate (CMs cultured on random 1.5% CNT–PG scaffold
was considered as control). (* p < 0.05 by one-way ANOVA analysis followed by Tukey’s post-hoc
test) [188]. Reproduced with permission from Kharaziha et al., Biomaterials, published by Elsevier, 2014.
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For bone tissue engineering applications, Goncalves et al. produced three-phase interconnected
porous scaffolds (hydroxyapatite and CNTs mixed with PCL) with different compositions (50 wt.%
PCL, CNTs varying between 0 and 10 wt.%, and hydroxyapatite being the balance) and pore size
ranging between 450 and 700 µm, using a pressure-assisted additive manufacturing system [191].
Biological tests were performed by using MG63 osteoblast-like cells. For all compositions, it was
possible to observe high cell attachment and proliferation values in scaffolds containing high content of
CNTs. Compression tests showed that scaffolds with low CNT content presented larger compressive
resistance, while scaffolds with 10% of CNTs were more easily deformed [191]. In another work,
a PCL/HA slurry containing ionically modified CNTs (CNT with a positively charged surface) was
robotic-dispensed producing scaffolds with pore sizes of around 226 µm. The concentration of HA was
set to be 40 w/v%, and the concentration of CNTs was 0.2 wt.%. Results show that the incorporation of
the ionically modified CNTs improved the compressive strength (from 1.5 MPa for PCL scaffolds and
2.0 MPa for PCL/HA scaffolds to 5.5 MPa for PCL/HA/CNT scaffolds) and MC3T3-E1 cell attachment
and proliferation. In vivo tests were conducted by implanting the PCL/HA/CNT scaffold into a rat
subcutaneous tissue. After four weeks, the results show signs of inflammatory effects due to the
presence of the scaffold and the formation of soft fibrous tissue and neo-blood vessels [192].

Wang et al. [193] investigated PCL/CNT scaffolds fabricated by extrusion-based additive
manufacturing for bone regeneration. With the addition of CNT, the compressive modulus increased
from 37.88 ± 1.24 MPa (neat PCL) to 45.47 ± 1.12 MPa (3 wt.% CNT), and the compressive strength
increased from 3.18 ± 0.15 MPa (PCL) to 3.83 ± 0.28 MPa (3 wt.% CNT). The water contact angle
decreases from 92.62 ± 0.24◦ (PCL) to 86.18 ± 1.25◦ (3 wt.% CNT). As shown in Figure 17, in terms
of the biological studies, after seven days, the PCL/CNT scaffolds show higher cell affinity and cell
proliferation values compared to neat PCL scaffolds [193].
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at 100× g and 200× g magnification of PCL and 3 wt.% PCL/CNT cell-seeded scaffolds, 7 days
(left 2 columns) and 14 days (right 2 columns) after cell proliferation [193]. Reproduced with permission
from Wang et al., Journal of the Mechanical Behavior of Biomedical Materials, published by Elsevier, 2019.

For nerve tissue engineering applications, electro-active scaffolds containing CNTs have been
produced by using different polymers and hydrogels. Sang et al. produced single-walled carbon
nanotube–poly(n-isopropylacrylamide) (SWCNT–PNIPAAm) structures through copolymerization of
n-isopropylacrylamide and single-walled carbon nanotubes [194]. The effects of electrical stimulation on
the morphology of SH-SY5Y cells on 2D culture, PNIPAAm hydrogel 3D culture and SWCNT–PNIPAAm
hydrogel 3D culture were investigated. From Figure 18, it is possible to observe that neurite outgrowth
is more apparent by using 3D SWCNT–PNIPAAm hydrogel subjected to electrical stimulation.
As observed, electrical stimulation can significantly increase neurite sprouting, gather the dividing
cells and form multinucleate cells. The effect of the electrical conductivity of the SWNT–PNIPAAm
hydrogel on SH-SY5Y cells was confirmed through a significant increase in neurite number and largely
enhanced neurite outgrowth.
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Figure 18. Effects of electrical stimulation (I) on SH-SY5Y cell morphology compared to a group with
no applied electrical stimulation (II) (scale bar 1/4 40 mm). No significant difference in 2D groups
(a–f) and 3D PNIPAAm hydrogel groups (g–l) in cell morphology. However, neurite outgrowth was
enhanced on SWCNT–PNIPAAm group with electrical stimulation (m–o) compared with no electrical
stimulation (p–r) [194]. Reproduced with permission from Sang et al., RSC Advances, published by
Royal Society of Chemistry, 2016.

For other applications, Dominguez-Alfaro et al. [195] fabricated porous PEDOT/CNT scaffolds
through a vapour phase polymerization method. Results show that the impedance of PEDOT/CNT
(|ZPEDOT/CNT| = 6 kΩ) scaffolds at 0.1 Hz was significantly lower than PDMS/CNT (|ZPDMS/CNT| = 50 kΩ)
and naked electrode filled with electrolyte PBS solution (|ZPBS| = 90 kΩ). The fabricated scaffolds
also show good biocompatibility with mouse astrocytes C8-D1A cells and have a positive effect on
promoting cell growth in the first three days [195]. Jayaram et al. produced 3D hybrid poly(styrene
sulfonate) (PSS)/MWCNT composite scaffolds, using a freeze-drying method as shown in Figure 19,
results show that the resistivity of the scaffolds containing MWCNT was 7 times lower than the
scaffolds without MWCNT [196].
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Other techniques like freeze-casting and electrospinning were also used to produce different types
of polymer/CNT polymer/ceramic/CNT and bioglass/CNT scaffolds [197–203]. In all cases, results show
that the presence of CNTs improved compression strength and elastic modulus and had a positive
effect on the biological performance (cell attachment, proliferation and differentiation) of the scaffolds.
Additional reported studies using CNTs are summarized in Table 3.

Table 3. Studies using CNT electro-active structures.

Electro-Active Structures
Electrical

Stimulation
Settings

Cell Line Outcome Reference

Polylactic acid
(PLA)/MWCNT scaffold

DC: 100 µA
(4 h/day, 6 days) Osteoblasts

Proliferation and
elongation along

the current
direction

Shao et al., 2011
[183]

PEGDA/MWCNT scaffold
100, 500 and 1000
µA at 100 Hz for

100 µs
Neural stem cells Higher TUJ1 and

GFAP expression
Lee et al., 2018

[204]

PLGA/MWCNT scaffold 40 mV rectangular
pulse for 30 min

PC12 and Schwann
cells

Promoted the
growth and

myelination of
Schwann cells

Wang et al., 2018
[205]

PCL/CNT scaffold
5 V cm−1 for 5 ms
duration at 1 Hz

every 4 days

Human
Mesenchymal Stem

Cells

Rapid
morphological
changes and

expressed cardiac
genes

Crowder et al.,
2013 [184]

124 polymer/CNT scaffold 2-ms pulses of
0–0.1 V at 1 Hz

Neonatal rat heart
tissue

Improved tissue
maturity

Ahadian et al., 2017
[206]

Polyvinyl
acetate/Chitosan/CNT

scaffold

5 mV·cm−1 in a
frequency of 1Hz
for 5days at 37 ◦C

Undifferentiated
mesenchymal stem

cells

Enhanced the
adherence of msCs

Mombini et al.,
2019 [207]

PLA/CNT nanofiber
scaffold

0.15 V/cm for 2 ms
duration at 1 Hz

Mesenchymal stem
cell

Increased protein
expression of

cardiac-associated
markers

Mooney et al., 2012
[208]

ssDNA bound CNT
scaffold

0, 50, 100, 200, 300
and 600 mV/mm at

20 Hz

MC3T3
pre-osteoblast cells

Robust cellular
filaments and
strong focal

adhesions sites
around cell edges

Liu et al., 2020 [209]
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Table 3. Cont.

Electro-Active Structures
Electrical

Stimulation
Settings

Cell Line Outcome Reference

Polycaprolactone
fumarate/CNT scaffold

100 mV mm−1 at
20 Hz for 2 h/day

PC-12 cell

Enhanced cell
proliferation, cell

migration and
formation of
intracellular
connections

Zhou et al., 2018
[210]

Phosphate glass
microfibers/CNT scaffold

5 mA at 1 Hz for
1 ms duration

PC12 and DRG
cells

Can support nerve
regeneration

Ahn et al., 2015
[211]

PCL/CNT scaffold
55 ± 8 mV cm−1 at

60 Hz for
30 min/day

Osteoblast-like
cells (MG63)

Promoted bone
mineralization Jin et al., 2013 [212]

MWCNT scaffold
200 µs pulses of
1–50 V at 40 s

intervals
Neurons

Neurite regrowth
in spinal explants

is favored

Alessandra et al.,
2012 [213]

Regenerated bacterial
cellulose/polypyrrole/CNT

hydrogel membrane

10 µA for
60 min/day

Mouse embryo
fibroblast

Improved cell
proliferation

Wang et al., 2019
[214]

Poly-L-lactide/CNT
substrate

AC: 10 mA (10 Hz,
6 h/day) Osteoblasts

46% increase in cell
proliferation after

2 days

Supronowicz et al.,
2002 [215]

PEDOT/CNT substrate

−0.9–0.5 V at scan
rate of 100 mV s−1

followed by 0.30
mC cm−2 at 50 Hz

NB-39-Nu human
Neuroblastoma

Higher cell
proliferation and

longer neurite
lengths

Depan and Misra,
2014 [216]

PCL/CNT membrane
750 mV, 100 Hz AC
for 30 min daily for

3 to 6 days
PC12 cells Induced neural

differentiation
Su and Shih, 2015

[217]

Nerve growth
factor/collagen/CNT

membrane

500 mV, using
Ag/AgCl electrodes PC 12 cells

Massive release of
NGF consequently
supporting neurite

sprouting and
growth

Cho and Borgens,
2013 [218]

MWCNT, multi-walled carbon nanotube.

Despite the successful use of CNTs as reinforcements of a wide range of polymer based scaffolds
and substrates, the biocompatibility and biosafety of CNTs still require further investigation [159]. It has
been reported that CNTs with high aspect ratios show toxicity similar to asbestos fibers [219], potentially
inducing inflammation and fibrosis [220,221]. In addition, the surface functional groups attached
to CNTs can change the interaction with the cell membranes and further control the penetration of
CNTs into the cells [222,223]. Moreover, the catalyst particles may affect the biosafety because they can
introduce oxidative stresses, cross cell membranes and generate free radicals [224]. Therefore, changing
critical parameters such as size, impurities, surface chemistry, surface charge, reactivity, morphology
and crystal structure can significantly influence the toxicity of CNTs [96]. In addition, there is a huge
difference in toxicity patterns of CNTs in comparison to graphene and GO, due to the differences in
their synthesis route and structural morphology [225].

3. Conclusions and Future Perspectives

The field of tissue engineering is experienced exciting advances toward the fabrication of smart
and biomimetic constructs as alternatives to current clinical therapies. These advances strongly rely
on the use of advanced materials and new fabrication techniques. Electrospinning and additive
manufacturing have been successfully explored to produce scaffolds for skin, bone, nerve and muscle
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regeneration. Usually, these techniques use single material (polymers, hydrogels, ceramics and
composites) to produce cell substrates designed according to specific requirements like porosity,
mechanical properties, surface properties and degradation characteristics. Recent studies showed the
relevance of using materials to stimulate cells increasing cell attachment, proliferation and differentiation.
Electrically conductive materials, as discussed in this paper, could have a significant impact in tissue
engineering, as there is an evidence that electrical stimulation is useful for stimulate-guided growth
of cells.

Scaffolds made with different polymers reinforced with a wide range of electrically conductive
materials have been proposed and assessed from a biological point of view. As discussed in this
review, the exceptional electrical and surface properties of CNMs, especially graphene and CNTs,
together with their controllable morphologies make them important components for the development
of novel electro-active scaffolds. A wide range of 2D membranes were initially produced and assessed
with different cell lines. Recently, the development of additive manufacturing enabled the use
of CNMs blended with polymers to create 3D porous scaffolds in a controlled and reproducible
way. Through additive manufacturing, it will also be possible to create complex multi-material and
functional gradient scaffolds, containing different regions with and without electrically conductive fillers.
Functional gradient scaffolds like these can be relevant to produce tissue interfaces, using hADSCs,
where the elastic and flexible nature of CNMs not only improves the mechanical properties of
the scaffolds, but also synergize the effects of electrical stimulation on both cell proliferation and
differentiation. However, very few papers compare the performance of different CNMs. Wang et al.
reported that graphene filler presents better chemical and physical properties than CNT under the same
amount [193], while Srikanth et al. also reported that graphene has greater toxicity than CNT [176].

Different strategies to incorporate CNMs have been explored. The majority of the studies,
as reported in this review, used chemical or physical blending approaches. However, in this case,
techniques such as additive manufacturing or electrospinning cannot allow the fabrication of structures
with high levels of CNMs due to rheological constrains. However, some researchers also explored new
routes to create core–shell structures with CNMs as the outer layer and a polymeric material as the
core [226]. This approach has the advantage of allowing to obtain structures with high surface CNMs
concentration, significantly improving the electrical conductivity. However, through this approach,
the CNMs will not significantly contribute to the overall improvement of mechanical properties,
considering the long-term use of these structures, and may pose significant cytotoxicity problems,
compromising the biological performance of the structures.

This review mainly focuses on the biological performance of electro-active structures. However,
several research works also demonstrated the antimicrobial properties of polymer/CNM scaffolds.
CNMs such as graphene have been identified to have antibactericidal activity on various bacteria due to
their sharp edges and oxidative stress induction. This should be further explored, for example to create
new tissue engineering scaffolds with improved biological and antibacterial properties. Currently,
the design of scaffolds for tissue engineering applications neglects the important issue of bacterial
infection of the damaged tissue.

As presented in this review, electro-active scaffolds containing small amounts of CNMs were
successfully used for tissue regeneration. However, a possible alternative route, not fully explored in
this paper, is the fabrication of structures containing a very high concentration of CNMs, not to stimulate
cell proliferation and differentiation, but cell apoptosis, targeting cancer treatment application.

Current major challenges are related to the lack of comprehensive in vivo studies for adequate
assessment of long-term effects in terms of biocompatibility and cytotoxicity. The critical cytotoxicity
concentration of these materials for different cell types is not yet clear. Their cellular and biological
interactions, especially relating to cellular uptake mechanisms and biocorona formation, is not fully
understood either. These require further investigations, conducting systematic comparative studies
which will differentiate results of humans from animals.
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Challenges regarding the synthesis of CNMs with controlled size, shapes and functionalities
should also be addressed as it affects the overall biocompatibility and performance of CNM-based
electro-active structures. In the case of electro-active porous scaffolds, a key parameter is the control
of its degradability, which must match the regeneration rate of the new tissue. However, the in vivo
biodegradability of the electrically conductive carbon nanomaterials is still not fully investigated,
representing an important research challenge. In-depth in vivo experiments for better understanding
the interaction between electro-active structures and the surrounding tissues and their performance
toward tissue regeneration are still required.
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