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Abstract: In this paper we investigate an improved scheme for exponential
Chebyshev (EC) collocation method. The improved scheme of the EC func-
tions is derived and introduced for solving high-order linear ordinary differential
equations with variable coefficients in unbounded domain. This technique trans-
forms the given differential equation and mixed conditions to matrix equation
with unknown EC coefficients. These matrices together with the collocation
method are utilized to reduce the solution of higher-order ordinary differential
equations to the solution of a system of algebraic equations. The solution is ob-
tained in terms of EC functions. Numerical examples are given to demonstrate
the validity and applicability of the method. The obtained numerical results are
compared with others existing methods and the exact solution where it shown
to be very attractive with good accuracy.
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1. Introduction

Chebyshev polynomials are one of the most important special functions, which
are widely used in numerical analysis. The well-known Chebyshev first kind
polynomials Tn(x) [5] are orthogonal with respect to the weight-function w(x) =
1/
√
1− x2 on the interval [-1, 1] and the recurrence relation is

T0(x) = 1, T1(x) = x, Tn+1(x) = 2xTn(x)− Tn−1(x), n ≥ 1

One of the applications of Chebyshev polynomials is the solution of ordinary
differential equations with boundary conditions. Many studies are considered
on the interval [−1, 1] in which Chebyshev polynomials are defined. Therefore,
this limitation causes a failure of the Chebyshev approach in the problems that
are naturally defined on larger domains, especially including infinity. Under a
transformation that maps the interval [−1, 1] into a semi-infinite domain [0,∞),
Boyd [2],[3], Parand et al. [6],[7], and Sezer [9],[10] successfully applied spectral
methods to solve problems on semi-infinite intervals. In their studies the basis
functions called rational Chebyshev functions, and defined by

Rn(x) = Tn

(

x− 1

x+ 1

)

,

Recently, Koc, and Kurnaz [4] have proposed modified type of Chebyshev poly-
nomials as an alternative to the solutions of the problems given in all real
domain. In their studies, the basis functions called exponential Chebyshev
functions En(x) that are orthogonal in (−∞,∞). This kind of extension tack-
les the problems over the whole real domain. Therefore, we introduce a new
improved type of exponential Chebyshev functions.

2. Definition and Properties of
Exponential Chebyshev (EC) Functions

The exponential Chebyshev EC functions are defined by

En(x) = Tn

(

ex − 1

ex + 1

)

, (1)
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where the corresponding recurrence relation is

E0(x) = 1, E1(x) =
ex − 1

ex + 1
, En+1(x) = 2

(

ex − 1

ex + 1

)

En(x)−En−1 (x).n ≥ 1 (2)

2.1. Orthogonality of EC Functions

In the next Proposition we define the form of the weight function needed to
guarantee the orthogonality of EC function.

Proposition 1. The weight function w(x) corresponding to EC functions,
such that they are orthogonal in the interval (−∞,∞) is given by

√
ex/ (ex + 1) ,

with the orthogonal condition

∫ ∞

−∞
En(x)Em(x)w(x)dx =

cmπ

2
δnm, (3)

where

cm =

{

2, m = 0,
1, m 6= 0,

and δnmis the Kronecker function [4].

Also the product relation of EC functions used in the derivative relations is
given by

En(x)Em(x) =
1

2
[En+m(x) + E|n−m|(x)]. (4)

2.2. Function Expansion in Term of EC Functions

A function f(x) well defined over the interval (−∞,∞), can be expanded as

f(x) =

∞
∑

n=0

anEn(x), (5)

where

an =
2

cnπ

∫ ∞

−∞
En(x)f(x)w(x)dx.

If f(x) in expression (5) is a truncated to N < ∞ in terms of the EC functions
as

f(x) ∼=
N
∑

n=0

anEn(x) = E(x)A, (6)
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where E(x) is 1 × (N + 1) vector with elements En(x) and A is an unknown
coefficient vector as,

E(x) = [E0(x)E1(x)....EN (x)] , A = [a0a1....aN ]T .

The (k)th-order derivative of f(x) can be written as

f (k)(x) ∼=
N
∑

n=0

an (En(x))
(k) = E(k)(x)A, (7)

where

(En(x))
(0) = En(x), E(k)(x) = [(E0(x))

(k) (E1(x))
(k) .... (EN (x))(k)]. (8)

2.3. The Derivatives of EC Functions

Proposition 2. The relation between the row vector E(x) and its (k)th-
order derivative is given as

E
(k)(x) ∼= E(x)(DT )k, (9)

where, D is the (N+1)× (N +1) operational matrix for the derivative, and the
general form of the matrix D is a tridiagonal matrix which is obtained from

D=diag

(

i

4
, 0,

−i

4

)

, i = 0, 1, ..., N. (10)

Proof. Derivatives of the EC functions can be found by differentiating re-
lation (2), and by the help of (4) we get

(E0(x))
′

= 0, (11)

(E1(x))
′

=
2ex

(1 + ex)2
=

1

4
E0(x)−

1

4
E2(x), (12)

and

(En+1(x))
′

=
d

dx
[2E1(x)En(x)− En−1(x)]

=
d

dx
[2 (E1(x))

(0) (En(x))
(0) − (En−1(x))

(0)]

=[2 (E1(x))
(1) (En(x))

(0) + 2 (E1(x))
(0) (En(x))

(1) − (En−1(x))
(1)],
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that can be written as

(En+1(x))
′

= 2{(E1(x)En(x))
′} − (En−1(x))

′

. (13)

By using the relations (10)-(12) and by the help of product relation (4) for
{n = 0, 1, . . . , N}, then we get



















































(E0(x))
′

=0,

(E1(x))
′

=
1

4
E0(x)−

1

4
E2(x),

(E2(x))
′

=
1

2
E1(x)−

1

2
E3(x),

...

(Ean(x))
′

=
n

4
En−1(x)−

n

4
En+1(x), n > 1,

(14)

the previous equalities form (N+1)×(N+2) matrix then we make a truncation
to the last column to get square operational matrix D given in (10), then to
obtain the matrix E(k)(x) we can use the relations (14) as

E′(x) ∼=E(x)DT,

E′′(x) ∼=E′(x)DT = (E(x)DT)DT = E(x)(DT)2,

E(3)(x) ∼=E′′(x)DT = E(x)(DT)3,

then we can write

E(k)(x) ∼= E(x)(DT )k. (15)

Proposition 2 and its proof are derived a regular scheme for the relation
between the vector E(x) and its (k)th-order derivative, a similar proof found in
[4] with less details. Now we turn to introduce a new improved scheme of the
vector E(x) and its (k)th-order derivative that leads us to get equality sign in
(15), as explained in next proposition

Proposition 3. The derivatives of the vector

E(x) = [E0(x)E1(x)....EN (x)] ,

can be expressed with equality sign by

E
′(x) = E(x)DT +B(x), (16)
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where D is (N + 1) × (N + 1) operational matrix for the derivative given in
(10), and B(x) is 1 × (N + 1) row vector which is an actual term to get the
equality sign of (16), that was truncated in (9). This added term will improve
the obtained approximate solutions as will be shown in the numerical examples
in section 6. And B(x) is deduced as shown below:

B(x) = [00....0
−N

4
EN+1]. (17)

Consequently, to obtain the matrix E(k)(x), we can use the relation (16) as

E′(x) = E(x)DT +B(x),

(E(x))(2) = E′(x)DT +B′(x) =
(

E(x)DT +B(x)
)

DT +B′(x),

then

E(k)(x) = E(x)(DT )k +
k−1
∑

i=0

B(i)(x) (DT )k−i−1 , k ≥ 1 (18)

where
B(i)(x) =

[

0 0 · · · 0 −N
4 E

(i)
N+1(x)

]

.

For example at N = 4 the two matrices D and B(x ) takes the form

D =













0 0 0 0 0
1
4 0 −1

4 0 0
0 1

2 0 −1
2 0

0 0 3
4 0 −3

4
0 0 0 1 0













, B(x) = [0 0 0 0 − E5].

3. Application of the Introduced two Schemes for Studying
Higher-order Ordinary Differential Equations

The form of high-order linear non-homogeneous differential equations with vari-
able coefficients in unbounded domains is

m
∑

k=0

Pk(x)y
(k)(x) = f(x), −∞ < x < ∞, (19)

with the mixed conditions

m−1
∑

k=0

J
∑

j=0

dkijy
(k) (bj) = αi, (20)
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−∞ < bj < ∞, i = 0, 1, ..., m− 1, j = 0, 1, ..., J

where the Pk(x) and f(x) are continuous functions on the interval (−∞,∞),
dkij , bjand αi are appropriate constants or bj may tends to±∞.

Now, we consider that the approximate solution yN(x) to the exact solution
y(x) of Eq. (19) defined by expression (6) and its (k)th-order derivative defined
by expression (7) as

yN (x) =
N
∑

n=0

anEn(x) = E(x)A, (21)

and

y
(k)
N (x) ∼=

N
∑

n=0

an (En(x))
(k) = E(k)(x)A, (22)

substituting the relation (15) into expression (22), we have the regular scheme
of the (k)th-order derivative of the solution function yN (x) of the higher-order
differential equations as

[

y
(k)
N (x)

]

= E(x)(DT)kA, (23)

and by substituting the relation (18) into expression (22), we get the improved
scheme of the (k)th-order derivative of the solution y(x) as

[

y
(k)
N (x)

]

=

[

E(x)(DT )k +
k−1
∑

i=0

B(i)(x) (DT )k−i−1

]

A. (24)

4. Fundamental Matrix Relations

Let us define the collocation points [4], so that −∞ < xi < ∞, as

xi = Ln

[

1 + cos
(

iπ
N

)

1− cos
(

iπ
N

)

]

, i = 1, ..., N − 1 (25)

and at the boundaries (i = 0, i = N) x0 → ∞, xN → −∞, since the EC
functions are convergent at both boundaries ±∞, namely their values are ±1,
the appearance of infinity in the collocation points does not cause a loss in the
method. Then, we substitute the collocation points (25) into Eq. (19) to obtain

m
∑

k=0

Pk(xi)y
(k)
N (xi) = f(xi), i = 0, 1, ..., N. (26)
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The system (26) can be written in the matrix form

m
∑

k=0

PkY
(k) = F,

where

Pk =











Pk(x0) 0 . . . 0
0 Pk(x1) . . . 0

0 0
. . .

...
0 0 . . . Pk(xN )











, F = [f(x0) f(x1) ... f(xN)]T .

By putting the collocation points xi in the regular scheme (23), we have the
system

[

y
(k)
N (xi)

]

= E(xi)(D
T)kA, i = 0, 1, ..., N

or

Y(k) =













y
(k)
N (x0)

y
(k)
N (x1)

...

y
(k)
N (xN )













= E(DT )kA,

E =











E(x0)
E(x1)

...
E(xN )











=











E0(x0) E1(x0) . . . EN (x0)
E0(x1) E1(x1) . . . EN (x1)

...
...

. . .
...

E0(xN ) E1(xN ) . . . EN (xN )











.

And the fundamental matrix will be in the form
m
∑

k=0

PkE(x)(D
T)kA = F. (27)

Next the corresponding matrix form for the condition can be written as follows

m−1
∑

k=0

J
∑

j=0

dkijE(bj)(D
T)kA = [αi], (28)

−∞ < bj < ∞, i = 0, 1, ..., m− 1, j = 0, 1, ..., J

Now by using the improved scheme (24) the fundamental matrix is

m
∑

k=0

Pk{E(DT )k +

k−1
∑

i=0

B(i) (DT )k−i−1 }A = F. (29)
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Next the corresponding matrix form for the condition can be written as follows

m−1
∑

k=0

J
∑

j=0

dkij{E(bj)(D
T)k +

k−1
∑

i=0

B(i)(bj) (D
T)k−i−1 }A = [αi] , (30)

−∞ < bj < ∞, i = 0, 1, ..., m− 1, j = 0, 1, ..., J

where

B =











B(x0)
B(x1)

...
B(xN )











=











B0(x0) B1(x0) . . . BN (x0)
B0(x1) B1(x1) . . . BN (x1)

...
...

. . .
...

B0(xN ) B1(xN ) . . . BN (xN )











.

5. Method of Solution

The fundamental matrices (27) and (29) for Eq. (19) corresponding to a system
of (N+1) algebraic equations for the (N+1) unknown coefficientsa0, a1, ... aN .
We can write Eq. (19) as

WA=F or [W ; F ] (31)

so that, for regular scheme (23)

W = (wpq) =
m
∑

k=0

PkE(x)(DT)k, p, q = 0, 1, ..., N

and, for the improved scheme (24) W is

W = (wpq) =

m
∑

k=0

Pk

[

E(x)(DT)k +

k−1
∑

i=0

B(i) (DT )k−i−1

]

, p, q = 0, 1, ..., N

we can obtain the matrix form for the mixed conditions by means of (28) and
(30) as

UiA = [αi] or [Ui;αi] , i = 0, 1, ...m− 1 (32)

where, for (28)

Ui =
[

ui0 ui1 . . . uiN
]

=
m−1
∑

k=0

J
∑

j=0

dkijE(bj)(D
T )k.
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and, for (30)

Ui =
[

ui0 ui1 . . . uiN
]

=

m−1
∑

k=0

J
∑

j=0

dkij{E(bj)(D
T )k +

k−1
∑

i=0

B(i)(bj) (D
T)k−i−1 }.

To obtain the solution of Eq. (19) under the given condition by replacing
the rows matrices (32) by the last m rows of the matrix (31) we have required
augmented matrix

[W∗;F∗] =

























w00 w01 . . . w0N ; f(x0)
w10 w11 . . . w1N ; f(x1)
. . . . . . . . . . . . ; . . .

wN−m,0 wN−m,1 . . . wN−m,N ; f(xN−m)
u00 u01 . . . u0N ; α0

u10 u11 . . . u1N ; α1

. . . . . . . . . . . . ; . . .
um−1,0 um−1,1 . . . um−1,N ; αm−1

























, (33)

or the corresponding matrix equation

W∗A = F∗,

if the rank (W∗)= rank[W∗; F∗] = N + 1 then we can write

A = (W∗)−1 F∗. (34)

Thus, the coefficient ai , i = 0, 1, ..., Nare uniquely determined by Eq. (33),
(34)

6. Test Examples

Example 1. Consider the following equation

y′′ − 1

1 + ex
y′ − 15e2x

(1 + ex)2
y =

e2x

(1 + ex)6
, x ∈ (−∞, ∞) (35)

and the boundary conditions y(x) → 0 when |x| → ∞.
For N=4, the collocation points are x0,4 → ±∞, x1 = Ln

(

3 + 2
√
2
)

,

x2 = 0, x3 = Ln
(

3− 2
√
2
)

.
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Here P2 is the identity matrix, and matrices P0, P1, E, B are in the form

P0 =













−15 0 0 0 0

0 −15
8 (3 + 2

√
2) 0 0 0

0 0 −15
4 0 0

0 0 0 15
8 (−3 + 2

√
2) 0

0 0 0 0 0













,

B =















0 0 0 0 −1
0 0 0 0 1√

2

0 0 0 0 0
0 0 0 0 −1√

2

0 0 0 0 1















,

P1













0 0 0 0 0

0 1
4(−2 +

√
2) 0 0 0

0 0 −1
2 0 0

0 0 0 1
4(−2−

√
2) 0

0 0 0 0 −1













,

E =















1 1 1 1 1
1 1√

2
0 −1√

2
−1

1 0 −1 0 1
1 −1√

2
0 0 1√

2
−1

1 −1 1 0 1















,

and the augmented matrix for the conditions with N=4 for x → ∞ is

[

1 1 1 1 1 ; 0
]

,

and when x → −∞ is

[

1 −1 1 −1 1 ; 1
]

,

then, the fundamental matrix takes the form

{

P0E(DT)0 +P1E(DT)1 +P2E(DT)2
}

A = F,

for the regular scheme, and for the improved takes the form

{

P0E+P1

[

E(DT)1 +B
]

+P2

[

E(DT)2 +BDT +B′
]}

A = F,
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After the augmented matrices of the two systems and conditions are computed,
we obtain the solutions for the regular scheme,

A =
[

2996877+928040
√
2

13222432 −1
2

5753473−278412
√
2

26444864 0 1475205−1577668
26444864

]

,

and for the improved scheme takes the form

A =
[

35
128 − 7

16
7
32 − 1

16
1

128

]

,

where,
y4(x) = a0E0 + a1E1 + a2E2 + a3E3 + a4E4,

then the improved scheme gives for N=4

y4(x) =
35

128
E0 −

7

16
E1 +

7

32
E2 −

1

16
E3 +

1

128
E4

=
35

128
− 7

16

(

ex − 1

ex + 1

)

+
7

32

[

2

(

ex − 1

ex + 1

)2

− 1

]

− 1

16

[

4

(

ex − 1

ex + 1

)3

− 3

(

ex − 1

ex + 1

)

]

+
1

128

[

1 + 8

(

ex − 1

ex + 1

)4

− 8

(

ex − 1

ex + 1

)2
]

,

that is close to y4(x)=
1

(1+ex)6
, which represent the exact solution. On the other

hand, the regular scheme give us approximate solution for N=4, but for N=6
we get the exact solution as

A =
[

35
128 − 7

16
7
32 − 1

16
1

128 0 0
]

.

Example 2. Consider the following boundary value problem

Ly = f(x), x ∈ (−∞, ∞) (36)

where the operator L =
[

d2

dx2 − 1
]

, and the boundary conditions y(x) → 0 when

|x| → ∞. The exact solution found in [1] by Fourier transform as

y(x) = F−1

[ −1

1 + ω2
F [f(x)]

]

,

where F and F−1are Fourier and inverse Fourier transform, we apply our
present method to Eq. (36), Table. 1 shows the approximate and exact so-
lutions at different N, x ∈ [−3, 3] if we take f(x) = −2 sech3(x). In Table. 2
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L2 and L∞ norms are presented; we can see that for grater N good accuracy is
achieved, where the improved scheme has accuracy better than regular scheme.
The norms:

L2 =

√

√

√

√h

I
∑

i=0

(

yiExact − yiApproximat

)2
,

L∞ =Max
∣

∣yiExact − yiApproximat

∣

∣ .

x Exact solution EC regular EC regular EC Improved EC Improved
y(x) = sech(x) scheme N = 8 scheme N = 16 scheme N = 8 schemeN = 16

-3.0 0.0993279 0.098834 0.0993286 0.0999047 0.0993274
-2.5 0.163071 0.164516 0.163069 0.163871 0.163071
-2.0 0.265802 0.268388 0.265804 0.265956 0.265803
-1.6 0.387978 0.388839 0.387978 0.386887 0.387977
-1 0.648054 0.645128 0.648056 0.64711 0.648055
-0.5 0.886819 0.887489 0.886817 0.888264 0.886818
0.0 1 1.00426 1.0 1.0018 1.0
0.5 0.886819 0.887489 0.886817 0.888264 0.886818
1 0.648054 0.645128 0.648056 0.64711 0.648055
1.6 0.387978 0.388839 0.387978 0.386887 0.387977
2.0 0.265802 0.268388 0.265804 0.265956 0.265803
2.5 0.163071 0.164516 0.163069 0.163871 0.163071
3.0 0.0993279 0.098834 0.0993286 0.0999047 0.0993274

Table 1: Comparing the approximate and exact solution

L2 regular scheme L2 improved scheme L∞ regular scheme L∞ improved scheme
N = 8 0.0000850239 0.0000231344 0.00426021 0.00181573
N = 16 4.96036×10−11 6.8930×10−12 2.41935×10−6 1.0313×10−6

Table 2: Error norms for Example 2

Example 3. Now we consider the following differential equation

Ly = f(x), x ∈ (−∞, ∞) (37)

where the operator L =
[

d3

dx3 − 1
]

, and the condition isy(x) → 0 when |x| → ∞.

The exact solution taken to be same as the previous example i.e. y(x) =
sech(x), then the function f(x) is sech(x)

[

−1 + 5 sec h2(x) tanh(x)− tanh3(x)
]

,
by applying our present method to Eq. (37), Table. 3 shows comparing the L2

at different N where h=0.1 and x ∈ [−3, 3].
Now, we observe from example three, that the increasing order of differen-

tiation offset by an increase in the truncation in the regular scheme, while the
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L2 regular scheme L2 improved scheme L∞ regular scheme L∞ improved scheme
N = 8 0.142527 0.00041549 0.175465 0.0115797
N = 16 3.45619×10−7 2.08173×10−11 0.000454724 2.9515×10−6

Table 3: Error norms for Example 3

improved scheme does not have a truncation, so the values of L2worth almost
such as example two.

7. Conclusion

In this paper a new improved exponential Chebyshev (EC) collocation method
is investigated. The improved method introduced to solve high-order linear
ordinary differential equations in unbounded domain. The proposed differential
equations and the given conditions were transformed to matrix equation with
unknown EC coefficients. This technique is considered to be a modification
of the similar presented in [4],[9],[10] and [8]. On the other hand, the EC
functions approach deals directly with infinite boundaries without singularities.
This variant for our method gave us freedom to solve differential equations
with boundary conditions tends to infinity. Illustrative examples are used to
demonstrate the applicability and the effectiveness of the proposed technique.
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