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Most functional RNA molecules have characteristic secondary structures
that are highly conserved in evolution. Here we present a method for
computing the consensus structure of a set aligned RNA sequences taking
into account both thermodynamic stability and sequence covariation.
Comparison with phylogenetic structures of rRNAs shows that a
reliability of prediction of more than 80% is achieved for only five related
sequences. As an application we show that the Early Noduline mRNA
contains significant secondary structure that is supported by sequence
covariation.
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Introduction

Most functional RNA molecules exhibit a charac-
teristic secondary structure that is highly con-
served in evolution. Examples include tRNAs,1 the
rRNAs (5 S, 16 S, as well as 23 S),2 – 6 RNAseP
RNA,7 the RNA component of signal recognition
particles (srpRNA),8 tmRNA,9 and group I and
group II introns†. This list can be extended by
numerous families of artificially selected catalytic
RNAs.

It is of considerable practical interest therefore to
compute efficiently the consensus structure of a
collection of such RNA molecules. Such an
approach must combine the phylogenetic infor-
mation contained in the sequence covariations as
well as thermodynamic stability of molecules.
Combinations of phylogenetic and thermodynamic
methods for predicting RNA secondary structure
fall into two broad groups: those starting from a
multiple sequence alignment and algorithms that
attempt to solve the alignment problem and the
folding problem simultaneously. The main dis-
advantage of the latter class of methods10 – 13 is
their high computational cost, which makes them

unsuitable for long sequences such as 16 S or 23 S
RNAs. Most of the alignment based methods start
from thermodynamics-based folding and use the
analysis of sequence covariations or mutual infor-
mation for post-processing.14 – 19 The converse
approach is taken in,20 where ambiguities in the
phylogenetic analysis are resolved based on
thermodynamic considerations.

In this contribution we describe a combined
approach that integrates the thermodynamic and
phylogenetic information into a modified energy
model. This has a number of advantages: (i) It is
sufficient to run the folding algorithm only once
for the entire alignment, which significantly
reduces the computational effort, in particular for
larger data sets. (ii) The reliability of prediction
can be assessed fairly directly by computing the
matrix of base-pairing probabilities instead of the
minimum energy structure (or a small ensemble
of sub-optimal folds). (iii) If the sequences do not
admit a common fold, the method will not predict
base-pairs.

Theory

From an algorithmic point of view, RNA
secondary structure prediction can be viewed as a
(complicated) variant of the maximum circular
matching problem (MCMP).21 We briefly outline
the simplified model here to highlight the idea
behind the alifold algorithm. The RNA
folding problem, with a realistic energy model
that is based on extensive thermodynamic
measurements,22 can be solved23,24 using a similar
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dynamic programming scheme as for the MCMP
(Figure 1).

We are given a sequence of nucleotides x ¼
ðx1;…; xnÞ of length n and energy parameters bij

describing the stability of the base-pair ðxi; xjÞ: In
the simplest case bij ¼ 21 for every base-pair that
is formed. RNA folding of course has to obey the
logic of base-pairing, thus we introduce the pairing
matrix P of the sequence x with the entries Pij ¼ 1
if sequence positions i and j can form a base-pair,
i.e. if ðxi; xjÞ is in the set of allowed base-pairs B ¼
{GC;CG;AU;UA;GU;UG}; and Pij ¼ 0 if xi and xj

cannot pair. The second important restriction is
that a base-pair must span at least m ¼ 3 unpaired
bases, i.e. if ði; jÞ is a pair then j . i þ m: The RNA
version of the MCMP thus consists of finding a sec-
ondary structure V on x that contains only allowed
base-pairs (Pij ¼ 1) and minimizes the total energy
E ¼

P
ði;jÞ[V bij:

The best energy on the subsequence from
position i to j is denoted by Eij. Because of the no-
crossing rule a base-pair ði; kÞ separates the
secondary structure into a secondary structure on
the sub-sequence from i þ 1 to k 2 1 and a second-

ary structure from k þ 1 to j. The latter may be
empty if k ¼ j; of course. Therefore, Eij satisfies the
following recursion:

Ei;j ¼ min Ei;j21; min
k: iþm,k#j

Pik¼1

Eiþ1;k21 þ Ekþ1;j þ bik

8><
>:

9>=
>;

ð1Þ

The value E1;n is the minimal energy for a second-
ary structure of the sequence x. The (triangular)
matrix E has Oðn2Þ entries, and the computation of
each entry requires a minimum over OðnÞ terms,
hence the total effort is Oðn3Þ: The structure itself,
i.e. the list of base-pairs, can be recovered by stan-
dard back-tracking from the matrix E.

While bij depends only on the type of the base-
pair ðxi; xjÞ in the usual ansatz there is nothing to
prevent us to use a more sophisticated cost func-
tion that summarizes all our knowledge on the
base-pair, not just its thermodynamic stability.
Most importantly, we can use bij incorporate
knowledge about sequence covariations into the
folding procedure.

Figure 1. Consensus secondary structure of the 14 SRP RNA of Archea contained in SRPDB8 (MET.JAN., MET.VOL.,
MET.FER., MET.THE., MET.ACE., HAL.HAL., ARC.FUL., PYR.ABY., PYR.HOR., THE.CEL., PYR.OCC., AER.PER.,
SUL.SO-A, SUL.SO-B). We use this example to explain the representation of the results: L.h.s: Mountain plot. A base
pair ði; jÞ is represented by a slab ranging from i to j. The 50 and 30 sides of stems thus appear as up-hill and down-
hill slopes, respectively, while plateaus indicated unpaired regions. Mountain plots35 are equivalent to the conventional
drawing (r.h.s.) but have the advantage that (1) they can be compared more easily, and (2) it is easier to display
additional information about both sequence variation (color code) and thermodynamic likeliness of a base-pair (indi-
cated by the height of the slab and the size of the dot, respectively). Colors in the order red, ocher, green, cyan, blue,
violet indicate 1–6 different types of base-pairs. Pairs with one or two inconsistent mutation are shown in (two types
of) pale colors. The shaded mountain in the background is the phylogenetic structure taken from the SRPDB. The
close match is easily visible. It appear higher because the phylogenetic structure contains base-pairs that correspond
to deletions in the majority of the structures and because the height of base-pair in the alifold structure is in general
somewhat less than p ¼ 1:0: R.h.s.: In the conventional secondary structure graph paired positions with consistent
mutations are indicated by circles around the varying position. Compensatory mutations thus are shown by circles
around both pairing partners. Inconsistent mutants are indicated by gray instead of black lettering.
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Assume that we are given a multiple sequence
alignment A of N sequences. By Ai we denote the
ith column of the alignment, while aai is the entry
in the ath row of the ith column. The length of A,
i.e., the number of columns, is n. Furthermore, let
fiðXÞ be the frequency of base X at aligned position
i and let fij(XY) be frequency of finding X in i and
Y in j.

The most common way of quantifying sequence
covariation for the purpose of RNA secondary
determination is the mutual information score:25 – 27

Mij ¼
X
X;Y

fijðXYÞlog
fijðXYÞ

fiðXÞfjðYÞ
ð2Þ

Usually, the mutual information score makes no
use of RNA base-pairing rules. For large datasets
this is desirable, since it allows identifying non-
canonical base-pairs and tertiary interaction. For
the small datasets considered here, neglecting
base-pairing rules does more harm (by increasing
noise) than good. In particular, mutual information
does not account at all for consistent non-compen-
satory mutations, i.e. if we have, say, only GC and
GU pairs at positions i and j then Mij ¼ 0: Thus
sites with two different types of base-pairs are
treated just like a pair of conserved positions. We
argue, however, that the information contained in
consistent mutations such as GC ! GU should not
be neglected when dealing with sparse datasets
that contain too little sequence variation to use
phylogenetic methods alone.

As a consequence we prefer a covariance-like
measure distinguished between conserved pairs,
pairs with consistent mutations, and pairs with
compensatory mutations. It is convenient to use
the abbreviation:

da;b
ij ¼ 2 2 d aai ; abi


 �
2 d aaj ; abj


 �
ð3Þ

where dða0; a00Þ ¼ 1; if a0 ¼ a00 and 0, otherwise. Thus
dab

ij ¼ 0 if the sequences a and b coincide in both
aligned positions i and j, equal to 1 if they differ
in one position, and is 2 if they differ in both pos-
itions. In other words, da;b

ij is the Hamming dis-
tance of the restriction of the sequences a and b to
the two aligned positions i and j.

A straight forward measure of covariation is
then

Cij ¼
1

N

2

 ! X
a,b

da;b
ij Pa

ijP
b

ij

¼
X

XY;X0Y0

fijðXYÞDXY;X0Y0 fijðX
0Y0Þ ð4Þ

where the 16 £ 16 matrix D has entries DXY;X0Y0 ¼
dHðXY;X0Y0Þ if both XY [ B and X0Y0 [ B and
DXY;X0Y0 ¼ 0; otherwise. Here dHðXY;X0Y0Þ is again
the Hamming distance of XY and X0Y0. In passing
we note that the second form of equation (4) is a

scalar product, Cij ¼ kfijDfijl; and hence can be
evaluated efficiently.

Both the mutual information score and the
covariance score give a bonus to compensatory
mutation. Neither score deals with inconsistent
sequences, i.e. with sequences that cannot form a
base-pair between positions i; j: The simplest
ansatz for this purpose is:

qij ¼ 1 2
1

N

X
a

Pa
ij þ d aai ; gap

� �
d aaj ; gap

 �n o

ð5Þ

This simply counts the number of inconsistent
sequences, where combinations of a nucleotide
and a gap are counted as inconsistent while gap–
gap combinations (i.e. deletions of an entire base-
pair) are ignored.

In a multiple alignment of a larger number of
sequences we have to expect one or the other
sequencing error and of course there will be align-
ment errors. Thus, we cannot simply mark a pair
of positions as non-pairing if a single sequence is
inconsistent. Furthermore, there is the possibility
of a non-standard base-pair.27 Thus we define a
threshold value B p for the combined score Bij ¼
Cij 2 f1qij and set:

PA
ij ¼

0 if Bij , Bp

1 if Bij $ Bp

(
ð6Þ

for the pairing matrix of the alignment. The energy
model for the MCMP is then obtained as a linear
combination of the average pairing energy and the
combined covariation score Bij:

bA
ij ¼

1

N

X
a

e aai ; aaj


 �
2 f2Bij ð7Þ

where eðaai ; aaj Þ is the pairing energy contribution
for a ðaai ; a

a
j Þ pair in sequence a. In practice, “loop-

based” energy models perform much better. The
secondary structure is decomposed into its loops
(faces of the planar drawing) and each loop is
assigned an energy dependent on loop-type
(stacked pairs, hairpin loops, interior loops, multi-
branched loops), size, and sequence. Up-to-date
parameters for this model are tabulated.22 We set
the total energy of an alignment-folding as the
average of loop-based energies of all sequences
plus the covariance contribution.

In addition to the standard energy model for
RNA folding we have therefore only the threshold
value B p and the two scaling factors f1 and f2.
Their default values are listed in Table 1. With
these values the effect of a compensatory mutation

Table 1. Additional “energy” parameters for alignment
folding

Parameter Default

Threshold for pairing (B p) 21.00
Relative weight of inconsistent sequences (f1) 1.00
Weight of sequence covariation (f2) (kcal/mol) 1.00
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is comparable to the energy gained by extending a
helix by one base-pair. In a few tests using three
23 S rRNA sequences, these default values were
indeed optimal, while variations within a factor 2
of the default did not have strong effects. In
addition, non-standard base-pairs (including gap–
gap combinations) can occur in the alignment

folding for which no measured energy parameters
are available. We substitute the default stacking
energy of 0.0 kcal/mol in this case (1 cal ¼ 4.184 J).

The values for B p and the linear combination
coefficients f1 and f2 have to be estimated with
the expected values of the covariance term Cij and
the non-bonding term qij for uncorrelated random

Figure 2. Mountain representation of the secondary structure of E. coli rRNAs. Upper panel: 16 S RNA
(A. globiformis, Anabaena sp., A. tumefaciens, B. japonicum, E. coli ), lower panel 23 S RNA (B. subtilis, T. thermoph,
Pir. marina, Rb. sphaero, E. coli ). Green line: predicted mfe structure; black line: phylogenetic structure; solid colored
area: RNAalifold prediction for E. coli from alignment of five sequences.
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sequences in mind:

kCijl ¼
6 £ 0 þ 8 £ 1 þ 22 £ 2

162
¼

13

64
< 0:203

kqijl ¼ 1 2
6

36
< 0:833

ð8Þ

Here the expectation of Cij is computed for a
sample of independent random RNA sequences.

The reliability of thermodynamics-based RNA
folding is increased substantially by taking sub-
optimal structures into account. This can be
achieved either by explicitly generating a list of
suboptimal structures (as in Zuker’s mfold28 or
the program RNAsubopt from the Vienna group29)
or by directly computing the pairing probabilities
for all possible base-pairs. McCaskill’s partition
function algorithm24 produces the complete matrix
P of pairing probabilities with time and memory
requirements comparable to the simpler minimum
energy folding. The partition function algorithm is
easily extended to work with the modified energy
functions in the same way as the minimum energy
folding algorithm.

The covariance term (equation (4)) can be biased
if the sequences are strongly clustered. A more
accurate approach to quantifying the sequence
covariations should therefore explicitly account
for the phylogenetic relationships of the aligned
sequences. A maximum likelihood approach for
this task is outlined.30 We have experimented with
a parsimony-based approach in which covariations
are not counted between all pairs of sequences but
only along the edges of an inferred phylogenetic
tree. It appears, however, that at least for data sets
considered in this study the simple covariance
term yields equally good results.

Results and Discussion

Purely phylogenetic methods can be used to
derive conserved elements or a consensus structure
only when a sufficiently large number of sequences
is available, while the accuracy of purely thermo-
dynamic structure prediction is often not satisfac-
tory. In contrast, the alignment folding procedure

introduced in this contribution predicts over 80%
of the base-pairs correctly from a dataset of only
five sequences with an automatically generated
alignment, as the examples in Figure 2 show, see
also Table 2.

The consensus structure of a set of RNA
sequences has to be distinguished from the collec-
tion of structural features that are conserved.
Whenever there are reasons to assume that the
structure of the whole molecule is conserved one
may attempt to compute a consensus structure.
On the other hand, consensus structures are
unsuitable when a significant part of the molecule
has no conserved structures. RNA virus genomes,
for instance contain only local structural patterns
(such as the IRES in pircorna viruses or the TAR
hairpin in HIV). Such features can be identified
with a related approach that is implemented in
the algorithms alidot and pfrali17,18 and requires
structure prediction for each individual sequence.
The automatic search for conserved structures
should not return false positives and hence has
been designed not to predict secondary structures
at all unless structure is unambiguously preserved
among the sequences. For small sets of sequences
pfrali therefore predicts only about half of the
base-pairs of the phylogenctie structure and leaves
out regions with little sequence variation and
ambiguous thermodynamic structure predictions
(data not shown).

In Figure 3 we compare the RNAalifold consen-
sus structure with the conserved parts of the struc-
ture as predicted by pfrali for the mRNAs of the
early nodulin gene enod40 from nine plant species.
Enod40, which is coding for an RNA of about
700 nt, is expressed in the nodule primordium
developing in the root cortex of leguminous plants
after infection by symbiotic bacteria. Translation of
two sORFs (I and II, 13 and 27 amino acid residues,
respectively) present in the conserved 50 and 30

regions of enod40 was required for this biological
activity.31

A stem-loop structure located just after the first
ORF is proposed.31 Its location, indicated by a
narrow bar in Figure 3, coincides with a signal in
the pfrali prediction but does not appear in the
RNAalifold consensus structure. A comparison of

Table 2. Quality of predictions

E. coli 16 S RNA E. coli 23 S RNA

ClustalW RDB ClustalW RDB

N Raw Filled Raw Filled Raw Filled Raw Filled

1 47.2 N/A 47.2 N/A 52.2 N/A 52.2 N/A
2 64.7 67.1 73.8 73.4 71.0 69.4 83.7 82.6
3 74.1 77.2 78.1 79.9 71.2 73.7 85.3 84.9
5 74.5 81.2 85.2 86.6 76.2 82.4 86.6 86.8
9 74.1 82.1 85.9 88.6 74.6 82.6 86.1 86.2

We list the percentage of the base-pairs of the phylogenetically reconstructed structure for E. coli rRNA that are correctly predicted.
Data are compared for two alignments and different number N of aligned sequences, both for the raw RNAalifold prediction and the
filled-in structure (refer to text)
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Figure 3. Mountain plots for nine enod40 sequences (PSENOD40, TRJ00268, MSENOD40, MTENOD40R, MSENOD40R, AF013594, PVENOD40, GMENOD401, SRENOD40)
taken from the database.33 The short ORF is marked by a gray bar. L.h.s.: consensus structures from RNAalifold; r.h.s: pfrali prediction. Both methods unambiguously detect a
stem-loop structure (alignment positions 272–450), arid the hairpin structure (468–500) which is located within the longer ORE II. The structure (156–190) partially overlaps
with ORF I; it is not well predicted by pfrali. The location of the putative RNA secondary structure described31 (in Figure 7) is marked by the narrow bar.



this element between different enod40 transcripts
(Figure 7 of Ref. 31) shows that there is a thermo-
dynamically exceptionally stable stem-loop struc-
ture that exhibits so much structural variation that
only a few base-pairs are conserved among all
sequences. Hence, there is no (thermodynamically
reasonable) consensus structure which explains
the absence of a signal in the RNAalidot compu-
tation. The pfrali program, on the other hand,
picks up the few conserved pairs and reports a
structural element with many “holes”.

Both methods agree on a number of other con-
served secondary structure elements in enod40
RNAs that are supported by a significant number
of sequence covariations. Whether some or all of
these structural features are functional is unknown
at present. One likely possibility is that they might
take part in localization of mRNA translation.32

Materials and Methods

Sequence data were retrieved from publicly accessible
RNA databases: the SRPDB†,8 the non-coding RNA
database‡,33 and the Ribosomal Database Project§.3 The
E. coli rRNA reference secondary structures were
retrieved from Robin Gutell’s Comparative RNA Web
Sitek. These structures are generated from covariation
data alone and manually refined; the E. coli structure
represents the standard model of rRNA structure. Non-
standard base-pairs and pseudo-knots pairs were
removed for comparison with predicted structures. The
database names of the sequences used here are listed in
the corresponding Figure captions.

Alignments were generated either automatically using
ClustalW34 or taken from the website of the Ribosomal
Database Project.

The consensus structure for a set of aligned RNA
sequences was computed using the program RNAalifold
as described in detail in Theory. Both optimal consensus
structures and base-pair probabilities were computed
using the simple covariance scoring scheme (equation
(7)) and the standard nearest neighbor energy model as
compiled22 and the additional parameters listed in
Table 1.

For the test of prediction accuracy (Table 2), 16 S and
23 S rRNAs from E. coli were aligned with 1–8 sequences
from other prokaryotic species (16 S rRNA:
A. tumefaciens, A. globiformis, B. japonicum, Anabaena sp.,
B. burgdorferi, B. melitensis, B. suis; for 23 S rRNA:
B. subtilis, Pir. marina, Rb. sphaero, T. thermoph, Ps. cepacia,
Syn. 6301, Tt. maritim, Myb. leprae ). The predicted
optimal consensus structure was then compared to the
phylogenetically reconstructed E. coli structure, by
counting the percentage of the base-pairs of reference
structure present in the predicted structure. Since the
E. coli structure may contain additional non-conserved
base-pairs, we also compared the “filled-in” structure
obtained by computing the thermodynamically most
favorable structure consistent with the consensus predic-
tion (using RNAfold –C).

Availability

Source code implementing the method described here
will be distributed with the next release of the Vienna
RNA Package, a corresponding fold server can be found
at http://rna.tbi.univie.ac.at/
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