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We consider a statistical mechanical model describing flux lines in type II superconductors 
by embedding the flux lines on a lattice wound on torus. The lines are nonintersecting and 
each loop of lines is associated with a fugacity z = -1. It is shown that the exact solution of 
this model leads to a second-order transition between the Meissner and the superconducting 
states as well as a first-order transition between the superconducting and the normal states. 

1. Introduction 

The  discovery of  h igh-T c superconduc tors  has made  it possible to exper imen-  

tally realize fluctuations of  flux lines in type II  superconduc tors  ~1 . Flux lines in 

a superconduc to r  are nonintersect ing vor tex filaments which wande r  a round  in 

the specimen.  The  essence of  this physical picture can be adop ted  in a mode l  in 

which lines are e m b e d d e d  on  a lattice and interact  with hard-core  interact ions.  
This leads to a mode l  of  directed lines [2,3] which has been  analyzed in the past  

by  the mean-field [4], path-integral  [5] and renormal iza t ion-group  [2] ap- 

proaches .  Howeve r ,  it has not  been  possible to carry out  a first-principle s tudy 

by solving the model  exactly. In this paper  we repor t  results of  such an 
analysis. 

We study the statistical mechanics  of  flux lines by applying the exact  solut ion 
of  a related three-dimensional  vertex mode l  [6]. O u r  analysis leads to a 
descript ion of  the the rmodynamics  and phase  diagrams which resembles  those 
of  exper imental  findings. 

2. Formulation 

We consider  flux lines in type II  superconductors  as directed lines e m b e d d e d  

,~1 For a review of a statistical mechanical discussion and some relevant experimental facts, 
see [1]. 
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on a lattice which run along a preferred direction, say the z direction. For  
definiteness consider a simple cubic lattice whose main diagonal points in the 
positive z-direction, with all directed lines making 45 ° angles with the positive 
z-axis. Assuming periodic boundary conditions, the lines will then form cycles 
after looping around the lattice one or more times in the z-direction. To each 
line segment joining two nearest  neighbors of the lattice, we associate a line 
segment energy e. Fur thermore,  under the presence of an external magnetic 
field, a line segment in the ith direction, i = 1, 2, 3, is associated with a 
magnetic energy - H  i, where H, is the component  of the magnetic field in the 
ith direction. This leads to the line segment Bol tzmann factor, 

zi = e -~ ( , -n i ) ,  (1) 

where /3  = 1/kT.  To each cycle of lines we further associate a fugacity y and 
consider the partition function 

Z(Y;Zl,Z2, Z3) = Z H (YUZi), 
l ine config,  cycles 

(2) 

where the first product is over  all cycles of lines and the second product  over  all 
lattice edges in a given cycle. 

It is straightforward to extend the model  (2) to arbitrary d dimensions with, 

of course, the physical situation described by d = 3 and y = 1. The y = 1 and 
y = - 1  models can both be solved exactly in d = 2, and the solutions turn out 
to be identical in the thermodynamic limit [7]. For d i> 3 the y = - 1 model  has 
recently been solved [6]. While the y = 1 model has remained unsolved for 
d/> 3, its critical behavior in general is not expected to be much different f rom 
that of the y = - 1  model. Indeed,  due to the strong constraint imposed by 
configurations of directed lines, it is known that the y = --+ 1 models in d/> 3 
share the same critical tempera ture  and belong to the same university class [6]. 
Thus, with nothing better  available, we shall use the y - - - 1  solution in the 
formulation and carry out a first-principle analysis on this basis. 

From here on we confine our considerations to y = - 1 ,  and consider the 
per-site Gibbs free energy of the superconducting state as given by 

1 
G s ( T , H  ) = - /3  ~ lim ~ l n Z ( - l ; Z l , Z 2 , z 3 )  , 

N--~ oe 
(3) 

where N is the total number  of sites of the lattice. Generally,  if the Gibbs free 
energy of a system is G(T, H ) ,  the "per-s i te"  magnetic induction and magneti-  
zation of the system are, respectively and in appropriate  units, 
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B(T, H) = -OG(T, H)/OH, 
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(4) 

M = B - H .  (5) 

In addition, the per-site internal energy and the constant field specific heat are 

O[[3G(T, H)I  
U(T,  H )  - 0[3 + H B ,  (6) 

and 

o 
C .  = kOTZ ] Tz  °B 2 [ ~ G ( T , H ) ] .  (7) 

For the superconducting states we use G S for G. For the normal state (of a free 
electron gas) we have the following expression for the Gibbs free energy: 

G . ( T ,  H )  = G o - l ' y T 2  - ½ H 2 , (8) 

where Go, 3' > 0 are constants. The system becomes normal whenever  the 
Gibbs free energy G.  is lower than G 0. The magnetic induction and the specific 
heat of the normal state are therefore 

B = H ,  C H = T T .  (9) 

3. The exact solution 

The directed line problem (2) can be formulated as a 10-vertex problem on 
the simple cubic lattice [6]. Place bonds along edges of the lattice with the 
restriction that there are either no bond or two bonds incident at each site and, 
when there are two incident bonds, one of the bonds is always along a positive 
axes direction and the other along a negative direction. Thus, the vertex 
weights are {!1 

0 

if there is no bond ,  
if the two bonds are in directions i and j ,  

otherwise,  
(10) 

and we have altogether a (3  2 + 1) = 10 nonzero vertex weight and a 10-vertex 
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model .  This vertex mode l  is identical to the directed line mode l  (2) if one  

fur ther  int roduces  the cycle fugacity y. 
The  part i t ion function (2) can be evaluated using the vertex mode l  formula-  

t ion for y = - 1  [6]. This yields, after int roducing (3), 

- ~ G s ( T ,  H )  = 

2"rr 2-~ 2~- 

1 
(2.rr)3 f dOl f dOz f dO31nlz4 

0 0 0 

Z 1 e iOl eiO3] + Z 2 e i°2 4- Z 3 

(11) 

where z4 
variables,  if needed ,  we find 

- [ 3 G s ( T ,  H )  = In Zm,  

_ 1 f f in ~ z / e , 0 j  , (2.rr)2 l-[ dOi " 
i~rn j ~ m  

where ~ is the regime 

eiOj j~., z/ > z m =- max{z 1 , z 2, z 3 , z4} 

and T c given by 

Z 1 -~ Z 2 -'~ Z 3 -I- Z 4 = 2z,~, T = T c . 

Clearly,  the Gibbs free energy  is nonanalyt ic  at T c. 

-= 1. Carrying out  one  integrat ion as in ref. [6] after changing 

T <  T c , 

T > T  c , (12) 

(13) 

(14) 

4. Thermodynamic properties 

It is now straightforward to combine  the exact solution for  G S with the 
formula t ion  in section 2 to deduce the the rmodynamics  of  a superconductor .  
The  explicit formulat ion will depend ,  however ,  on  the direct ion o f  the applied 

magnet ic  field which gives rise to different H i. 
Consider  first the case that  the magnet ic  field H is applied along the 1 

direct ion so that  

z 1 = e -°(~-I~) , z = z 2 = z 3 = e -°" . (15) 

It is clear then that  the critical condit ion (14) can be realized in two different  

ways,  namely  
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F He2 

H 

1/In3 

T 

Fig. 1. The phase diagram with H along the l direction. M denotes the Meissner state, S the 
superconducting state, N the normal state, and F the frozen state. H in unit of e and T in unit of 
Elk. 

z 1 + 2 z  = 1 , H =  H¢I(T  ) , 

1 + 2z = z , ,  H : H ' ( T )  > H¢~. (16) 

A plot  of  the  cri t ical  cond i t ions  (16) is shown in the  phase  d i a g r a m  fig. 1. N o t e  

tha t  bo th  curves  in te r sec t  the  T = 0 axis at  H = e, whi le  the  H = H~I(T  ) curve  

in te rsec ts  the  H = 0 axis at  

Tc = e / k  In 3 .  (17)  

The  sys tem is in a f rozen  ( sa tu ra t ed )  s ta te  when  H > H ' ( T ) .  

T h e  G i b b s  f ree  ene rgy  (11) can be  wr i t t en  in the  fo rm [6], a f te r  ca r ry ing  ou t  

one  o r  th ree  in tegra t ions ,  

o o o) 
4 

dO 

o 

[ .  = - f l ( e  - H ) ,  

d a  lnlz  I e i~ + u(O)] , 

H < H c l  , 

He1 < H  < H ' ~ ,  

H > H ~ ,  

(18) 

whe re  

COS½0 o = (1 -- Zl ) /2Z  , 

COSao(O ) = [1 -- u2(O) - - Z ~ ] / Z u ( O ) z l ,  

u(O) = 2Z COS½0. (19) 
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Since the system is frozen with zero free energy and no flux for H < H~I, we 
identify the transition at H ~ ( T )  as the transition to the Meissner state. On the 
other hand, flux lines become frozen (saturated) for H ~ H'  c. However, this 
frozen transition can be unphysical since the normal state (8) may dominate 
giving rise to a lower Gibbs free energy. This leads us to consider the transition 
to the normal state occurring at 

G~(T, H )  = G . ( T ,  H ) ,  H = H~2(T ) . (20) 

We have determined H¢2(T ) numerically using (20) in conjunction with (18) 
and (8) and the choice of constants 

- -  1 2 Go - y y T c ,  3' = 3,  (21) 

where G O is chosen to ensure Hc2(T ) to vanish at To, and y is arbitrary as it 
does not effect our general conclusion. The resulting H c z ( T  ) is shown in the 
phase diagram in fig. 1. It is seen that, as commented earlier, the state with 
saturated magnetic induction for large H is unphysieal as it is superceeded by 
the normal state. 

It is clear that the transition a t  mc2 between the normal and superconducting 
states is of first order, since the free energies in the two regimes are given by 
different analytic expressions. To analyze the nature of transition at He1, we 
need to evaluate the internal energy (6). First we evaluate the per-site 
induction using (4) and (18), obtaining 

%(00) 

B(T,H) 1 000 f ,rr 2 OH da lnlz , e i'~ + u(Oo) I 
0 

0o 

1 f Oao(O) . 
- -  d0 ~ l n l z  1 e '"°(°)  + u ( 0 ) ]  

q- ,if2 
0 
Oo ao(O ) 

i f  f  l ,l+ Z,l OSO + --'2 dO da 2 2 
~r u + za + 2uz~ cosa  

o o 

(22) 

where z '1 = 0z i / OH =/3z 1. Using the integration formula 

~o 
f A + B cos ~b B 

dO a + b c o s ~ b  - -b  -4~°+ 
0 

A b  b- aB a 2 V ~ -  b 2 t a n 2  -'[t/a~b~v~ tan(½(bo)) 

(23) 
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and after some algebra, we find 

t  °fl 0 0 

1 
B(T,H) ='~72 dO Cto(O ) 

(.=1, 

llu(O) - z~ 
- 2 t a n - ~ t a n [ ½ a o ( O ) ] ) ]  ' 

H<H¢I , 

H~I <H <H~, 

H>H'~. 

(24) 

In a similar fashion we evaluate U(T, H)  using (6) and B(T, H)  given by (24). 
This leads to the surprisingly simple expression 

{Oi!oo 
U ( T , H  = - -  dO ao(O), 

H < H c I  , 

//ca < H  <H 'c ,  

H > H ' ~ .  

(25) 

Results of numerical evaluation of U(T, H)  are shown in fig. 2. It can be 
shown that both B(T, H)  and U(T, H)  are continuous at Hot and H~. To 
determine the nature of transition, we compute the specific heat using (7) and 
obtain, after some algebra, 

tl 

0 

Fig. 2. The internal energy U(T, H) given by (25) with H along the 1 direction. 
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c _ 2 fooCSC°~°(°) H - -  ,,, 2 k T 2  0 ~(~-2--~-H[1--U2(O)~-~21]~-H2221}, 
I ~ = 0 ,  

H " (  n c l  

Hc~ < H  <H'c,  

H > H '  c . 

(26) 

Along the critical lines given by (16), the specific heat C~ has a cusp and 
assumes the finite value 

(~ - H z , )  2 

C n - 2 1 r k T 2 z v ~ l ,  (27) 

where z 1 = 1 w- 2z. Particularly, at H = 0, we have the critical value 

3V3 
c°= 2w (ln3)2k" (28) 

Therefore ,  the transition at Hcl(T ) is of second order. A plot of (27) is given in 
fig. 3. 

The above analysis can be carried out for the applied magnetic field 
assuming arbitrary direction. For the field in the 1-2  plane, for example,  we 
define, in place of (15), 

z I = e  -~" , z = z  2 = z  3 = e - ¢ ( ' - m  (29) 

The analysis leads to a un ique  critical condition 

C o - -  

C H 

0 1 

H 

Fig. 3. The critical value of the specific heat C H along H = H~I along the 1 direction. H in unit of 
E.  
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N 

l/In3 

T 

Fig. 4. The phase diagram with H in the 1-2 direction. M denotes the Meissner state, S the 
superconducting state, and N the normal state. 

2z + z 1 = 1 ,  H = H c l ( T  ) . (30) 

Thus ,  the  f rozen  s a t u r a t e d  s ta te  does  no t  appea r .  A p lo t  of  (30) is g iven  in the  

phase  d i a g r a m  shown in fig. 4. 

W e  can  s imi lar ly  c o m p u t e  the  ene rgy  and  the  specific hea t ,  excep t  tha t  t h e r e  

is now no cri t ical  f ield H'¢(T). Using  the  ene rgy  U(T,  H )  given by  the  first two 

l ines in (25),  we o b t a i n  the  specific hea t  

Hcl Hc2 

H 

Fig. 5. The magnetization M as a function of H at T = 0.8T c. H in unit of ~ and T in unit of ~/k. 
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I = O  , °o 

C~ 2 f csc %(0 ) 2 
l = w2---~-~ 0 ) d0 ~ {E - ell[1 + u2(0) - z~] + H2u2(O)}, 

n ( n c  1 

H>Hcl  . 

(31) 

Along the critical line H = H c I ( T  ) given by (30), the specific heat C n again has 
a cusp and assumes the value 

( e  - 2 H z )  2 

C tt - 2,rr k T Zz v,_~l , (32) 

with C O again given by (28). Note the remarkable resemblence of (31) and (32) 
with (26) and (27). However, the expression (32) diverges as e ~'/2 at {H, T} = 

0). 
Finally, one can compute the per-site magnetization M using (5). The plot of 

[MI as a function of H for T = 0.8To, for example, is shown in fig. 5. 
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