
Research Article
Iterative Methods for Nonconvex Equilibrium Problems in
Uniformly Convex and Uniformly Smooth Banach Spaces

Messaoud Bounkhel

Department of Mathematics, College of Science, P.O. Box 2455, Riyadh 11451, Saudi Arabia

Correspondence should be addressed to Messaoud Bounkhel; bounkhel@ksu.edu.sa

Received 8 October 2014; Accepted 19 February 2015

Academic Editor: P. Veeramani

Copyright © 2015 Messaoud Bounkhel.This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We suggest and study the convergence of somenew iterative schemes for solving nonconvex equilibriumproblems in Banach spaces.
Many existing results have been obtained as particular cases.

1. Introduction

Let 𝑋 be a Banach space, and let 𝑋∗ be the dual space of 𝑋.
Let ⟨⋅, ⋅⟩ denote the duality pairing of 𝑋∗ and 𝑋. Let 𝐶 be a
nonempty closed subset of 𝑋 and let 𝐹 : 𝑋 × 𝑋 → R be a
bifunction satisfying 𝐹(𝑥, 𝑥) = 0 for all 𝑥 ∈ 𝐶. A prototype
of equilibrium problem associated with a closed convex set 𝐶
and a convex bifunction 𝐹 is given as follows:

Find 𝑥 ∈ 𝐶 such that

𝐹 (𝑥, 𝑥) ≥ 0 ∀𝑥 ∈ 𝐶.

(𝐸𝑃(𝐶, 𝐹))

In this paper we introduce and study two appropriate exten-
sions of (𝐸𝑃(𝐶, 𝐹)) from the convex case to the nonconvex
case in Banach spaces setting. We consider the two following
generalized equilibrium problems associated with 𝐶, 𝜌, and
𝐹 (resp., denoted by (𝐺𝐸𝑃1(𝐶, 𝜌, 𝐹)) and (𝐺𝐸𝑃2(𝐶, 𝜌, 𝐹))):

Find 𝑥 ∈ 𝐶 such that

𝐹 (𝑥, 𝑥) + 𝜌𝑉 (𝐽 (𝑥) , 𝑥) ≥ 0 ∀𝑥 ∈ 𝐶,

(𝐺𝐸𝑃1(𝐶, 𝜌, 𝐹))

Find 𝑥 ∈ 𝐶 such that

𝐹 (𝑥, 𝑥) + 𝜌𝑉 (𝐽 (𝑥) , 𝑥) ≥ 0 ∀𝑥 ∈ 𝐶,

(𝐺𝐸𝑃2(𝐶, 𝜌, 𝐹))

where 𝐽 : 𝑋 → 𝑋
∗ is the normalized duality mapping and

𝑉 : 𝑋
∗

× 𝑋 → R is the functional defined by

𝑉 (𝑥
∗

, 𝑥) =
󵄩󵄩󵄩󵄩𝑥
∗󵄩󵄩󵄩󵄩

2

− 2 ⟨𝑥
∗

, 𝑥⟩ + ‖𝑥‖
2

. (1)

Due to the nonsymmetry of the terms 𝑉(𝐽(𝑥), 𝑥) and
𝑉(𝐽(𝑥), 𝑥) we can think about the symmetric functional
𝑊(𝑥, 𝑥) := (1/2)[𝑉(𝐽(𝑥), 𝑥) + 𝑉(𝐽(𝑥), 𝑥)]. Thus, we can
consider one more appropriate extension of equilibrium
problem from Hilbert spaces to Banach spaces as follows:

Find 𝑥 ∈ 𝐶 such that

𝐹 (𝑥, 𝑥) + 𝜌𝑊 (𝑥, 𝑥) ≥ 0 ∀𝑥 ∈ 𝐶.

(𝐺𝐸𝑃3(𝐶, 𝜌, 𝐹))

The reason for saying that the above three generalized equi-
libriumproblems are the appropriate extensions fromHilbert
spaces to Banach spaces and from convex cases to nonconvex
cases is that inHilbert spaces we have𝑊(𝑥, 𝑥) = 𝑉(𝐽(𝑥), 𝑥) =

𝑉(𝐽(𝑥), 𝑥) = ‖𝑥 − 𝑥‖
2 and the convex case is covered by

taking 𝜌 = 0. Obviously, any solution of (𝐺𝐸𝑃1(𝐶, 𝜌, 𝐹)) and
(𝐺𝐸𝑃2(𝐶, 𝜌, 𝐹)) is a solution of (𝐺𝐸𝑃3(𝐶, 𝜌, 𝐹)). Thus, we are
going to study the convergence of new iterative schemes to
solutions of (𝐺𝐸𝑃1(𝐶, 𝜌, 𝐹)) and (𝐺𝐸𝑃2(𝐶, 𝜌, 𝐹)).

We list some important properties of 𝑉 needed in our
proofs, when𝑋 is a reflexive smooth Banach space:

(i) 𝑉(𝑥
∗

, 𝑥) ≥ 0, for all 𝑥 ∈ 𝑋, 𝑥∗ ∈ 𝑋
∗;

(ii) (‖𝑥∗‖−‖𝑥‖)2 ≤ 𝑉(𝑥
∗

, 𝑥) ≤ (‖𝑥
∗

‖+‖𝑥‖)
2, for all𝑥 ∈ 𝑋,

𝑥
∗

∈ 𝑋
∗;

(iii) 𝑉(𝐽(𝑥), 𝑥) = 0, for all 𝑥 ∈ 𝑋;
(iv) 𝑉(𝑥

∗

, 𝑥) is continuous and 𝑉 is convex with respect
to 𝑥 when 𝑥

∗ is fixed and convex with respect to 𝑥
∗

when 𝑥 is fixed;
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(v) whenever the space 𝑋 is smooth, the functional
𝑉(𝑥
∗

, ⋅) is differentiable and grad
𝑥
𝑉(𝑥
∗

, ⋅)(𝑥) =

2(𝐽(𝑥) − 𝑥
∗

);
(vi) 𝑉(𝑥

∗

, 𝑥) = 0 if and only if 𝑥∗ = 𝐽(𝑥).

The proposed generalized equilibrium problems extend
many existing equilibrium problems and variational inequal-
ities from the convex case to the nonconvex case and from
Hilbert spaces setting to Banach spaces setting.

(1) If 𝑋 is a Hilbert space, the duality mapping is the
identity operator and𝑊(𝑥, 𝑥) = 𝑉(𝐽(𝑥), 𝑥) = 𝑉(𝐽(𝑥),

𝑥) = ‖𝑥−𝑥‖
2 and so (𝐺𝐸𝑃1(𝐶, 𝜌, 𝐹)), (𝐺𝐸𝑃2(𝐶, 𝜌, 𝐹)),

and (𝐺𝐸𝑃3(𝐶, 𝜌, 𝐹)) become as follows:

Find 𝑥 ∈ 𝐶 such that

𝐹 (𝑥, 𝑥) + 𝜌 ‖𝑥 − 𝑥‖
2

≥ 0 ∀𝑥 ∈ 𝐶,

(2)

which has been introduced and studied in [1]. The
same problem has been studied byNoor [2] andmany
authors (see, e.g., [3–5]).

(2) If 𝑋 is a Hilbert space, 𝐶 is a convex closed set in
𝑋, 𝐹 is a convex bifunction, and 𝜌 = 0, all the
generalized equilibrium problems (𝐺𝐸𝑃1(𝐶, 𝜌, 𝐹)),
(𝐺𝐸𝑃2(𝐶, 𝜌, 𝐹)), and (𝐺𝐸𝑃3(𝐶, 𝜌, 𝐹)) become as fol-
lows:

Find 𝑥 ∈ 𝐶 such that

𝐹 (𝑥, 𝑥) ≥ 0 ∀𝑥 ∈ 𝐶,

(3)

which has been studied in various works (see, e.g., [3,
4] and the references therein).

(3) If 𝐹(𝑥, 𝑦) = ⟨𝑇(𝑥), 𝑦 − 𝑥⟩, with 𝑇 : 𝑋 → 𝑋
∗

being a nonlinear operator, then (𝐺𝐸𝑃1(𝐶, 𝜌, 𝐹)) and
(𝐺𝐸𝑃2(𝐶, 𝜌, 𝐹)) reduce, respectively, to the following:

Find 𝑥 ∈ 𝐶 such that

⟨𝑇 (𝑥) , 𝑥 − 𝑥⟩ + 𝜌𝑉 (𝐽 (𝑥) , 𝑥) ≥ 0 ∀𝑥 ∈ 𝐶,

Find 𝑥 ∈ 𝐶 such that

⟨𝑇 (𝑥) , 𝑥 − 𝑥⟩ + 𝜌𝑉 (𝐽 (𝑥) , 𝑥) ≥ 0 ∀𝑥 ∈ 𝐶.

(4)

These inequalities are new even in Banach spaces.
However, it has been studied, in Hilbert spaces, in [6],
when 𝐶 is a uniformly prox-regular set (which is not
necessarily a convex set) (see also [1, 2, 4]). By taking
𝜌 = 0 the last inequality becomes as follows:

Find 𝑥 ∈ 𝐶 such that

⟨𝑇 (𝑥) , 𝑥 − 𝑥⟩ ≥ 0 ∀𝑥 ∈ 𝐶,

(5)

which is known as the classical variational inequality
introduced and studied by Stampacchia in [7].

Our main aim of the present paper is to suggest and analyze
some iterative schemes for solving the proposed generalized
equilibrium problems (𝐺𝐸𝑃1(𝐶, 𝜌, 𝐹)) and (𝐺𝐸𝑃2(𝐶, 𝜌, 𝐹)).

2. Main Results

We recall some definitions and results on𝑝-uniformly convex
and 𝑞-uniformly smooth Banach spaces (see, e.g., [8, 9]).
The moduli of convexity and smoothness of 𝑋 are defined,
respectively, by

𝛿
𝑋
(𝜖) = inf {1 −

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑥 + 𝑦

2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
: ‖𝑥‖ =

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩 = 1,

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 = 𝜖} ,

0 ≤ 𝜖 ≤ 2,

𝜌
𝑋
(𝑡) = sup {

1

2
(
󵄩󵄩󵄩󵄩𝑥 + 𝑦

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩) − 1 : ‖𝑥‖ = 1,
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩 = 𝑡} ,

𝑡 > 0.

(6)

The space𝑋 is said to be uniformly convex whenever 𝛿
𝑋
(𝜖) >

0 for all 0 < 𝜖 ≤ 2 and is said to be uniformly smooth
whenever lim

𝑡↓0
𝜌
𝑋
(𝑡) = 0. Let 𝑝, 𝑞 > 1 be real numbers. The

space 𝑋 is said to be 𝑝-uniformly convex (resp., 𝑞-uniformly
smooth) if there is a constant 𝑐 > 0 such that

𝛿
𝑋
(𝜖) ≥ 𝑐𝜖

𝑝

(resp. 𝜌
𝑋
(𝑡) ≤ 𝑐𝑡

𝑞

) . (7)

It is known (see, e.g., [8, 9]) that uniformly convex Banach
spaces are reflexive, strictly convex and that uniformly
smooth Banach spaces are reflexive. If 𝑋 is a 𝑝-uniformly
convex Banach space, then 𝑋

∗ is a 𝑝
󸀠-uniformly smooth

Banach space, where 𝑝󸀠 = 𝑝/(𝑝 − 1) is the conjugate number
of 𝑝. If 𝑋 is a 𝑞-uniformly smooth Banach space, then 𝑋

∗ is
a 𝑞
󸀠-uniformly convex Banach space, where 𝑞󸀠 = 𝑞/(𝑞 − 1).
The following lemma is needed in our proofs and for its

proof we refer to [10].

Lemma 1. Let 𝑝, 𝑞 > 1, 𝐸 be a 𝑝-uniformly convex and 𝑞-
uniformly smooth Banach space, and let 𝑆 be a bounded set.
Then there exist constants 𝜂, 𝜅 > 0 such that

𝜂
−1 󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

𝑝

≤ 𝑉 (𝐽 (𝑥) , 𝑦) ≤ 𝜅
−1 󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

𝑞

, ∀𝑥, 𝑦 ∈ 𝑆.

(8)

Let𝑋 be a reflexive smooth Banach space and let𝑓 : 𝑋 →

R∪{+∞} be a function and 𝑥 ∈ 𝑋, where𝑓 is finite.We recall
from [10] that the proximal subdifferential 𝜕𝜋𝑓(𝑥) is the set
of all 𝑥∗ ∈ 𝑋

∗ for which there are 𝜎 > 0 and 𝛿 > 0 so that

⟨𝑥
∗

, 𝑥
󸀠

− 𝑥⟩ ≤ 𝑓 (𝑥
󸀠

) − 𝑓 (𝑥) + 𝜎𝑉 (𝐽 (𝑥) , 𝑥
󸀠

) , (9)

for all 𝑥󸀠 around 𝑥. We also recall ([10]) that the proximal
normal cone of a nonempty closed subset 𝑆 in 𝑋 at 𝑥 ∈ 𝑆

is defined by 𝑁
𝜋

(𝑆; 𝑥) = 𝜕
𝜋

𝜓
𝑆
(𝑥), where 𝜓

𝑆
is the indicator

function of 𝑆. The following proposition summarizes some
properties of 𝜕𝜋𝑓(𝑥) and𝑁

𝜋

(𝑆, 𝑥) that we need in our proofs.
For their proofs we refer the reader to [10].

Proposition 2. Let 𝑋 be a reflexive smooth Banach space.
Then the following assertions hold:
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(1) if 𝑓 is l.s.c. convex, then 𝜕
𝜋

𝑓(𝑥) coincides with the sub-
differential 𝜕Conv.𝑓(𝑥) in the sense of convex analysis
defined by

𝜕
Conv.

𝑓 (𝑥)

= {𝑥
∗

∈ 𝑋
∗

: ⟨𝑥
∗

, 𝑥
󸀠

− 𝑥⟩

≤ 𝑓 (𝑥
󸀠

) − 𝑓 (𝑥) , ∀𝑥 ∈ dom𝑓} ;

(10)

(2) if 𝑆 is a closed convex set, then 𝑁
𝜋

(𝑆; 𝑥) coincides with
the normal cone 𝑁

Conv.
(𝑆; 𝑥) in the sense of convex

analysis defined by

𝑁
Conv.

(𝑆; 𝑥) = {𝑥
∗

∈ 𝑋
∗

: ⟨𝑥
∗

, 𝑥
󸀠

− 𝑥⟩ ≤ 0, ∀𝑥 ∈ 𝑆} ; (11)

(3) if 𝑥 is a local minimum of 𝑓, then 0 ∈ 𝜕
𝜋

𝑓(𝑥);
(4) 𝜕𝜋𝑑

𝑆
(𝑥) ⊂ 𝑁

𝜋

(𝑆; 𝑥), for any 𝑥 ∈ 𝑆, where 𝑑
𝑆
is the

distance function associated with a nonempty closed set
𝑆 in𝑋;

(5) if 𝑓 is locally Lipschitz around 𝑥 with ratio 𝐾, then
𝜕
𝜋

𝑓(𝑥) ⊂ 𝐾B;
(6) 𝜕𝜋𝑓

1
(𝑥) + 𝜕

𝜋

𝑓
2
(𝑥) ⊂ 𝜕

𝜋

(𝑓
1
+ 𝑓
2
)(𝑥);

(7) 𝑁𝜋(𝑆; 𝑥) is also characterized by the following global
inequality:

𝑥
∗

∈ 𝑁
𝜋

(𝑆; 𝑥) ⇐⇒ ⟨𝑥
∗

, 𝑥
󸀠

− 𝑥⟩ ≤ 𝜎𝑉 (𝐽 (𝑥) , 𝑥
󸀠

) ,

∀𝑥
󸀠

∈ 𝑆.

(12)

We propose the following two iterative schemes:

Select 𝑥
𝑘+1

∈ 𝐶 such that 𝐽 (𝑥
𝑘+1

) ∈ 𝐽 (𝑥
𝑘
) + 𝑀𝜆

𝑘
B,

𝐽 (𝑥
𝑘
) − 𝐽 (𝑥

𝑘+1
)

𝜆
𝑘

∈ 𝜕
𝜋

𝐹 (𝑥
𝑘+1

, ⋅) (𝑥
𝑘+1

) + 𝑁
𝜋

(𝐶; 𝑥
𝑘+1

) ,

(𝐺𝑆𝑃1)

Select 𝑥
𝑘+1

∈ 𝐶 such that 𝐽 (𝑥
𝑘+1

) ∈ 𝐽 (𝑥
𝑘
) + 𝑀𝜆

𝑘
B,

𝐽 (𝑥
𝑘+1

) − 𝐽 (𝑥
𝑘
)

𝜆
𝑘

∈ 𝜕
𝜋

𝐹 (𝑥
𝑘
, ⋅) (𝑥
𝑘
) + 𝑁

𝜋

(𝐶; 𝑥
𝑘
) ,

(𝐺𝑆𝑃2)

where 𝑀 > 0 is a given positive number. Under natural
assumptions, we will prove the convergence of a subsequence
of the sequence {𝑥

𝑘
} generated by (𝐺𝑆𝑃1) (resp., (𝐺𝑆𝑃2)) to a

solution of (𝐺𝐸𝑃1(𝐶, 𝜌, 𝐹)) (resp., (𝐺𝐸𝑃2(𝐶, 𝜌, 𝐹))).
To start our studywe define two new classes of nonconvex

sets and nonconvex functions as follows.

Definition 3. Let 𝑋 be a reflexive smooth Banach space. For
a given 𝑟 ∈ (0,∞], a subset 𝐶 is 𝑉-uniformly prox-regular
with respect to 𝑟 provided that for all 𝑥 ∈ 𝐶 and all nonzero
𝑥
∗

∈ 𝑁
𝜋

(𝐶; 𝑥) we have

⟨
𝑥
∗

‖𝑥
∗
‖
, 𝑥
󸀠

− 𝑥⟩ ≤
1

2𝑟
𝑉 (𝐽 (𝑥) , 𝑥

󸀠

) , ∀𝑥
󸀠

∈ 𝐶. (13)

We use the convention 1/𝑟 = 0 for 𝑟 = +∞.

Obviously, this class extends the class of uniformly prox-
regular sets ([11, 12]) from Hilbert spaces to Banach spaces
since inHilbert spaces we have𝑉(𝐽(𝑥), 𝑥

󸀠

) = ‖𝑥−𝑥
󸀠

‖
2 and the

generalized proximal normal cone 𝑁
𝜋

(𝐶; 𝑥) coincides with
the usual proximal subdifferential𝑁𝑝(𝐶; 𝑥) (see [10] formore
details on𝑁

𝜋

(𝑆; 𝑥) and 𝜕
𝜋

𝑓(𝑥)). We point out that a different
extension of uniformly prox-regular sets to Banach spaces has
been considered and studied recently in [13].

Definition 4. Let 𝑋 be a reflexive smooth Banach space. Let
𝑓 : 𝑋 → R ∪ {+∞} be a l.s.c. function and let 𝑆 ⊂ dom𝑓 :=

{𝑥 ∈ 𝑋 : 𝑓(𝑥) < ∞} be a nonempty closed set in 𝑋. We will
say that 𝑓 is 𝑉-uniformly prox-regular over 𝑆 provided that
for all 𝑥 ∈ 𝑆 and all 𝑥∗ ∈ 𝜕

𝜋

𝑓(𝑥) we have

⟨𝑥
∗

, 𝑥
󸀠

− 𝑥⟩ ≤ 𝑓 (𝑥
󸀠

) − 𝑓 (𝑥) +
1

2𝑟
𝑉 (𝐽 (𝑥) , 𝑥

󸀠

) ,

∀𝑥
󸀠

∈ 𝑆.

(14)

We say that 𝑓 is 𝑉-prox-regular around 𝑥 ∈ dom𝑓 provided
that 𝑓 is 𝑉-uniformly prox-regular over some closed neigh-
borhood of 𝑥; that is, there exists a closed neighborhood 𝑉

𝑥

of 𝑥 such that for all 𝑥 ∈ 𝑉
𝑥
, for all 𝑥∗ ∈ 𝜕

𝜋

𝑓(𝑥), inequality
(14) holds for any 𝑥

󸀠

∈ 𝑉
𝑥
.

Example 5. Consider the following.

(1) Any l.s.c. proper convex function is 𝑉-uniformly
prox-regular over any nonempty closed set 𝑆 in its
domain with 𝑟 = +∞.

(2) The indicator function 𝜓
𝐶

of 𝑉-uniformly prox-
regular set𝐶 is𝑉-uniformly prox-regular over𝐶with
respect to the same constant 𝑟.

(3) The distance function 𝑑
𝐶

associated with a 𝑉-
uniformly prox-regular set 𝐶 is 𝑉-uniformly prox-
regular over 𝐶 with respect to the same constant 𝑟.
Indeed, for any 𝑥 ∈ 𝐶 and for all 𝑥∗ ∈ 𝜕

𝜋

𝑑
𝐶
(𝑥)

we have by Parts (4-5) in Proposition 2 that 𝑥
∗

∈

𝑁
𝜋

(𝐶; 𝑥) with ‖𝑥
∗

‖ ≤ 1 and so by Definition 3:

⟨𝑥
∗

, 𝑥
󸀠

− 𝑥⟩ ≤

󵄩󵄩󵄩󵄩𝑥
∗󵄩󵄩󵄩󵄩

2𝑟
𝑉 (𝐽 (𝑥) , 𝑥

󸀠

)

≤
1

2𝑟
𝑉 (𝐽 (𝑥) , 𝑥

󸀠

) , ∀𝑥
󸀠

∈ 𝐶,

(15)

and hence

⟨𝑥
∗

, 𝑥
󸀠

− 𝑥⟩

≤ 𝑑
𝐶
(𝑥
󸀠

) − 𝑑
𝐶
(𝑥) +

1

2𝑟
𝑉 (𝐽 (𝑥) , 𝑥

󸀠

) , ∀𝑥
󸀠

∈ 𝐶,

(16)

that is, 𝑑
𝐶
is 𝑉-uniformly prox-regular over 𝐶 with

respect to the same constant 𝑟.
(4) Any lower-𝐶2 function 𝑓 over convex strongly com-

pact 𝐾 in 𝑋 is 𝑉-uniformly prox-regular over 𝐾

with some 𝑟 ∈ (0, +∞] as the next propositions
(Propositions 7 and 8) show.
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Definition 6. Let 𝑋 be a reflexive smooth Banach space. A
function 𝑓 : 𝑋 → R is said to be lower-𝐶2 around a point
𝑥 ∈ dom𝑓 if there exists an open convex neighborhood 𝑂

and 𝜌 ≥ 0 such that 𝑓 + (𝜌/2)‖ ⋅ ‖
2 is finite and convex over

𝑂. We will say that 𝑓 is lower-𝐶2 around a subset 𝑆 ⊂ 𝐻 if it
is lower-𝐶2 around each point of 𝑆.

Proposition 7. Let𝑋 be a reflexive smooth Banach space and
let 𝐾 be a convex strongly compact set in 𝑋. If 𝑓 is a lower-𝐶2
function on𝐾, then 𝑓 is uniformly lower-𝐶2 over𝐾; that is, for
some 𝜌 ≥ 0 the function 𝑓 + (𝜌/2)‖ ⋅ ‖

2 is finite convex over𝐾.

Proof. Assume that𝑓 is lower-𝐶2 on𝐾. For every 𝑥 ∈ 𝐾 there
exist, by Definition 6, an open convex neighborhood 𝑂

𝑥
of 𝑥

and 𝜌
𝑥
≥ 0 such that 𝑓 + (𝜌

𝑥
/2)‖ ⋅ ‖

2 is finite convex over 𝑂
𝑥
.

The family of open sets {𝑂
𝑥
}
𝑥∈𝐾

covers 𝐾, so by the strong
compactness of 𝐾 there exist points 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
in 𝐾 such

that 𝐾 ⊂ ⋃
𝑘=𝑛

𝑘=1
𝑂
𝑥𝑘
, and 𝜌 > 0 sufficiently large such that

𝑓 + (𝜌/2)‖ ⋅ ‖
2 is finite convex over ⋃𝑘=𝑛

𝑘=1
𝑂
𝑥𝑘
and so over the

convex set𝐾. This ensures the uniform lower-𝐶2 property of
𝑓 over 𝐾 and hence the proof is complete.

The next proposition proves the relationship between
uniform lower-𝐶2 functions and 𝑉-uniformly prox-regular
functions.

Proposition 8. Let𝑋 be a reflexive smooth Banach space, 𝜌 ≥

0, let𝐾 be a convex strongly compact subset of𝑋, and let𝑓 be a
l.s.c function on 𝐾. If 𝑓 is uniformly lower-𝐶2 on 𝐾 with some
ratio 𝜌 ≥ 0, then 𝑓 is 𝑉-uniformly prox-regular over 𝐾 with
respect to the constant 𝑟 = 1/𝜌.

Proof. Assume that 𝑓 is uniformly lower-𝐶2 on𝐾 with some
ratio 𝜌 ≥ 0; that is, 𝑓+ (𝜌/2)‖ ⋅ ‖

2 is convex over𝐾. Let 𝑥 ∈ 𝐾

and 𝑥
∗

∈ 𝜕
𝜋

𝑓(𝑥). Then by Part 6 in Proposition 2 we obtain

𝑥
∗

+ 𝜌𝐽 (𝑥) ∈ 𝜕
𝜋

𝑓 (𝑥) + grad
𝑥
(
𝜌

2
‖⋅‖
2

) (𝑥)

⊂ 𝜕
𝜋

(𝑓 +
𝜌

2
‖⋅‖
2

) (𝑥) .

(17)

Since 𝑓 + (𝜌/2)‖ ⋅ ‖
2 is convex over 𝐾 we have by Part 1 in

Proposition 2 that 𝜕𝜋(𝑓 + (𝜌/2)‖ ⋅ ‖
2

)(𝑥) = 𝜕
Conv.

(𝑓 + (𝜌/2)

‖⋅‖
2

)(𝑥) and so by the definition of the convex subdifferential:
⟨𝑥
∗

+ 𝜌𝐽 (𝑥) , 𝑥 − 𝑥⟩

≤ (𝑓 +
𝜌

2
‖⋅‖
2

) (𝑥) − (𝑓 +
𝜌

2
‖⋅‖
2

) (𝑥) , ∀𝑥 ∈ 𝐾.

(18)

This ensures
⟨𝑥
∗

, 𝑥 − 𝑥⟩ ≤ 𝑓 (𝑥) − 𝑓 (𝑥)

+
𝜌

2
[‖𝑥‖
2

− ‖𝑥‖
2

− 2 ⟨𝐽 (𝑥) , 𝑥 − 𝑥⟩]

≤ 𝑓 (𝑥) − 𝑓 (𝑥) +
𝜌

2
[‖𝑥‖
2

+ ‖𝑥‖
2

− 2 ⟨𝐽 (𝑥) , 𝑥⟩]

≤ 𝑓 (𝑥) − 𝑓 (𝑥) +
𝜌

2
𝑉 (𝐽 (𝑥) , 𝑥) ,

(19)

for all 𝑥 ∈ 𝐾 and then the function 𝑓 is 𝑉-uniformly prox-
regular over 𝐾 with constant 𝑟 = 1/𝜌 and hence the proof is
complete.

Now, we are in position to state and prove our first
proposition which extends themain result in [1] fromHilbert
spaces to Banach spaces.

Proposition 9. Let𝑋 be a reflexive smooth Banach space. If𝐶
is a closed convex set and for all 𝑥 ∈ 𝐶 the function 𝐹(𝑥, ⋅) is
convex Lipschitz with ratio 𝑀 > 0 over an open set containing
𝐶, then (𝐺𝑆𝑃1) is equivalent to the following subproblem:

Select 𝑥
𝑘+1

∈ 𝐶 such that

𝐹 (𝑥
𝑘+1

, 𝑥) + 𝜆
−1

𝑘
⟨𝐽 (𝑥
𝑘+1

) − 𝐽 (𝑥
𝑘
) , 𝑥 − 𝑥

𝑘+1
⟩ ≥ 0 ∀𝑥 ∈ 𝐶.

(𝑆𝑃1)

Proof. Let {𝑥
𝑘
}
𝑘
∈ 𝐶 be generated by (𝐺𝑆𝑃1), that is,

𝑥
∗

𝑘+1
∈ 𝜕
𝜋

𝐹 (𝑥
𝑘+1

, ⋅) (𝑥
𝑘+1

) + 𝑁
𝜋

(𝐶; 𝑥
𝑘+1

) , (20)

with 𝑥
∗

𝑘+1
:= 𝜆
−1

𝑘
[𝐽(𝑥
𝑘
) − 𝐽(𝑥

𝑘+1
)]. Then there exists 𝑦

∗

𝑘+1
∈

𝑁
𝜋

(𝐶; 𝑥
𝑘+1

) such that

𝑥
∗

𝑘+1
− 𝑦
∗

𝑘+1
∈ 𝜕
𝜋

𝐹 (𝑥
𝑘+1

, ⋅) (𝑥
𝑘+1

) . (21)

By the convexity of 𝐹(𝑥
𝑘+1

, ⋅) and Part 1 in Proposition 2 we
have 𝜕

𝜋

𝐹(𝑥
𝑘+1

, ⋅)(𝑥
𝑘+1

) = 𝜕𝐹(𝑥
𝑘+1

, ⋅)(𝑥
𝑘+1

) and so by the
definition of the subdifferential for convex functions we have

⟨𝑥
∗

𝑘+1
− 𝑦
∗

𝑘+1
, 𝑥 − 𝑥

𝑘+1
⟩

≤ 𝐹 (𝑥
𝑘+1

, 𝑥) − 𝐹 (𝑥
𝑘+1

, 𝑥
𝑘+1

) ∀𝑥 ∈ 𝐶.

(22)

Since 𝐹(𝑥
𝑘+1

, 𝑥
𝑘+1

) = 0, we obtain

⟨𝑥
∗

𝑘+1
, 𝑥 − 𝑥

𝑘+1
⟩ ≤ 𝐹 (𝑥

𝑘+1
, 𝑥) + ⟨𝑦

∗

𝑘+1
, 𝑥 − 𝑥

𝑘+1
⟩ ∀𝑥 ∈ 𝐶.

(23)

On the other hand, by the convexity of 𝐶 and Part 2 in
Proposition 2 we have 𝑁

𝜋

(𝐶; 𝑥
𝑘+1

) = 𝑁(𝐶; 𝑥
𝑘+1

) which
yields by the definition of convex normal cones the following
inequality:

⟨𝑦
∗

𝑘+1
, 𝑥 − 𝑥

𝑘+1
⟩ ≤ 0 ∀𝑥 ∈ 𝐶. (24)

Combining this inequality with (23) we obtain

𝐹 (𝑥
𝑘+1

, 𝑥) + 𝜆
−1

𝑘
⟨𝐽 (𝑥
𝑘+1

) − 𝐽 (𝑥
𝑘
) , 𝑥 − 𝑥

𝑘+1
⟩ ≥ 0 ∀𝑥 ∈ 𝐶.

(25)

Conversely, assume that {𝑥
𝑘
}
𝑘
is generated by (𝑆𝑃1), that is,

𝐹 (𝑥
𝑘+1

, 𝑥) + 𝜆
−1

𝑘
⟨𝐽 (𝑥
𝑘+1

) − 𝐽 (𝑥
𝑘
) , 𝑥 − 𝑥

𝑘+1
⟩ ≥ 0 ∀𝑥 ∈ 𝐶.

(26)

Let 𝑥∗
𝑘+1

:= 𝜆
−1

𝑘
[𝐽(𝑥
𝑘
) − 𝐽(𝑥

𝑘+1
)] and ℎ(𝑥) := 𝐹(𝑥

𝑘+1
, 𝑥) +

⟨𝑥
∗

𝑘+1
, 𝑥
𝑘+1

− 𝑥⟩. Then the last inequality yields

ℎ (𝑥) ≥ ℎ (𝑥
𝑘+1

) ∀𝑥 ∈ 𝐶. (27)
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This means that 𝑥
𝑘+1

is a minimum of ℎ over 𝐶. Thus, by
Part 3 in Proposition 2, we have 0 ∈ 𝜕

𝜋

(ℎ + 𝜓
𝐶
)(𝑥
𝑘+1

) and
consequently by the convexity of the set 𝐶 and the convexity
of the function 𝐹(𝑥

𝑘+1
, ⋅) we can write

0 ∈ 𝜕
𝜋

(ℎ + 𝜓
𝐶
) (𝑥
𝑘+1

)

= 𝜕
Conv.

(ℎ + 𝜓
𝐶
) (𝑥
𝑘+1

)

= 𝜕
Conv.

ℎ (𝑥
𝑘+1

) + 𝑁
Conv.

(𝐶; 𝑥
𝑘+1

)

= 𝜕
Conv.

𝐹 (𝑥
𝑘+1

, ⋅) (𝑥
𝑘+1

) − 𝑥
∗

𝑘+1
+ 𝑁

Conv.
(𝐶; 𝑥
𝑘+1

) ,

(28)

and so

𝑥
∗

𝑘+1
∈ 𝜕

Conv.
𝐹 (𝑥
𝑘+1

, ⋅) (𝑥
𝑘+1

) + 𝑁
Conv.

(𝐶; 𝑥
𝑘+1

) . (29)
On the other hand, since 𝐹(𝑥

𝑘+1
, ⋅) is Lipschitz continuous

with ratio 𝑀 over an open set containing 𝐶 we have for all
𝑥, 𝑦 ∈ 𝐶 + 𝜖B for 𝜖 > 0 small enough

󵄨󵄨󵄨󵄨𝐹 (𝑥
𝑘+1

, 𝑥) − 𝐹 (𝑥
𝑘+1

, 𝑦)
󵄨󵄨󵄨󵄨 ≤ 𝑀

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 . (30)

Let 𝑏 ∈ 𝐵. Then, taking 𝑦 = 𝑥
𝑘+1

and 𝑥 := 𝑥
𝑘+1

+𝜖𝑏 in the last
inequality yields

󵄨󵄨󵄨󵄨𝐹 (𝑥
𝑘+1

, 𝑥)
󵄨󵄨󵄨󵄨 ≤ 𝑀

󵄩󵄩󵄩󵄩𝑥 − 𝑥
𝑘+1

󵄩󵄩󵄩󵄩 = 𝑀𝜖 ‖𝑏‖ ≤ 𝑀𝜖, (31)
and so by (𝑆𝑃1) we have

⟨𝑥
∗

𝑘+1
, 𝜖𝑏⟩ = ⟨𝑥

∗

𝑘+1
, 𝑥 − 𝑥

𝑘+1
⟩ ≤ 𝐹 (𝑥

𝑘+1
, 𝑥) ≤ 𝑀𝜖, (32)

and hence ⟨𝑥
∗

𝑘+1
, 𝑏⟩ ≤ 𝑀, for all 𝑏 ∈ B, which ensures that

‖𝑥
∗

𝑘+1
‖ ≤ 𝑀, that is, 𝐽(𝑥

𝑘+1
) ∈ 𝐽(𝑥

𝑘
)+𝜆
𝑘
𝑀B.Therefore, {𝑥

𝑘
}
𝑘

is generated by (𝐺𝑆𝑃1) and the proof is complete.

The following proposition establishes an analogue result
for (𝐺𝑆𝑃2) and its proof follows the same lines of the previous
proposition. So, its proof is omitted.

Proposition 10. Let 𝑋 be a reflexive smooth Banach space. If
𝐶 is a closed convex set and for all 𝑥 ∈ 𝐶 the function 𝐹(𝑥, ⋅) is
convex Lipschitz with ratio 𝑀 > 0 over an open set containing
𝐶, then (𝐺𝑆𝑃2) is equivalent to the following subproblem:
Select 𝑥

𝑘+1
∈ 𝐶 such that

𝐹 (𝑥
𝑘
, 𝑥) + 𝜆

−1

𝑘
⟨𝐽 (𝑥
𝑘
) − 𝐽 (𝑥

𝑘+1
) , 𝑥 − 𝑥

𝑘
⟩ ≥ 0 ∀𝑥 ∈ 𝐶.

(𝑆𝑃2)

The following proposition established a key tool of the
proof of our main convergence result of the generalized
equilibrium problem (𝐺𝐸𝑃1(𝐶, 𝜌, 𝐹)) in the prox-regular
setting.

Proposition 11. Let𝑋 be a reflexive smooth Banach space and
let 𝑟, 𝑟

󸀠

∈ (0, +∞]. If 𝐶 is 𝑉-uniformly 𝑟-prox-regular and
𝐹(𝑥
𝑘+1

, ⋅) is 𝛾-Lipschitz and 𝑉-uniformly prox-regular over 𝐶
with ratio 𝑟

󸀠, then the sequence {𝑥
𝑘
}
𝑘
generated by (𝐺𝑆𝑃1)

satisfies the following inequality:

𝜆
−1

𝑘
⟨𝐽 (𝑥
𝑘
) − 𝐽 (𝑥

𝑘+1
) , 𝑥 − 𝑥

𝑘+1
⟩

≤ 𝐹 (𝑥
𝑘+1

, 𝑥) + (
𝛾 + 𝑀 + 1

2𝑟
)𝑉 (𝐽 (𝑥

𝑘+1
) , 𝑥) , ∀𝑥 ∈ 𝐶,

(33)

where 𝑟 = min{𝑟, 𝑟󸀠}.

Proof. Let {𝑥
𝑘
}
𝑘
⊂ 𝐶 be generated by (𝐺𝑆𝑃1), that is,

𝑥
∗

𝑘+1
∈ 𝜕
𝜋

𝐹 (𝑥
𝑘+1

, ⋅) (𝑥
𝑘+1

) + 𝑁
𝜋

(𝐶; 𝑥
𝑘+1

) ,
󵄩󵄩󵄩󵄩𝑥
∗

𝑘+1

󵄩󵄩󵄩󵄩 ≤ 𝑀,

(34)

with 𝑥
∗

𝑘+1
:= (𝐽(𝑥

𝑘
) − 𝐽(𝑥

𝑘+1
))/𝜆
𝑘
. Then there exists 𝑦

∗

𝑘+1
∈

𝜕
𝜋

𝐹(𝑥
𝑘+1

, ⋅)(𝑥
𝑘+1

) such that

𝑥
∗

𝑘+1
− 𝑦
∗

𝑘+1
∈ 𝑁
𝜋

(𝐶; 𝑥
𝑘+1

) . (35)

Since 𝐹(𝑥
𝑘+1

, ⋅) is 𝛾-Lipschitz, then by Part 5 in Proposition 2
we have ‖𝑦

∗

𝑘+1
‖ ≤ 𝛾 and hence ‖𝑥

∗

𝑘+1
− 𝑦
∗

𝑘+1
‖ ≤ 𝑀 + 𝛾. By

definition of 𝑉-uniform prox-regularity of 𝐶 we have

⟨𝑥
∗

𝑘+1
− 𝑦
∗

𝑘+1
, 𝑥 − 𝑥

𝑘+1
⟩ ≤

󵄩󵄩󵄩󵄩𝑥
∗

𝑘+1
− 𝑦
∗

𝑘+1

󵄩󵄩󵄩󵄩

2𝑟
𝑉 (𝐽 (𝑥

𝑘+1
) , 𝑥) ,

∀𝑥 ∈ 𝐶,

(36)

and hence

⟨𝑥
∗

𝑘+1
− 𝑦
∗

𝑘+1
, 𝑥 − 𝑥

𝑘+1
⟩ ≤

𝛾 + 𝑀

2𝑟
𝑉 (𝐽 (𝑥

𝑘+1
) , 𝑥) , ∀𝑥 ∈ 𝐶.

(37)

On the other hand, by the fact that 𝑦∗
𝑘+1

∈ 𝜕
𝜋

𝐹(𝑥
𝑘+1

, ⋅)(𝑥
𝑘+1

)

and 𝐹(𝑥
𝑘+1

, ⋅) is 𝑉-uniformly prox-regular over 𝐶 with ratio
𝑟
󸀠 we have

⟨𝑦
∗

𝑘+1
, 𝑥 − 𝑥

𝑘+1
⟩

≤
1

2𝑟󸀠
𝑉 (𝐽 (𝑥

𝑘+1
) , 𝑥) + 𝐹 (𝑥

𝑘+1
, 𝑥)

− 𝐹 (𝑥
𝑘+1

, 𝑥
𝑘+1

) ∀𝑥 ∈ 𝐶.

(38)

Combining (37) and the last inequality we obtain

⟨𝑥
∗

𝑘+1
, 𝑥 − 𝑥

𝑘+1
⟩

≤ 𝐹 (𝑥
𝑘+1

, 𝑥) + (
𝛾 + 𝑀

2𝑟
+

1

2𝑟󸀠
)𝑉 (𝐽 (𝑥

𝑘+1
) , 𝑥) ∀𝑥 ∈ 𝐶,

(39)

which ensures that

⟨𝑥
∗

𝑘+1
, 𝑥 − 𝑥

𝑘+1
⟩

≤ 𝐹 (𝑥
𝑘+1

, 𝑥) + (
𝛾 + 𝑀 + 1

2𝑟
)𝑉 (𝐽 (𝑥

𝑘+1
) , 𝑥) ∀𝑥 ∈ 𝐶.

(40)

This completes the proof of the proposition.

Now, we are ready to state and prove our first main
theorem of this paper.

Theorem 12. Let 𝑞 > 1 and 𝑋 be a 𝑞-uniformly smooth
Banach space. Let 𝐶 be a closed nonempty subset of 𝑋 and let
𝐹 : 𝐶 × 𝐶 → R be a bifunction. Let {𝑥

𝑘
}
𝑘
be a sequence

generated by (𝐺𝑆𝑃1). Assume that

(1) 𝐶 is 𝑉-uniformly prox-regular with some ratio 𝑟 ∈

(0,∞];
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(2) 𝐶 is ball compact; that is, 𝐶 ∩ 𝑀𝐵 is compact for any
𝑀 > 0;

(3) the solution set of (𝐺𝐸𝑃1(𝐶, 𝜌, 𝐹)) is nonempty;
(4) 𝐹 is𝑊-strongly monotone over 𝐶, that is,

𝐹 (𝑥, 𝑦) + 𝐹 (𝑦, 𝑥) ≤ −𝜎𝑊(𝑥, 𝑦) , ∀𝑥, 𝑦 ∈ 𝐶, (41)

for some 𝜎 ≥ 0;
(5) 𝐹 is upper semicontinuous with respect to the first

variable over 𝐶, that is,

lim sup
𝑥
󸀠
→𝑥

𝐹 (𝑥
󸀠

, 𝑦) ≤ 𝐹 (𝑥, 𝑦) ∀𝑥, 𝑦 ∈ 𝐶; (42)

(6) 𝐹(𝑥
𝑘+1

, ⋅) is𝑉-uniformly prox-regular over𝐶with ratio
𝑟
󸀠

∈ (0, +∞];
(7) there exists 𝜆 > 0 such that 𝜆

𝑘
≥ 𝜆 for all 𝑘;

(8) the positive number 𝜌 ≥ 0 satisfies (𝛾 + 𝑀 +

1)/2min{𝑟, 𝑟󸀠} ≤ 𝜌 ≤ 𝜎/3.

Then, there exists subsequence of {𝑥
𝑘
} that converges to 𝑥 ∈ 𝐶

which solves (𝐺𝐸𝑃1(𝐶, 𝜌, 𝐹)).

Proof. Let 𝑥 ∈ 𝐶 be a solution of (𝐺𝐸𝑃1(𝐶, 𝜌, 𝐹)). Then

𝐹 (𝑥, 𝑥) ≥ −𝜌𝑉 (𝐽 (𝑥) , 𝑥) , ∀𝑥 ∈ 𝐶. (43)

By the𝑊-strong monotonicity of 𝐹 over 𝐶 we have

𝐹 (𝑥, 𝑥) + 𝐹 (𝑥, 𝑥) ≤ −𝜎𝑊 (𝑥, 𝑥) , ∀𝑥 ∈ 𝐶. (44)

By setting 𝑥 = 𝑥
𝑘+1

in these two inequalities we get

𝐹 (𝑥
𝑘+1

, 𝑥) + 𝐹 (𝑥, 𝑥
𝑘+1

) ≤ −𝜎𝑊(𝑥
𝑘+1

, 𝑥) ,

−𝐹 (𝑥, 𝑥
𝑘+1

) ≤ 𝜌𝑉 (𝐽 (𝑥) , 𝑥
𝑘+1

) .

(45)

Combining these two inequalities we obtain

𝐹 (𝑥
𝑘+1

, 𝑥) ≤ 𝜌𝑉 (𝐽 (𝑥) , 𝑥
𝑘+1

) − 𝜎𝑊(𝑥
𝑘+1

, 𝑥)

≤ (2𝜌 − 𝜎)𝑊 (𝑥
𝑘+1

, 𝑥) .

(46)

Using the 8th assumption of the theoremwe have 2𝜌−𝜎 ≤ −𝜌

and hence

𝐹 (𝑥
𝑘+1

, 𝑥) ≤ −𝜌𝑊(𝑥
𝑘+1

, 𝑥) . (47)

This combined with Proposition 11 gives

⟨𝑥
∗

𝑘+1
, 𝑥 − 𝑥

𝑘+1
⟩

≤ (
𝛾 + 𝑀 + 1

2𝑟
)𝑉 (𝐽 (𝑥) , 𝑥

𝑘+1
) − 𝜌𝑊(𝑥

𝑘+1
, 𝑥)

≤ (
𝛾 + 𝑀 + 1

𝑟
− 𝜌)𝑊(𝑥

𝑘+1
, 𝑥) ,

(48)

with 𝑟 := min{𝑟, 𝑟󸀠} and 𝑥
∗

𝑘+1
:= 𝜆
−1

𝑘
[𝐽(𝑥
𝑘
) − 𝐽(𝑥

𝑘+1
)].

Therefore,

⟨𝐽 (𝑥
𝑘
) − 𝐽 (𝑥

𝑘+1
) , 𝑥 − 𝑥

𝑘+1
⟩

≤ 𝜆
𝑘
(
𝛾 + 𝑀 + 1

𝑟
− 𝜌)𝑊(𝑥

𝑘+1
, 𝑥) .

(49)

Define now the auxiliary real sequence𝜙
𝑘
= (1/2)𝑉(𝐽(𝑥

𝑘
), 𝑥).

It is direct to check that

2 [𝜙
𝑘+1

− 𝜙
𝑘
] + 𝑉 (𝐽 (𝑥

𝑘
) , 𝑥
𝑘+1

)

= 2 ⟨𝐽 (𝑥
𝑘
) − 𝐽 (𝑥

𝑘+1
) , 𝑥 − 𝑥

𝑘+1
⟩ .

(50)

Indeed,

2 [𝜙
𝑘+1

− 𝜙
𝑘
]

= 𝑉 (𝐽 (𝑥
𝑘+1

) , 𝑥) − 𝑉 (𝐽 (𝑥
𝑘
) , 𝑥)

= [
󵄩󵄩󵄩󵄩𝐽 (𝑥𝑘+1)

󵄩󵄩󵄩󵄩

2

− 2 ⟨𝐽 (𝑥
𝑘+1

) , 𝑥⟩ + ‖𝑥‖
2

]

− [
󵄩󵄩󵄩󵄩𝐽 (𝑥𝑘)

󵄩󵄩󵄩󵄩

2

− 2 ⟨𝐽 (𝑥
𝑘
) , 𝑥⟩ + ‖𝑥‖

2

]

=
󵄩󵄩󵄩󵄩𝐽 (𝑥𝑘+1)

󵄩󵄩󵄩󵄩

2

+ 2 ⟨𝐽 (𝑥
𝑘
) − 𝐽 (𝑥

𝑘+1
) , 𝑥⟩ −

󵄩󵄩󵄩󵄩𝐽 (𝑥𝑘)
󵄩󵄩󵄩󵄩

2

= 2 ⟨𝐽 (𝑥
𝑘
) − 𝐽 (𝑥

𝑘+1
) , 𝑥⟩ −

󵄩󵄩󵄩󵄩𝐽 (𝑥𝑘+1)
󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝐽 (𝑥𝑘)

󵄩󵄩󵄩󵄩

2

+ 2 ⟨𝐽 (𝑥
𝑘+1

) , 𝑥
𝑘+1

⟩

= 2 ⟨𝐽 (𝑥
𝑘
) − 𝐽 (𝑥

𝑘+1
) , 𝑥⟩ − 𝑉 (𝐽 (𝑥

𝑘
) , 𝑥
𝑘+1

)

− 2 ⟨𝐽 (𝑥
𝑘
) , 𝑥
𝑘+1

⟩ + 2 ⟨𝐽 (𝑥
𝑘+1

) , 𝑥
𝑘+1

⟩

= 2 ⟨𝐽 (𝑥
𝑘
) − 𝐽 (𝑥

𝑘+1
) , 𝑥⟩ − 𝑉 (𝐽 (𝑥

𝑘
) , 𝑥
𝑘+1

)

− 2 ⟨𝐽 (𝑥
𝑘
) − 𝐽 (𝑥

𝑘+1
) , 𝑥
𝑘+1

⟩

= 2 ⟨𝐽 (𝑥
𝑘
) − 𝐽 (𝑥

𝑘+1
) , 𝑥 − 𝑥

𝑘+1
⟩ − 𝑉 (𝐽 (𝑥

𝑘
) , 𝑥
𝑘+1

) .

(51)

It follows that

𝜙
𝑘+1

− 𝜙
𝑘
≤ ⟨𝐽 (𝑥

𝑘
) − 𝐽 (𝑥

𝑘+1
) , 𝑥 − 𝑥

𝑘+1
⟩ , (52)

which ensures with (49) that

𝜙
𝑘+1

− 𝜙
𝑘
≤ 𝜆
𝑘
(
𝛾 + 𝑀 + 1

𝑟
− 𝜌)𝑊(𝑥

𝑘+1
, 𝑥) . (53)

Using the assumption 𝜌 ≥ (𝛾 + 𝑀 + 1)/𝑟 yields

𝜙
𝑘+1

≤ 𝜙
𝑘
. (54)

Therefore, the sequence {𝜙
𝑘
} is a nonincreasing nonnegative

sequence and so it is convergent to some limit and so it is
bounded by some positive number 𝛼 > 0. Thus, by the
property (ii) of 𝑉 recalled in Section 1 we obtain

(‖𝑥‖ −
󵄩󵄩󵄩󵄩𝑥𝑘

󵄩󵄩󵄩󵄩)
2

≤ 𝑉 (𝐽 (𝑥
𝑘
) , 𝑥) = 2𝜙

𝑘
≤ 2𝛼, (55)

and so
󵄩󵄩󵄩󵄩𝑥𝑘

󵄩󵄩󵄩󵄩 ≤ ‖𝑥‖ + √2𝛼, (56)

that is, {𝑥
𝑘
} is bounded and so by the 𝑞󸀠-uniform convexity of

𝑋
∗ we have

󵄩󵄩󵄩󵄩𝐽(𝑥𝑘+1) − 𝐽(𝑥
𝑘
)
󵄩󵄩󵄩󵄩

𝑞
󸀠

≤ 𝜂𝑉 (𝐽 (𝑥
𝑘
) , 𝑥
𝑘+1

) , (57)
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for some 𝜂 > 0 depending on 𝛼 and on the space 𝑋
∗. Here

𝑞
󸀠

= 𝑞/(𝑞 − 1), where 𝑞 is the modulus of smoothness of 𝑋.
Using now (49) and (50) and the assumption 𝜌 ≥ (𝛾+𝑀+1)/𝑟

we obtain
1

2
𝑉 (𝐽 (𝑥

𝑘
) , 𝑥
𝑘+1

) ≤ 𝜙
𝑘
− 𝜙
𝑘+1

. (58)

Therefore, it follows from the 7th assumption of the theorem
that

󵄩󵄩󵄩󵄩𝑥
∗

𝑘+1

󵄩󵄩󵄩󵄩

𝑞
󸀠

= 𝜆
−𝑞
󸀠

𝑘

󵄩󵄩󵄩󵄩𝐽 (𝑥𝑘+1) − 𝐽 (𝑥
𝑘
)
󵄩󵄩󵄩󵄩

𝑞
󸀠

≤ 𝜆
−𝑞
󸀠 󵄩󵄩󵄩󵄩𝐽 (𝑥𝑘+1) − 𝐽 (𝑥

𝑘
)
󵄩󵄩󵄩󵄩

𝑞
󸀠

≤ 𝜆
−𝑞
󸀠

𝜂𝑉 (𝐽 (𝑥
𝑘
) , 𝑥
𝑘+1

)

≤
2𝜂

𝜆𝑞
󸀠
[𝜙
𝑘
− 𝜙
𝑘+1

] 󳨀→ 0 as 𝑘 󳨀→ ∞,

(59)

which ensures that lim
𝑘→∞

𝑥
∗

𝑘+1
= 0. On the other hand,

since {𝑥
𝑘
} is bounded in 𝐶 and 𝐶 is ball compact then there

exists a subsequence {𝑥
𝑘𝑛
} which converges to some limit

𝑥 ∈ 𝐶. Note that by Proposition 11 this subsequence satisfies

⟨𝑥
∗

𝑘𝑛+1
, 𝑥 − 𝑥

𝑘𝑛+1
⟩

≤ 𝐹 (𝑥
𝑘𝑛+1

, 𝑥)

+ (
𝛾 + 𝑀 + 1

2𝑟
)𝑉 (𝐽 (𝑥

𝑘𝑛+1
) , 𝑥) , ∀𝑛, ∀𝑥 ∈ 𝐶.

(60)

Thus, by letting 𝑛 → ∞ in inequality (60) and by taking into
account the upper semicontinuity of 𝐹 and the continuity of
𝑉 and 𝐽, we obtain

0 ≤ 𝐹 (𝑥, 𝑥) + (
𝛾 + 𝑀 + 1

2𝑟
)𝑉 (𝐽 (𝑥) , 𝑥) , ∀𝑥 ∈ 𝐶. (61)

Therefore, the assumption 𝜌 ≥ (𝛾 + 𝑀 + 1)/2𝑟 concludes

𝐹 (𝑥, 𝑥) + 𝜌𝑉 (𝐽 (𝑥) , 𝑥) ≥ 0 ∀𝑥 ∈ 𝐶, (62)

which ensures that the limit𝑥 is a solution of (𝐺𝐸𝑃1(𝐶, 𝜌, 𝐹)).

As a direct consequence of the previous theorem we have
the following convex version which is new according to our
modest knowledge.

Theorem 13. Let 𝑞 > 1 and 𝑋 be a 𝑞-uniformly smooth
Banach space. Let 𝐶 be a closed convex nonempty subset of 𝑋
and let 𝐹 : 𝐶 × 𝐶 → R be a convex bifunction. Let {𝑥

𝑘
}
𝑘
be a

sequence generated by (𝑆𝑃1). Assume that

(1) 𝐶 is ball compact; that is, 𝐶 ∩ 𝑀𝐵 is compact for any
𝑀 > 0;

(2) the solution set of (𝐸𝑃(𝐶, 𝐹)) is nonempty;
(3) 𝐹 is monotone over 𝐶; that is,

𝐹 (𝑥, 𝑦) + 𝐹 (𝑦, 𝑥) ≤ 0, ∀𝑥, 𝑦 ∈ 𝐶; (63)

(4) 𝐹 is upper semicontinuous with respect to the first
variable over 𝐶;

(5) there exists 𝜆 > 0 such that 𝜆
𝑘
≥ 𝜆 for all 𝑘.

Then, there exists subsequence of {𝑥
𝑘
} that converges to 𝑥 ∈ 𝐶

which solves (𝐸𝑃(𝐶, 𝐹)).

Proof. It follows directly from the previous theorem with the
constants 𝜌 = 𝜎 = 0 and 𝑟 = 𝑟

󸀠

= ∞.

Now, we are going to prove a similar result for the
second generalized equilibrium problem (𝐺𝐸𝑃2(𝐶, 𝜌, 𝐹)). To
do that we need a different and more restrictive concept of
monotonicity that we define as follows: a bifunction 𝐹 is said
to be 𝑊-relaxed strongly monotone with respect to (𝜎

1
, 𝜎
2
)

for some 𝜎
1
≥ 0 and 𝜎

2
≥ 0 provided that

𝐹 (𝑥, 𝑦) + 𝐹 (𝑦, 𝑧) ≤ −𝜎
1
𝑊(𝑥, 𝑦) − 𝜎

2
𝑊(𝑦, 𝑧) ,

∀𝑥, 𝑦, 𝑧 ∈ 𝐶.

(64)

Observe that any 𝑊-relaxed strong monotone with respect
to (𝜎
1
, 𝜎
2
) is 𝑊-strongly monotone with respect to 𝜎 = 𝜎

1
+

𝜎
2
. As a simple example of 𝑊-relaxed strongly monotone

bifunction we can take 𝐹 : 𝑋 × 𝑋 → R defined by 𝐹(𝑥, 𝑦) =

𝑊(𝑥, 𝑦)/(‖𝑥‖
2

+ 3) − 𝑊(𝑥, 𝑦). This bifunction is 𝑊-relaxed
stronglymonotonewith respect to (2/3, 2/3).The proof of the
following proposition follows the same lines of the proof of
Proposition 11. So its proof is omitted. It is needed in the proof
of Theorem 15.

Proposition 14. Let 𝑋 be a reflexive smooth Banach space
and let 𝑟, 𝑟

󸀠

∈ (0, +∞] and 𝑟 := min{𝑟, 𝑟󸀠}. If 𝐶 is 𝑉-
uniformly prox-regular with ratio 𝑟 ∈ (0,∞] and 𝐹(𝑥

𝑘
, ⋅) is

𝛾-Lipschitz and 𝑉-uniformly prox-regular over 𝐶 with ratio
𝑟
󸀠, then the sequence {𝑥

𝑘
}
𝑘
generated by (𝐺𝑆𝑃2) satisfies the

following inequality:

𝜆
−1

𝑘
⟨𝐽 (𝑥
𝑘+1

) − 𝐽 (𝑥
𝑘
) , 𝑥 − 𝑥

𝑘
⟩

≤ 𝐹 (𝑥
𝑘
, 𝑥) + (

𝛾 + 𝑀 + 1

2𝑟
)𝑉 (𝐽 (𝑥

𝑘
) , 𝑥) , ∀𝑥 ∈ 𝐶.

(65)

Now, we prove our next main theorem concerning
(𝐺𝐸𝑃2(𝐶, 𝜌, 𝐹)).

Theorem 15. Let 𝑞 > 1 and 𝑋 be a 𝑞-uniformly smooth
Banach space. Assume that Assumptions 1, 2, 3, 5, and 6
of Theorem 12 are satisfied and assume that 𝐹 is 𝑊-relaxed
stronglymonotonewith respect to some (𝜎

1
, 𝜎
2
). If the constants

𝜎
1
, 𝜎
2
, 𝛾, 𝑟, 𝜌, and 𝜆 satisfy the inequalities

𝜎
2
> 2𝜌 +

1

𝜆
, 𝜌 ≥

𝛾 + 𝑀 + 1

2𝑟
,

𝜎
1
+ 𝜎
2
≥

𝛾 + 𝑀 + 1

𝑟
+ 𝜌,

(66)

then there exists a subsequence of the sequence {𝑥
𝑘
} gen-

erated by (𝐺𝑆𝑃2) which converges to some solution of
(𝐺𝐸𝑃2(𝐶, 𝜌, 𝐹)).
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Proof. Let 𝑥 ∈ 𝐶 be a solution of (𝐺𝐸𝑃2(𝐶, 𝜌, 𝐹)). By setting
𝑥 = 𝑥

𝑘+1
in (𝐺𝐸𝑃2(𝐶, 𝜌, 𝐹)) we get

−𝐹 (𝑥, 𝑥
𝑘+1

) ≤ 𝜌𝑉 (𝐽 (𝑥
𝑘+1

) , 𝑥) (67)

and by taking 𝑥 = 𝑥 in the conclusion of Proposition 14 we
obtain

−𝐹 (𝑥
𝑘
, 𝑥) ≤ 𝜆

−1

𝑘
⟨𝐽 (𝑥
𝑘
) − 𝐽 (𝑥

𝑘+1
) , 𝑥 − 𝑥

𝑘
⟩

+ 𝛼𝑉 (𝐽 (𝑥
𝑘
) , 𝑥) ,

(68)

with 𝛼 := (𝛾 + 𝑀 + 1)/2𝑟. The last two inequalities yield

− [𝐹 (𝑥
𝑘
, 𝑥) + 𝐹 (𝑥, 𝑥

𝑘+1
)]

≤ 𝜆
−1

𝑘
⟨𝐽 (𝑥
𝑘
) − 𝐽 (𝑥

𝑘+1
) , 𝑥 − 𝑥

𝑘
⟩

+ 𝜌𝑉 (𝐽 (𝑥
𝑘+1

) , 𝑥) + 𝛼𝑉 (𝐽 (𝑥
𝑘
) , 𝑥) .

(69)

Using the𝑊-relaxed strong monotonicity of 𝐹 we write

− [𝐹 (𝑥
𝑘
, 𝑥) + 𝐹 (𝑥, 𝑥

𝑘+1
)]

≥ 𝜎
1
𝑊(𝑥
𝑘
, 𝑥) + 𝜎

2
𝑊(𝑥, 𝑥

𝑘+1
)

≥
𝜎
1

2
𝑉 (𝐽 (𝑥

𝑘
) , 𝑥) +

𝜎
2

2
𝑉 (𝐽 (𝑥

𝑘+1
) , 𝑥) .

(70)

Therefore, the two previous inequalities yield

(
𝜎
2

2
− 𝜌)𝑉 (𝐽 (𝑥

𝑘+1
) , 𝑥)

≤ 𝜆
−1

𝑘
⟨𝐽 (𝑥
𝑘
) − 𝐽 (𝑥

𝑘+1
) , 𝑥 − 𝑥

𝑘
⟩

+ (
𝛾 + 𝑀 + 1

2𝑟
−

𝜎
1

2
)𝑉 (𝐽 (𝑥

𝑘
) , 𝑥) .

(71)

Observe that

⟨𝐽 (𝑥
𝑘
) − 𝐽 (𝑥

𝑘+1
) , 𝑥 − 𝑥

𝑘
⟩

=
1

2
[𝑉 (𝐽 (𝑥

𝑘+1
) , 𝑥) − 𝑉 (𝐽 (𝑥

𝑘+1
) , 𝑥
𝑘
) − 𝑉 (𝐽 (𝑥

𝑘
) , 𝑥)] .

(72)

Hence,

(
𝜎
2

2
− 𝜌 −

1

2𝜆
𝑘

)𝑉 (𝐽 (𝑥
𝑘+1

) , 𝑥)

≤ (
𝛾 + 𝑀 + 1

2𝑟
−

𝜎
1

2
−

1

2𝜆
𝑘

)𝑉 (𝐽 (𝑥
𝑘
) , 𝑥) .

(73)

We distinguish two cases.

Case 1. ((𝛾 +𝑀 + 1)/2𝑟 − 𝜎
1
/2 − 1/2𝜆

𝑘
) ≤ 0. In this case (73)

ensures that

(
𝜎
2

2
− 𝜌 −

1

2𝜆
𝑘

)𝑉 (𝐽 (𝑥
𝑘+1

) , 𝑥) ≤ 0 (74)

and since (𝜎
2
/2 − 𝜌 − 1/2𝜆

𝑘
) > 0 we obtain 𝑉(𝐽(𝑥

𝑘+1
), 𝑥) =

0, for all 𝑘, that is, 𝑥
𝑘+1

= 𝑥, for all 𝑘. This means that the
sequence {𝑥

𝑘
} is constant and equals𝑥 and hencewe are done.

Case 2. Consider ((𝛾 +𝑀+ 1)/2𝑟 − 𝜎
1
/2 − 1/2𝜆

𝑘
) > 0. In this

case we use our assumptions on the constants 𝜎
1
, 𝜎
2
, 𝑟, 𝑟󸀠, 𝛾,

𝜌, and 𝜆 to ensure that

𝜎
2

2
− 𝜌 −

1

2𝜆
𝑘

> 0,
(𝛾 + 𝑀 + 1) − 𝑟𝜎

1

𝑟𝜎
2
− 2𝑟𝜌

≤ 1. (75)

Thus, (73) can be rewritten as follows:

𝑉 (𝐽 (𝑥
𝑘+1

) , 𝑥)

≤
((𝛾 + 𝑀 + 1) /2𝑟 − 𝜎

1
/2 − 1/2𝜆

𝑘
)

(𝜎
2
/2 − 𝜌 − 1/2𝜆

𝑘
)

𝑉 (𝐽 (𝑥
𝑘
) , 𝑥)

≤ 𝜉𝑉 (𝐽 (𝑥
𝑘
) , 𝑥) ≤ 𝑉 (𝐽 (𝑥

𝑘
) , 𝑥) ,

(76)

with 𝜉 := ((𝛾 + 𝑀 + 1) − 𝑟𝜎
1
)/(𝑟𝜎
2
− 2𝑟𝜌) ≤ 1. The

conclusion of the theorem follows the same lines as in the
proof of Theorem 12.

Remark 16. An inspection of the proof of the previous
theorem shows that in the case when 𝜉 < 1 the ball
compactness of 𝐶 is not needed and that all the sequence
{𝑥
𝑘
} converges to the solution 𝑥, whenever the space 𝑋 is

assumed to satisfy the 𝑝-uniform convexity instead of the
𝑞-uniform smoothness. Indeed, with the assumption 𝜉 < 1

(73) ensures lim
𝑘→∞

𝑉(𝐽(𝑥
𝑘
), 𝑥) = 0. This limit with the 𝑝-

uniform convexity of the space 𝑋, and Lemma 1 ensure that
𝑥
𝑘

→ 𝑥 and hence the proof is complete.

Corollary 17. Let 𝑞 > 1, 𝑋 be a 𝑞-uniformly smooth Banach
space, 𝐶 be a closed convex nonempty subset of 𝑋, and let 𝐹 :

𝐶 × 𝐶 → R be a convex bifunction. Let {𝑥
𝑘
}
𝑘
be a sequence

generated by (𝑆𝑃2). Assume that

(1) 𝐶 is ball compact; that is, 𝐶 ∩ 𝑀𝐵 is compact for any
𝑀 > 0;

(2) the solution set of (𝐸𝑃(𝐶, 𝐹)) is nonempty;
(3) 𝐹 satisfies for some 𝜎

2
> 0

𝐹 (𝑥, 𝑦) + 𝐹 (𝑦, 𝑧) ≤ −𝜎
2
𝑊(𝑦, 𝑧) , ∀𝑥, 𝑦, 𝑧 ∈ 𝐶; (77)

(4) 𝐹 is upper semicontinuous with respect to the first
variable over 𝐶;

(5) there exists 𝜆 > 1/𝜎
2
such that 𝜆

𝑘
≥ 𝜆 for all 𝑘.

Then, there exists a subsequence of {𝑥
𝑘
} that converges to 𝑥 ∈ 𝐶

which solves (𝐸𝑃(𝐶, 𝐹)).

Proof. It follows directly from the previous theorem with the
constants 𝜌 = 𝜎

1
= 0 and 𝑟 = 𝑟

󸀠

= ∞.

It is a natural question to ask whether the additional
assumption of𝑊-relaxed strongmonotonicity inTheorem 15
can be replaced by the one used in Theorem 12. The answer
is given in the next theorem with a different generalized
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subproblem (𝐺𝑆𝑃3) given by the following: select 𝑥
𝑘+1

∈ 𝐶

such that

𝜆
𝑘
𝐹 (𝑥
𝑘
, 𝑥) + 𝜆

𝑘
𝛼𝑉 (𝐽 (𝑥

𝑘+1
) , 𝑥)

+ ⟨𝐽 (𝑥
𝑘+1

) − 𝐽 (𝑥
𝑘
) , 𝑥 − 𝑥

𝑘+1
⟩ ≥ 0, ∀𝑥 ∈ 𝐶.

(𝐺𝑆𝑃3)

Theorem 18. Let 𝑞 > 1 and 𝑋 be a 𝑞-uniformly smooth
Banach space. Assume that the assumptions 2–5 ofTheorem 12
are satisfied and assume that the constants 𝜎, 𝛼, 𝜌, and 𝜆

𝑘

satisfy the inequalities

𝜎

2
− 𝜌 ≤ 𝛼 ≤ 𝜌 <

𝜎

2
, 0 < 𝜆

𝑘
< 𝜆 :=

1

2𝛼
, ∀𝑘. (78)

Then there exists a subsequence of the sequence {𝑥
𝑘
} gen-

erated by (𝐺𝑆𝑃3) which converges to some solution of
(𝐺𝐸𝑃2(𝐶, 𝜌, 𝐹)).

Proof. Let 𝑥 ∈ 𝐶 be a solution of (𝐺𝐸𝑃2(𝐶, 𝜌, 𝐹)). By setting
𝑥 = 𝑥

𝑘
in (𝐺𝐸𝑃2(𝐶, 𝜌, 𝐹)) we get

−𝐹 (𝑥, 𝑥
𝑘
) ≤ 𝜌𝑉 (𝐽 (𝑥

𝑘
) , 𝑥) (79)

and by taking 𝑥 = 𝑥 in (𝐺𝑆𝑃3) we obtain

−𝐹 (𝑥
𝑘
, 𝑥) ≤ 𝜆

−1

𝑘
⟨𝐽 (𝑥
𝑘+1

) − 𝐽 (𝑥
𝑘
) , 𝑥 − 𝑥

𝑘+1
⟩

+ 𝛼𝑉 (𝐽 (𝑥
𝑘+1

) , 𝑥) .

(80)

The last two inequalities yield

− [𝐹 (𝑥
𝑘
, 𝑥) + 𝐹 (𝑥, 𝑥

𝑘
)]

≤ 𝜆
−1

𝑘
⟨𝐽 (𝑥
𝑘+1

) − 𝐽 (𝑥
𝑘
) , 𝑥 − 𝑥

𝑘+1
⟩

+ 𝜌𝑉 (𝐽 (𝑥
𝑘
) , 𝑥) + 𝛼𝑉 (𝐽 (𝑥

𝑘+1
) , 𝑥) .

(81)

Using the𝑊-strong monotonicity of 𝐹 we write

− [𝐹 (𝑥
𝑘
, 𝑥) + 𝐹 (𝑥, 𝑥

𝑘
)] ≥ 𝜎𝑊(𝑥

𝑘
, 𝑥) ≥

𝜎

2
𝑉 (𝐽 (𝑥

𝑘
) , 𝑥) .

(82)

Therefore, the two previous inequalities yield

𝜆
𝑘
(
𝜎

2
− 𝜌)𝑉 (𝐽 (𝑥

𝑘
) , 𝑥)

≤ ⟨𝐽 (𝑥
𝑘+1

) − 𝐽 (𝑥
𝑘
) , 𝑥 − 𝑥

𝑘+1
⟩ + 𝛼𝜆

𝑘
𝑉 (𝐽 (𝑥

𝑘+1
) , 𝑥) .

(83)

Observe that

⟨𝐽 (𝑥
𝑘+1

) − 𝐽 (𝑥
𝑘
) , 𝑥 − 𝑥

𝑘+1
⟩

=
1

2
[𝑉 (𝐽 (𝑥

𝑘
) , 𝑥) − 𝑉 (𝐽 (𝑥

𝑘
) , 𝑥
𝑘+1

) − 𝑉 (𝐽 (𝑥
𝑘+1

) , 𝑥)] .

(84)

Hence,

𝜆
𝑘
(𝜎 − 2𝜌)𝑉 (𝐽 (𝑥

𝑘
) , 𝑥)

≤ 𝑉 (𝐽 (𝑥
𝑘
) , 𝑥) − 𝑉 (𝐽 (𝑥

𝑘+1
) , 𝑥) + 2𝛼𝜆

𝑘
𝑉 (𝐽 (𝑥

𝑘+1
) , 𝑥) ,

(85)

and so
(1 − 2𝛼𝜆

𝑘
) 𝑉 (𝐽 (𝑥

𝑘+1
) , 𝑥)

≤ (1 − 𝜆
𝑘
(𝜎 − 2𝜌))𝑉 (𝐽 (𝑥

𝑘
) , 𝑥) .

(86)

Using our assumptions on the constants 𝜎, 𝛼, 𝜌, and 𝜆
𝑘
, we

have

(1 − 2𝛼𝜆
𝑘
) > 0, (1 − 𝜆

𝑘
(𝜎 − 2𝜌)) > 0 (87)

and hence we obtain

𝑉 (𝐽 (𝑥
𝑘+1

) , 𝑥) ≤
(1 − 𝜆

𝑘
(𝜎 − 2𝜌))

(1 − 2𝛼𝜆
𝑘
)

𝑉 (𝐽 (𝑥
𝑘
) , 𝑥) , ∀𝑘.

(88)

Since by our assumptions we have 2𝛼 ≥ 𝜎 − 2𝜌, then the
function 𝑡 󳨃→ (1 − 𝑡(𝜎 − 2𝜌))/(1 − 2𝛼𝑡) is nondecreasing and
hence

(1 − 𝜆
𝑘
(𝜎 − 2𝜌))

(1 − 2𝛼𝜆
𝑘
)

≤
(1 − 𝜆 (𝜎 − 2𝜌))

(1 − 2𝛼𝜆)
. (89)

Using the equality

2𝛼 ≥ 𝜎 − 2𝜌 (90)

once again yields 𝜉 := (1−𝜆(𝜎−2𝜌))/(1−2𝛼𝜆) < 1.Therefore,
(88) ensures

𝑉 (𝐽 (𝑥
𝑘+1

) , 𝑥) ≤ 𝜉𝑉 (𝐽 (𝑥
𝑘
) , 𝑥) ≤ 𝑉 (𝐽 (𝑥

𝑘
) , 𝑥) ∀𝑘. (91)

Finally, the conclusion of the theorem follows the same lines
as in the proof of Theorem 12.

Remark 19. The same observation in Remark 16 holds for the
previous theorem; that is, in the case when 𝜉 < 1 the ball
compactness of 𝐶 is not needed and that the whole sequence
{𝑥
𝑘
} converges to the solution 𝑥, whenever the space 𝑋 is

assumed to satisfy the 𝑝-uniform convexity instead of the 𝑞-
uniform smoothness.

Corollary 20. Let 𝑞 > 1, 𝑋 be a 𝑞-uniformly smooth Banach
space, let 𝐶 be a closed convex nonempty subset of 𝑋, and let
𝐹 : 𝐶×𝐶 → R be a convex bifunction. Let {𝑥

𝑘
}
𝑘
be a sequence

generated by (𝐺𝑆𝑃3). Assume that

(1) 𝐶 is ball compact; that is, 𝐶 ∩ 𝑀𝐵 is compact for any
𝑀 > 0;

(2) the solution set of (𝐸𝑃(𝐶, 𝐹)) is nonempty;
(3) 𝐹 is monotone over 𝐶, that is,

𝐹 (𝑥, 𝑦) + 𝐹 (𝑦, 𝑥) ≤ 0, ∀𝑥, 𝑦 ∈ 𝐶; (92)

(4) 𝐹 is upper semicontinuous with respect to the first
variable over 𝐶;

(5) there exists 𝜆 > 0 such that 𝜆
𝑘
≥ 𝜆 for all 𝑘.

Then, there exists subsequence of {𝑥
𝑘
} that converges to 𝑥 ∈ 𝐶

which solves (𝐸𝑃(𝐶, 𝐹)).

Proof. It follows directly from the previous theorem with the
constants 𝜌 = 𝜎 = 𝛼 = 0 and 𝜆 = ∞.
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