
San Jose State University San Jose State University 

SJSU ScholarWorks SJSU ScholarWorks 

Master's Projects Master's Theses and Graduate Research 

Fall 12-22-2020 

Multi-Agent Deep Reinforcement Learning for Walkers Multi-Agent Deep Reinforcement Learning for Walkers 

Inhee Park 
San Jose State University 

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects 

 Part of the Artificial Intelligence and Robotics Commons 

Recommended Citation Recommended Citation 
Park, Inhee, "Multi-Agent Deep Reinforcement Learning for Walkers" (2020). Master's Projects. 972. 
DOI: https://doi.org/10.31979/etd.tpey-94k6 
https://scholarworks.sjsu.edu/etd_projects/972 

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at 
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU 
ScholarWorks. For more information, please contact scholarworks@sjsu.edu. 

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F972&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F972&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/972?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F972&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu


Multi-Agent Deep Reinforcement Learning for Walkers

A Project

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Inhee Park

December 2020



© 2020

Inhee Park

ALL RIGHTS RESERVED



The Designated Project Committee Approves the Project Titled

Multi-Agent Deep Reinforcement Learning for Walkers

by

Inhee Park

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSÉ STATE UNIVERSITY

December 2020

Teng Moh, Ph.D. Department of Computer Science

Katerina Potika, Ph.D. Department of Computer Science

Mike Wu, Ph.D. Department of Computer Science



ABSTRACT

Multi-Agent Deep Reinforcement Learning for Walkers

by Inhee Park

This project was motivated by seeking an AI method towards Artificial General

Intelligence (AGI), that is, more similar to learning behavior of human-beings.

As of today, Deep Reinforcement Learning (DRL) is the most closer to the AGI

compared to other machine learning methods. To better understand the DRL,

we compares and contrasts to other related methods: Deep Learning, Dynamic

Programming and Game Theory.

We apply one of state-of-art DRL algorithms, called Proximal Policy Op-

timization (PPO) to the robot walkers locomotion, as a simple yet challenging

environment, inherently continuous and high-dimensional state/action space.

The end goal of this project is to train the agent by finding the optimal

sequential actions (policy/strategy) of multi-walkers leading them to move forward

as far as possible to maximize the accumulated reward (performance). This goal

can be accomplished by finding the tuned hyperparameters of the PPO algorithm

by monitoring the performances for the multi-agent DRL (MADRL) settings.

At the end, we can draw three conclusions from our findings based on the

various MADRL experiments: 1) Unlike DL with explicit target labels, DRL needs

larger minibatch size for better estimate of values from various gradients. There-

fore, a minibatch size and its pool size (experience replay buffer) are critical

hyperparameters in PPO algorithm. 2) For the homogeneous multi-agent envi-

ronments, there is a mutual transferability between single-agent and multi-agent

environments to be able to reuse the tuned hyperparameters. 3) For the homo-

geneous multi-agent environments with a well tuned hyperparameter set, the



parameter sharing is a better strategy for the MADRL in terms of performance and

efficiency with reduced parameters and less memory.

To conclude, reward-driven, sequential and evaluative learning, the DRL,

would be closer to AGI if multiple DRL agents learn to collaborate to capture the

true signal from the shared environment. This work provides one instance of

implicit cooperative learning of MADRL.
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CHAPTER 1

Introduction

1.1 Motivation

The end goal of this project is how to find the optimal sequential actions (walking

and carrying a package) for the multi-objectives (walkers with robot-legs) to take

leading them to move forward as far as possible to maximize the accumulated

score (reward) using Deep Reinforcement Learning.

1.1.1 Why Deep Reinforcement Learning (DRL)? It’s Closer to Artificial General Intelli-

gence.

This project was motivated by seeking an AI method more towards Artificial

General Intelligence (AGI), i.e. more similar to learning behavior of human-beings.

As of today, Deep Reinforcement Learning (DRL) is the most closer to the AGI

compared to other machine learning methods. As shown in Figure 1 Supervised

Learning (SL) is one-shot learning, i.e. its prediction is either true or false with

respect to the target label of training data; Without target labels, Unsupervised

Learning (UL) is able to extract complex patterns from the given data. Both SL

and UL are passive and static leaning by minimizing the prediction errors from

the offline static data. In contrast, DRL (DL + RL = DRL) is active and dynamic

learning method owing to an agent that interacts with its environment (i.e. takes

actions to environment and incorporates the feedback from environment) through

generating online experience data while learning.

Human-beings are rather active and dynamic learners by interacting with

environment, not just passively learning the given information at that moment,

but also exploring more information by taking the previous experiences (ups and

1



Figure 1: Reinforcement Learning is neither SL nor UL. Deep Learning + Rein-
forcement = DRL

downs envisaged as rewards or penalties) into consideration relentlessly. Also,

to achive a specific goal, human-beings learn sequentially (not just one time)

by evaluating own actions followed by accumulating experience in their own

learning strategy (aka policy) to maximize the return (not just immediate reward,

but also long-term accumulated rewards). Such description provides a high-level

analogy to the technical explanation of the DRL in Chapter 2.

1.1.2 Why Walkers (Robot-Legs) Environment? It’s Very Intuitive DRL Application to

Real-World Robotics.

AlphaGo has gotten public attention as a prototype of advanced AI technology

to realization exceeded human intelligence. Core driving force of AlphaGo is

‘‘Deep’’ RL, which uses neural network (like DL) in conjunction to RL. Since then

2



DRL has been a popular AI method applied to various fields, namely, robotics for

manipulating locomotion, healthcare for protein folding prediction [3], operational

research for adaptive scheduling [4], resource management for heterogeneous 5G

network [5], etc.

Here for the thesis project, we select a simple walker system (a part of robot

system, consisting of several joints of legs and thighs) as an environment for the

DRL based on the following two reasons:

Firstly, robot locomotion is straightforward to understand what we want to

achieve without prior domain knowledge (robotics environments are collected for

the DRL researchers [6, 7]), hence I can focus on the algorithmic aspect of DRL

without distraction of application specific knowledge.

Secondly, learning/training the walkers environment requires high-

dimensional and continuous action space (not discrete action space) thus chal-

lenging to train. Yet, walkers environment has reduced degrees of freedom from

legs/thighs instead of whole body, thus it’s feasible to train given the available

time and computing resource allowed for this thesis project. Chapter 4 provides a

detailed specification of the walkers environment.

1.1.3 Why Multi-Agent? Challenging Problems Can be Solved Cooperatively by Shar-

ing Information.

Table 1 shows that DRL is closely related to Dynamic Programming in the single-

agent settings; also related to the Game Theory in the multi-agent settings.

In single-agent settings, for both DRL and Dynamic Programming (DP) as

optimization methods, DP enumerates all the possible states hence limited to small

scale problems, whereas DRL uses sampling and neural network as a function

approximator thus can be can scalable to larger problems.

3



Table 1: Comparison: DRL vs. Dynamic Programming vs. Game Theory

Suitable
Scale Single-Agent Multi-Agent

Large-Scale
Problems DRL Multi-Agent DRL

Small-Scale
Problems Dynamic Programming Game Theory

Table 2: Comparison: DRL vs. Game Theory

DRL Game Theory

Agent Player
Environment Game

Policy Strategy

Reward Payoff

State Information State

Greedy Policy Best Response

Aa listed in Table 2 Multi-Agent DRL (MADRL) and Game Theory share

similar concept almost one-on-one conceptual matching between them just repre-

sented by different terminologies. That is, both MADRL and Game Theory behave

similarly with common goal to maximize accumulated reward and total payoff,

respectively.

In multi-agent settings, multiple agents share a single environment with

each other agent, thus the optimal policy of single-agent depends not only on the

environment, but on the policies of the other agents. That’s why multi-agent DRL is

challenging than single-agent settings suffering two problems: 1) non-stationarity

and 2) high variance of estimated values. Theses challenges in MADRL can be

4



mitigated by cooperative learning strategies such as parameter sharing and other

training strategies in a way to improve the stationarity as well as to reduce the

variance.

1.2 Aims & Research Questions

At the end of this work, we’d like to address the following questions based on the

observations from the DRL runs with Agent (Proximal Policy Optimization) and

Environment (single and multi-(2-, 3-, and 4-) walkers).

Three broad conceptual questions are: 1) How to capture the true reward

signal of environment to achieve a goal? 2) Mutual transfer learning is feasible

in DRL between single- and multi-agent settings? and 3) In multi-agent settings,

parameter sharing is better than independent learning?

In addition, two specific technical questions will be answered: 1) How to

find the tuned hyperparameters in DRL to maximize the performance? 2) How to

balance training bias vs. variance in DRL?

The answers to those questions listed above would contribute to not only

enhancing the conceptual understanding of DRL problems, but also providing tech-

nical information with DRL training strategies (little different from DL) together

with an algorithm-specific tuned hyperparameter set.

1.3 Summary of Accomplishments & Overall Structure

Figure 2 highlights major achievements from this study. Overall structure of

this report is following: Chapter 2 will provide background information on

conceptual aspect of DRL, component of DRL, classification of DRL methods, and

key equations of DRL. Learning strategies and architectures of Multi-Agent DRL

5



will be described in Chapter 3. Experimental settings for DRL framework and

specifications of walkers environments will be given in Chapter 4. Mainly six

observations will be described and corresponding supporting information will be

discussed in Chapter 5. We will conclude with lessons learned from this project

and suggest future direction in Chapter 6.

Figure 2: Accomplishments of This Study
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CHAPTER 2

Background on Deep Reinforcement Learning

The purpose of providing background information in this chapter is to aid un-

derstanding of the Advantage Actor-Critic Proximal Policy Optimization (PPO),

which is used throughout this study as a main DRL algorithm. At the end of this

chapter the PPO architecture is shown in Figure 7.

2.1 Concept of Reward-Driven Learning DRL

Outside of AI/ML domain, ‘‘reward function’’ has been examined as a means

of reinforcement, motivation or stimulus of learning. [2]

Similarly in AI/ML domain, core driving force of DRL is ‘‘reward’’, thus most

research questions in DRL is all about ‘‘reward’’. For example, how to assign

the ‘‘reward’’ to a series of actions to achieve a goal by value-function? how to

estimate ‘‘reward’’ by value-function-based or policy-gradient-based methods?

how to improve the policy to maximize the accumulated ‘‘reward’’?

As depicted in Figure 3, DRL is a combination of deep learning and reinforce-

ment learning. Core component of DRL is Agent and Environment (everything else

other than an agent is considered as en environment). An abridged description of

DRL is that it’s a reward-driven, sequential learning (opposed to one-shot learning),

evaluative learning (opposed to supervised learning). [1] DRL is learning through

interaction with environment by generating experiences (state, action, reward and

new state), where agent is taking an action to influence environment, where one

state is transitioned into new state as a result of action, its corresponding reward

is passed onto the agent.

Reward concept and prediction of true reward signal are therefore foundations

7



Figure 3: DRL Concept

of DRL. Ultimate goal of DRL is to maximize the accumulative, discounted (not

just immediate reward but considering future reward) reward as depicted in the

inset figure of Figure 4 describing time-span view of an agent interacting with

environment. Hence the end goal of this project is to improve the performance of

DRL evaluated by constructing a performance graph shown Figure 4.

2.2 Notations and Terms Used in DRL

Table 3 provides a convenient lookup for notations, terms and corresponding

definitions used in DRL. More comprehensive list can be found in [8].

8



Figure 4: DRP Performance Graph

2.3 Evolution of DRL

For more holistic view of the DRL features, we compares the DRL with other

related AI methods. Firstly, the core framework of Markov Decision Process (MDP)

as a reward-driven sequential decision making process hasn’t been changed

since the old-fashioned RL era (exhaustive, explicit information required) the RL

has been advanced to more powerful AI as DRL (combination of DL + RL) as

compared in Table 4. Secondly, another comparison of DRL with relatively well

known DL is tabulated in Table 5.

2.4 Components of DRL

9



2.4.1 Core Components for RL: Agent + Environment

Overall, the components of DRL, environment and agent, are interconnected

with each other via state/observation, reward, action and policy. as depicted and

annotated in Figure 5.

One of core components of RL is Agent, also called Actor. Agent is learning

by interacting with environment. Main tasks of an agent at time t are: executing

action At to influence environment; receiving observation St from environment;

and receiving reward Rt from environment. Overall agent role is to update the

policy while training on the experiences, τ, which is also generated by the policy,

specifically called ‘‘behavioral policy’’, using value-function network (with param-

eters θ) and policy-network (parameterized with φ). Value-function, Qπ(s,a), is

a method of estimate future reward from action a in state s under policy π.

Qπ(s,a) =
∑
a

π(a|s)
∑
s ′,r

P(s ′, r | s,a)
[
r+ γvπ(s

′)
]

(1)

Policy, π(s), is agent’s behavior of selecting action a, which is updated while

learnig.
π(s) = argmax

a

∑
s ′,r

P(s ′, r | s,a)
[
r+ γvπ(s

′)
]

(2)

Another core components of RL is Environment, which is composed of three

components: Observation-Space S, Action-Space A, and Reward-function.

r(s,a) = E [Rt|St−1 = s,At−1 = a] (3)

All the components in the environment are pre-defined specified by the end-goal.

None of the components in the environment can be directly controlled by the

agents. Agent can only interact and influence environmen via actions. Main tasks

of environment at time t are: receiving action At from agent, emitting observation

St+1, and emitting reward Rt+1.

10



2.4.2 Additional Components for Deep RL: Neural Network + Experience Replay

For the DRL, in which neural network is used to approximate the value-function,

we should consider conventional strategy used in DL, i.e. trade-off between

variance and bias. In DL as a supervised learning, high variance results in over-

fitting to the training data, whereas high bias results in under-fitting. In DRL,

high variance indicates noisy value prediction but more accurate values, whereas

high bias indicates stationary target but inaccurate values.

DRL is not supervised (no target labels) but evaluative (value-based predic-

tion). To obtain temporal target similar to supervised learning, two separate

neural networks are considered: target network and evaluation network. Then

the ‘‘target’’ network is cloned from the evaluation network to imitate supervised

learning target by freezing the parameters of network with occasional update from

value-prediction network. Then the objective function for the value-based DRL is

to minimize the loss function.

L(θ) = E
τ

[
r+ γmax

a ′
Q(s ′,a ′; θ−) −Q(s,a; θ))2

]
(4)

Another important additional component of DRL is Experience Replay Buffer.

In DRL, experience samples are generated online, thus samples are correlated. To

avoid correlations among samples and to reduce the variance, experience replay

buffer holds a broad set of past experiences generated by the behavioral policy of

the agent through interacting with the environment.

11



Table 3: Notations and terms in DRL

Notations Terms and Definitions

s;St ∈ S
- states or observations;
- state/observation at time t in observation-space S

a;At ∈ A
- actions;
- action at time t in action-space A

r;Rt - (scalar) rewards ∈ R

r(s,a) - reward function;
- r(s,a) = E [Rt|St−1 = s,At−1 = a]

p(s ′, | s,a)
- in short Pss ′ ;
- transition function getting to the next state s ′ by taking action a

in current state s

τ

- episodes ∼ experiences ∼ trajectories ∼ roll-outs;
- sequence of (states/observations, actions and rewards) generated

by behavioral policy;
- τ = (S1,A1,R1, · · · ,At−1,St,Rt)

γ
- discount factor (0 < γ < 1);
- if γ = 1, no penalty to uncertainty of future reward

Gt

- return = sum of discounted accumulated reward from step t to
final step T ∈ Z+;

- Gt = Rt+1 + γRt+2 + γ
2Rt+3 + · · ·+ γT−1RT

π(a | s) - (stochastic) policy, i.e. P(a | s); agent’s behavior function

Vπ(s)

- value-function = V-function under π;
- measure of goodness of in each state s;
- value of expected return of state s;
- Vπ(s) = E

a∼π
[Gt | St = s]

Qπ(s,a)

- state-action-value function = Q-function under π;
- measure of goodness of in each state s and action a;
- value of expected return of state s and action a;
- Qπ(s,a) = E

a∼π
[Gt | St = s,At = a];

A(s)

- A-function;
- advantage function with reduced variance using state-value func-

tion as baseline;
- A(s,a) = Q(s,a) − V(s)

E
τ∼π

[G(τ)]

- expected return G from experienced samples τ generated by
policy π;

- =
∫
π(a | s)G(τ)dτ

12



Table 4: Comparison: MDP, RL and Deep RL

Methods Comparative Features

1st Generation:
MDP

- basis framework for RL in terms of agent/environment state/ac-
tion/reward;

- requires full model information (entire state-space, action-space
and explicit state-transition probabilities Pss ′);

- limited to small-scale; unrealistic to have full state information

2nd Generation:
RL

- model-free (i.e. no more need explicit Pss ′), rather sampling
experience;

- selects action from the Q-table, which is updated while learning;
- not scalable as growing the size of Q-table

3rd Generation:
Deep RL

- model-free (i.e. no more need explicit Pss ′), suitable for high
dimensional, continuous state-/action-space,

- use Deep Learning (neural network) to parameterize value-
function, such as state-in-action-out network, which is updated
while learning;

- scalable owing to use Neural Network

13



Table 5: Comparison: Deep Reinforcement Learning (DRL) vs. Deep Learning

DRL DL

Requirements

Environment (State-space, Action-Space
and Reward) + Agent (Policy, Value

Function, Neural Network as Function
Approximator)

Dataset & Neural
Network Architecture

Input Data Online SARS (St,At,Rt,St+1) tuples for
agent experienced through environment

Offline training dataset
(X) with target labels (Y)

Tasks Data learning + Data generating
Data learning

(optimizing NN weights
and biases)

End Goal

How well the reinforcement signal
reflects the true reward structure of the

environment to maximize mean
accumulated rewards

How well the model fits
the training data

Who’s
Learning

Agent is learning by interacting with
Environment

Model is learning by
optimizing weights

Learning Style
Sequential learning; adaptive learning by

taking an action to Environment and
learning from the feedback (reward)

One-shot learning;
passive learning from

the given data

Objective
Function

Loss function to minimize
(Value-function) + Performance function

to maximize (Policy-gradient)

Loss function to
minimize

Performance
Metric

Mean accumulated rewards over
episodes/trials Prediction accuracy

14
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2.5 Key Equations in DRL

DRL is a reward-driven learning to find an optimal policy. The value-function is

a method of assigning reward to a series of actions that agent takes till episode

termination time at T . But agent should keep updating its policy based on the

value-function estimate at some time interval, instead of delaying the update of the

policy till termination time at T . The value-function can be decomposed per time

step t by Bellman Equation, so that we agent can evaluate reward per experience

sample.
Qπ(s,a) = E

s ′,a ′

[
Rt + γQ

π(s ′,a ′) | s,a
]

(5)

Value function is crucial metric to find an optimal policy. There are mainly

three types of value functions, namely V-function, Q-function and A-funciton. In

this work, we use the A-function as a reduced variance value-function owing to

use V-function as a baseline.

V-function : Vπ(s) = E
a∼π

[Gt | St = s] (6)

Q-function : Qπ(s,a) = E
a∼π

[Gt | St = s,At = a] (7)

A-function : A(s,a) = Q(s,a) − V(s) (8)

In DRL, there are three different approaches toward computing the optimal

policy: 1) value-based methods; 2) policy-gradient-based methods; and 3) actor-

critic methods.

Firstly, value-based methods are indirect ways of finding the policy via value

estimate. What we want to optimize by training the neural network on the

16



experience samples is the value-based loss function to minimize:

L(θ) = E
(s,a,r,s ′)

[ (
QTarget −QPredict

)2
]

, where (9)

QTarget = r+ γmax
a ′
Q(s ′,a ′; θ) (10)

QPredict = Q(s,a; θ) (11)

Corresponding loss gradient with the Target Network (with fixed parameters θ−)

nd Experience Replay Buffer (D) as discussed in Section 2.4.2

∇θL(θ) = E
(s,a,r,s ′)∼ U(D)

[ (
QTarget(θ−) −QPredict

)
∇θQ(s,a; θ)

]
, where (12)

QTarget(θ−) = r+ γmax
a ′
Q(s ′,a ′; θ−) (13)

QPredict = Q(s,a; θ) (14)

Secondly, policy-gradient-based methods are directly way of obtaining the

policy by finding the direction of increasing the values. In this method, the

objective function to optimize is the performance function to maximize:

J(θ) = E
τ∼πθ

[
G(τ)

]
(15)

Then its policy-gradient is

∇θJ(θ) =∇θ E
τ∼πθ

[
G(τ)

]
(16)

= E
τ∼πθ

[ T∑
t=0

G(τ)∇θ logπ (At|St)
]

(17)

Finally, Actor-Critic methods are combined both value-based and policy-

gradient-based. The role of Actor is a policy improvement, whereas the role

of Critic is a policy evaluation. Overall architecture is designed to reduce the

variance, where actor is basically agent for selecting an action whereas critic is

a value-estimate to guide the actor to select better action. In this work, we used

Actor-Critic method.

17



2.6 State-of-Art DRL Algorithm: Proximal Policy Optimization (PPO)

PPO is one of state-of-art performance DRL algorithms, which can be used for both

single-agent and multi-agent settings. It is composed of advantageous features of

precursor DRL algorithms together with clipping methods. The PPO algorithm

is mainly composed of the following three features, namely 1) Advantage Actor-

Critic (A2C) with Multi-Workers; 2) Experience Replay Buffer with Minibatches;

and 3) Clipping Policy and Value. We will explain each of these three features of

PPO in detail.

Figure 6: A2C: synchronous policy updates with multi-workers to generate experi-
ences. Excerpt from [1]

Firstly, the PPO is similar to the A2C, which is another actor-critic DRL method

with two key features: 1) for multi-core utilization, concurrent workers/actors

generate a broad set of experience samples in parallel as shown in Figure 6; 2)

single neural network shared by both policy and value function.

Secondly, Experience Replay Buffer is implemented to the Actor-Critic ar-
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chitecture. Actor-critic-network training procedure with the experience replay is

following: a) Actors/Workers with its policy π interact with the environment to

gather experience samples and store them to the Experience Replay Buffer. b) Once

all the actors/worker finish collecting the designated sampling size, uniformly

select minibatch size of samples from the buffer is used to train the critic network

(policy evaluation). The critic network is parameterized with θ value function to

minimize the mean squared error between target Q-value and predicted Q-value.

c) Then the actor network (policy improvement) update the policy, i.e. find the

better policy, from the updated parameters by critic network.

Thirdly, clipping policy and value is a core feature of the PPO. Clipping the

policy and value restricts drastic change of the gradient, thus not only preventing

a divergence but also allowing the reuse of the experience replay buffer. Clipped

policy objective function uses AGAE for further reduction of the variance. It

is a more advanced advantage function (A-function), estimated by Generalized

Advantage Estimator (GAE), which balances between variance and bias. [21]

J(φ,φ−) = E
(s,a,AGAE)

[
min

(
π(a | s;φ−)

π(a | s;φ)
AGAE, (18)

clamp
(
π(a | s;φ−)

π(a | s;φ)
AGAE; 1 − ε; 1 + ε

) )]
In the same manner, clipped value loss is also considered to further prevent

divergence and reduce the variance.

L(θ, θ−) = E
(s,a,G,V)∼U(D(θ−))

[
max

(
G− V(s; θ), (19)

G−

(
V + clamp

(
V(s; θ) − V ,−δ, δ

)))]
All in all, Figure 7 shows the main DRL algorithm to be used throughout this

project: Advantage Actor-Critic Proximal Policy Optimization.
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Figure 7: Advantage Actor-Critic Proximal Policy Optimization Architecture
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CHAPTER 3

Background on Multi-Agent DRL & Related Previous Works

3.1 Centralized Learning and Decentralized Execution

In multi-agent DRL (MADRL) settings, multiple agents share a single environment

with each other agents, thus the optimal policy of single-agent depends not only

on the environment, but also on the policies of the other agents. Due to the shared

environment, when one agent’s learning changes the environment, simultaneously

another agent’s learning from the environment becomes obsolete. This causes

non-stationary of the environment (causing difficulty of convergence) as well as

high variance in the estimated values (causing noisy estimate).

The Actor-Critic architecture examined in Section 2.6 for the single-agent

setting can be extended to the MADRL with the generally accepted multi-agent

training framework: ‘‘Centralized Learning with Decentralized Execution (CLDE)’’.

The CLDE is design to reduce the non-stationarity by centralized learning during

training, but each of multi-agent executes an action based on its own observation

(i.e. local information). In analogy, students (= multi-agents) study together by

exchanging information with others in a study group (= centralized learning),

but students should take an exam based on each student’s own knowledge (=

decentralized execution).

We can apply the general CLDE framework to the Actor-Critic architecture.

The Centralized Critic Network is trained to minimize the value-function loss for

better estimate of Q-value. Then the predicted Q-value is used in the Decentralized

Actor Network to be trained via policy-gradient.
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3.2 Independent Learning vs. Parameter Sharing

In MADRL, there are two extreme cases in terms of sharing information among

agents: independent learning (also called concurrent learning) and parameter

sharing.

Independent Learning (Figure 8a) is the most decentralized but naive

MADRL. Multiple agents are trained independently based on its own local obser-

vation in which the existence of other agents are implicitly recognized as a part

of environment. As to increase the number of agents, no scalability is expected

because each agent should generate own experience samples without sharing with

other actors/workers (as described in Section 2.6), thus memory capacity becomes

an issue.

Parameter Sharing (Figure 8b) is the most centralized MADRL method with-

out explicit communication among agents. Multiple agents share the network

parameters of actor-network and critic-network. This is an appropriate learning

strategy for the homogeneous agents. For those similar or identical agents, if one

agent has less chance to learn from the environment, such agent is beneficial by

following the shared policy that was properly updated by other agents. Parameter

sharing strategy also shares the rewards, which encourages the multiple agents

to participate cooperatively to accomplish a common goal. Unlike independent

learning, parameter sharing is scalable because experiences gathered from multiple

actors/workers are all are shared in the experience replay buffer.
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3.3 Related Works on MADRL for Walkers Environments

There are two related previous studies using the same multi-walker environments.

One study initially created the multi-walker environments using a precursor

algorithm of PPO.[11] Another study used same PPO algorithm along with other

state-of-algorithms. [12] Table 6 summarizes the performance of the common

environment of 3-walkers. In the next chapter in Table 10, we will show that our

study outperforms both studies by improving the performance in terms of average

accumulated reward.

Table 6: Performance for the 3-Walkers Environment from Other Studies

Ref Agent Max Avg. Reward
(Independent Learning)

Max Avg. Reward
(Parameter Sharing)

Gupta et al. [11] TRPO 51 54

Terry et al. [12] PPO 38 41

3.3.1 Multi-Agent Walker Environment using TRPO

Gupta et al. [11] tried to extend re-usability of single-agent DRL algorithms

to multi-agent settings for the three multi-agent environments including multi-

walkers. They implemented a single-agent algorithm, Trust Region Policy Opti-

mization (TRPO) in conjunction to the parameter sharing strategy for the multi-

agent settings. With a fully independent learning (they used term ‘concurrent

learning’) as a performance baseline, they applied parameter-sharing version

of DRL algorithms to multi-walker environment with other experiments such as

global vs. local reward. However, in this study we would like to employ parameter

sharing concept to the most up-to-date algorithm of Proximal Policy Optimiza-
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tion (PPO) for the same multi-walkers environment by systematic performance

comparison with 2, 3, and 4-Walkers.

3.3.2 3-Walker Environment using PPO

Terry et al. [12] expanded the concept of parameter sharing to MADRL to wide

span of DRL algorithms. Total 12 different DRL algorithms were compared in

conjunction to parameter sharing as well as independent learning for the same

three different multi-agent environments that Gupta et al. [11] used. According to

their observation, parameter sharing with PPO outperformed for the 3-walkers

environment. Based on their extensive testings, they provided a tuned hyper-

parameter set for PPO as well as other DRL algorithms. However, as we will

discussed in Sections 5.1 and 5.3, their tuned hyperparameter set has an issue

(such as reward clipping). [17]
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CHAPTER 4

Experiments

A single walker environment is classified as a solved problem once the average

score is achieved a certain threshold. There are benchmark studies with a single

walker environment to compare which DRL algorithm achieves the maximum

score in less number of trials. [19] One of state-of-art DRL algorithms, called

Proximal Policy Optimization (PPO), outperforms especially for single walker-like

environments. Thus, throughout this project, I will focus on the PPO algorithm.

With the PPO, I will observe whether there exists a mutual transferability of the

performance of PPO for single-agent vs. multi-agent settings depicted in Figure 9.

All the DRL runs carried out in this project is tabulated in Table 7.

Figure 9: All Walkers Environment Considered in this Project
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Table 7: Comprehensive List of DRL Experiments in This Work

Agent

• Single-PPO
• Multi-PPOs

X Parameter Sharing
X Independent Learning

Environments

• Single-Walker
X Bipedal Walker
X A Package Carrying Bipedal Walker
X MoJoCo Walker2d

• Multi-Walkers
X A Package Carrying 2-Walkers
X A Package Carrying 3-Walkers
X A Package Carrying 4-Walkers

Hyperparameters

• General DRL Training Related
X Reward Clipping
X Size of Hidden Layers in Neural Network

• PPO Related
X Minibatch Size
X Experience Replay Buffer Size = Training Batch Size

X Reuse Ratio =
(

Training Batch Size
Minbatch Size

)
X Clipping Policy Coefficient
X Clipping Value-function Coefficient
X Kullback–Leibler (KL) divergence Initial Coefficient

4.1 Environments (Observation-space and Action-space)

Pre-defined components of single- and multi-agent walkers environments are

tabulated in Table 8 and Table 9, respectively.
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Table 8: Environment: Basis Single-Walker, BipedalWalker [14]

Reward function
- positive reward is given for moving forward to the right in

slightly uneven terrain;
- if the walker falls, reward of -100.

End goal - walking forward to obtain total 300+ points in 1600 time steps

Walker
configuraiton - simple 4-joints walker robot with hulls, thighs and legs

State-space

- 24-vector space (see Figure 10a)
- hull angle speed, angular velocity, horizontal speed, vertical

speed, position of joints and joints angular speed, legs contact
with ground, and 10 lidar range finder measurements

Action-space - 4-vector space (see Figure 10b)
- assigning [−1, 1] value to torques and velocities

Episode
termination

- when the walker’s body touches ground;
- the walker reaches far right side of the environment (reaching

the goal)

Table 9: Environment: Multi-Walker Environment from PettingZoo [17]

Reward function

- positive reward is given to each walker proportional to the
displacement of the package (that is 130 times the displace-
ment of the walker’s position);

- if any walker or the package falls, reward of -100.

End goal - moving a package on top of agents as far as possible to the
right

Walker
configuraiton

- replicate of BipedalWalker with a package on top of agent’s
hull

State-space

- each agent has 32-dimensional observation space
- 24-dimensional vector from BipedalWalker
- 4 additional vectors for replacements (dx, dy) of left; (dx, dy)

of right of neighboring walkers;
- if no neighbors, simply set it 0.0.

Action-space - same as BipedalWalker
Episode

termination - if any walker or the package falls
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(a)

(b)

Figure 10: Continuous state-space (a) and action-space of for BipedalWalker
environment (b), which serves as a basis unit for 2-, 3- and 4-walker environments
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4.2 MADRL Framework and Agents/Policies

We use RLlib as a DRL framework [15]. It provides the Advantage Actor-Critic

PPO algorithm that we discussed in Section 2.6 and shown in Figure 7. Moreover,

many state-of-art DRL algorithms support for both single-agent and multi-agent

settings in a form of python API.

For the single-agent PPO, RLlib has a module to register the OpenAI’s gym

environments for BipedalWalker as well as Walker2d environment.[14]

For the multi-agent PPO, RLlib provides an interface of PettingZoo, a collec-

tion of multi-agent environments [17]. We can thus use multi-walker environment

by using the RLlib’s multiagent module. However, we have to modify the Petting-

Zoo’s default 3-walker environment to create 1-, 2-, and 4-Walkers environments.

Inside the multiagent module of RLlib, we can set configuration parameters either

for parameter sharing or for independent learning. For the parameter sharing,

we set the same shared policy ID (usually first agent’s policy) to each of multi-

agents. In contrast, for independent learning, we set distinct policy ID to each of

multi-agents.

4.3 RLlib Installation and Resource Limit

RLlib is an open-source library for scalable DRL offering a unified API supports

for TensorFlow and PyTorch. RLlib also offers high scalability with multi-agent

settings. RLlib is a part of Ray. The Ray is an universal API for building distributed

applications for machine learning. As of October 2020, the most up-to-date

python3.7 wheel version (python package distribution), Ray v1.1.0dev0 [16] was

installed on the Conda (virtual environment management system) with Python

3.7 of the MacBook Pro. System specification are following: macOS High Sierra
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version 10.13.6; dual core 2.9 GHz Intel Core i7; 8 GB 1600 MHz DDR3 memory.

Note that two cores with a hyper-thread enabled serve a quad core, thus

4-Walkers was the maximum environment we can run. Also, due to 8 GB memory

limit, we could not complete the independent learning MADRL runs for the

4-Walkers. Full installation procedure is listed in Appendix A.
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CHAPTER 5

Results & Discussion

5.1 Reward Shaping is Crucial for Proper Goal Setting in DRL

Figure 11: Effect of reward clipping on the performance of 2-, 3-, and 4-walkers
environments with reward clipping (a) vs without reward clipping (b). Note that
for (b) we changed other hyperparameters but turning off the reward clipping was
the dominant parameter to scale up the values (y-axis). In (a) the ‘‘PPO 3-walkers
with [400, 300] Ref***’’ refers to the result from [12], they used reward clipping.

Observation.

Initially we used the tuned parameters set (see Figure 13a) for the 3-walkers

environment from the work by Terry et al. [12] One of parameter was

clip_rewards=True. In general, reward clipping is used only when comparing

performances among many environments with various reward range. Reward

clipping was designed to normalize a reward range [−1, 1] by taking a sign of the

value-function (e.g. np.sign(values) in Numpy).
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As observed in Figure 11a), reward clipping suppresses the improvement

of performance, its maximum mean reward is less than 10 for all 1-, 2-, 3-, and

4-walkers environments.

Even if a walker fell or a package was fallen, a minimum reward of -1 was

assigned to the corresponding action, which doesn’t motivate standing or walking.

If we observed from the roll-out simulation, indeed walkers tend to jump and roll

frequently instead of standing and moving forward.

As observed in Figure 11b), turning off the reward clipping restore the in-

tended reward function, the mean rewards keep increased up to the maximum

mean rewards of ∼ 50, 100, and 150 for 2-, 3-, and 4-walkers, respectively.

Intended reward function was assigning a proper reward ranging from -100 to

1 proportional to the displacement of a package location. If walker fell or a package

was fallen, the corresponding action should be assigned -100, which demotivates

falling rather motivates walking and moving forward.

Although we should not use reward clipping for performance comparison of

walkers environments, two interesting observations using reward clipping were 1)

difficulty of convergence in loss function during training indicates that the reward

signal from environment is not corrected reflected; 2) suppressed mean reward

range revealed subtle effect of hyperparameters on the performance, otherwise its

effect was diluted in the large mean reward values.

Interpretation & Supporting Information.

Reward-function is pre-defined as an environment specific manner, which can’t

be controlled by an agent. Agent can only received the emitted reward signal

from environment and select an optimal sequence of action to maximize the

accumulated reward.
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Designing reward function (also called Credit Assignment) is one of research

fields in DRL [18]. As observed in our cases with reward clipping the goal

task is rather balancing a package while standing at the same location, wheres

without reward clipping the goal task is restored to walking and moving forward.

Therefore, depending on the reward shaping, a goal task of DRL can be altered.

5.2 Larger Capacity of Neural Network is Better for High-Dimensional, Con-
tinuous Observation Space

Figure 12: Effect of NN capacity on the performance of PPO. Note that the ‘‘PPO
3-walkers with [400, 300] Ref***’’ refers to the result from [12].

Observation.

The mean reward from PPO with larger capacity of NN with larger number

of nodes (e.g. [400, 300]) shows positive (Figure 12a), whereas that with smaller

capacity of NN with more number of layers (e.g. [100, 50, 25]) shows smaller values

moreover very noisy.
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Interpretation & Supporting Information.

Due to high dimensional continuous state/action-space in the 2-, 3-, 4-walkers

environments, the larger size of NN has better capability of differentiating from

state to state.

Henderson et al. benchmark general NN training parameters (such as NN

capacity, NN architecture, activation function, optimizer etc.) and specific hyper-

parameters of many DRL algorithms (Deep Q-learning, A2C, PPO, etc.) for the

frequently used DRL single-agent environments. [19]

NN capacity is one of hyperparameters and optimal capacity depends on the

environment whether discrete state/action-space or continuous, high-dimensional

actions-space. Unless our environment has small scale state/action-space, it

would be safe to use relatively larger capacity such as 2-hidden layer with size of

[400, 300].

DRL suffers non-stationary due to lack of supervised target label. To mitigate

that non-stationary problem, two strategies are suggested by using 1) a target

network for temporary stationary and 2) a large enough network for telling a

difference between similar states due to correlation among generated experience

data. [1]
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5.3 Optimal Minibatch Size and Sampling Reuse Ratio are Important Hyper-
parameters of PPO to Improve the Performance

(a)

(b)

Figure 13: PPO hyperparameter set from other works: Ref. [12] for 3-Walker
multi-agent environment (a) and from Ref. [15] for MuJoCo Walker2d single-agent
environment (b)

Observation.

Figure 13a) and b) show the tuned hyperparameter set of PPO for 3-walkers and

single-walker, respectively, from other researchers. There are several differences

to be aware of: 1) The former is multi-agent environment, whereas the latter is

single-agent; 2) The former uses multi-core CPUs, whereas the latter used multi-

GPUs; 3) Besides a problematic hyperparameter of clip_rewards=True as already
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discussed in Section 5.1, we notice rather drastic differences in their minibatch size

as well as train batch size; 4) But the ratio between train batch size over minibatch

size is approximately similar to 10.

Given their computing system difference (CPU vs GPU), they may find a

different tuned use different sizes. Direct use of their tuned hyperparameters to

our environment is not transferable. Therefore, we should tune minibatch and

train batch size optimal to our computing system (4-core CPUs).

Figure 14 shows that the tuned hyperparameter set (5K minibatch; 50K train

batch) outperform for all 2-, 3-, and 4-walkers environments. While fixing the

Figure 14: Larger minibatch size of 5K improves performance of PPO by providing
assorted gradients for better value estimate

experience replay buffer size at 50K, we change minibatch size to experiment

with different sampling reuse ratio. Figure 15 shows that more sampling reuse of

10 improve performance of PPO because value-function needs more number of

optimization.
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Figure 15: Effect of varying reuse ratio on the PPO performance for 3-walkers en-
vironment (left); corresponding training loss of policy-gradient vs. value-function
(right)

Interpretation & Supporting Information.

In DL, there is some consensus that smaller batch size is better for generalization

than larger batch size, perhaps owing to the supervised learning, thus free from

non-stationary issue unlike DRL. DRL is usually suffers non-stationary, known as

‘‘Moving Target’’ problem. Hence, a large enough train batch is needed to compute

more various gradient descent, thus more frequent update from minibatch size

stochastic gradient descent (SGD) for better optimization. [22, 23]

Cobbe et al. [20] improved version of PPO, called ‘Phasic Policy Gradient’

(PPG): 1) separating the shared network of PPO into policy-network and value-

network; 2) allowing the policy-network and value-network are trained with

different reuse ratio from minibatch/train-batch; 3) improved performance than

PPO from diverse single-agent environment using larger reuse ratio (9) for the

value-network and smaller reuse ratio (1) for the policy-network.

This is consistent with our multi-agent walkers environment: 1) we found
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that reuse ratio of 10 outperformed than 2; given that PPO is shared network,

thus we can only use same reuse ratio for both policy-network and value-network.

this implies that policy-part of network converges faster within 2 updates, the

value-part of network converges slowly, thus need more update like 10. 2) as

shown in the inset graph in Figure 15 we confirmed our conjecture from the almost

negligible loss of policy-gradient, whereas yet noisy loss of value-function from our

training log. In short, as depicted in Actor-Critic PPO algorithm in Figure 16, DRL

Figure 16: PPO Algorithm with Optimized Experience Replay Buffer Size and
Minibatch Size

may need larger sizes of train batch and minibatch that SL approach of DL. Thus,

minibatch size together with its reuse ratio is an important hyperparameter specific

for the environment as well as computing system. Also, as already discussed in

Section 2.6, using a shared single network for both policy and value functions

(feature of A2C algorithm, which is one of components of the PPO) is beneficial

for computational efficiency, however, at a potential risk of different scales of the

policy and value function updates.
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5.4 Synergic Effect of Combined Optimal Hyperparameters

Observation.

Together with the tuned optimal minibatch size and train batch size discussed in

Section 5.3, we tried to use other tuned PPO hyperparameters from the single-agent

environment (Walker2d) from benchmark work. [19]

Figure 17 shows 7 different runs of PPO using different hyperparameter

set from less performed sub-optimal set (gray solid line) up to well performed

optimal set (black solid line). We found that the contribution to the performance

is significant in this order: 1) Turning off the reward clipping - this is rather

general training control of DRL than policy algorithm (see detailed discussion

in Section 5.1); 2) Minibatch size of 5K (see detailed discussion in Section 5.3);

3) Clipping policy coefficient of 0.3 than 0.1 (less strict constraint, thus allows

more diverse gradient); and 4) KL divergence initial coefficient. However, the best

performance of PPO for the multi-agent environments is achieved by combined

contribution of those hyperparameters.

Interpretation & Supporting Information.

By increasing the clipping policy coefficient ε to 0.3 from 0.1 (denoted as red color),

we can select new policy little bit more deviated from the old policy providing

more diverse gradients. This can be observed by red and green curve in b) where

the mean reward is increased earlier with ε to 0.3 than 0.1 (i.e curve is shifted left).

J(φ,φ−) = E
(s,a,AGAE)

[
min

(
π(a | s;φ−)

π(a | s;φ)
AGAE, (20)

clamp
(
π(a | s;φ−)

π(a | s;φ)
AGAE; 1 − ε; 1 + ε

) )]

The increased ε together with the larger minibatch size of 5K provides well
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(a)

(b)

Figure 17: Comparison of PPO hyperparameter set between single-agent MuJoCo
Walker2d vs. our sub-optimal hyperparameter set for multi-agent walkers (a);
Finding the most contributed hyperparameter to the performance for the 3-walker
environment by changing the parameter one at a time (b)

distributed samples the experience replay buffer, which in turn resulting in decent

performance improvement. Moreover, AGAE, the advantage function estimated

by Generalized Advantage Estimator (GAE) from the experience buffer, reduces

variance (i.e. noise in DRL) resulting in better performance of PPO.
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5.5 Mutual Transfer of Tuned Hyperparameters between Single-Agent (SA)
and Multi-Agent (MA) Environments

5.5.1 Transfer hyperparameters from MA to SA environment

In Section 5.3, we found the optimal minibatch/train-bath size of 5K/50K from 2-,

3-, and 4-walkers environment. We try to transfer this hyperparameters to similar

but single-agent walker environment. As demonstrated in Figure 18b) and c),

hyperparameters from MA is fully transferable to SA for both Walker2d (little bit

different legs configuration, where there are feet but no hull) and BipedalWalker

(identical legs configuration to multi-walkers but without carrying a package on

top).

5.5.2 Transfer hyperparameters from SA to MA environment

As was already discussed already in Section 5.4 hyperparameters are compared

between single-agent Walker2d and multi-walkers in Figure 17a). Tuned hyperpa-

rameter set of Walker2d with minibatch/train-bath size of 5K/50K can be fully

transferred to all 2-, 3-, and 4-walkers environments, i.e. dramatically improved

performance of PPO (Figure 19b-d).

To conclude, there is a clear mutual transferability between MA and SA as long

as their environment are similar. It seem that little difference in the configuration

of the environments (such as with or without feet, or with a package or not) are

tolerable and still transferable the tuned hyperparameters.
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(a)

(b) (c)

Figure 18: Hyperparameter transfer flow from MA to SA (a); Resulting improve-
ment of performance in single-agent environment: Walker2d (b) and Bipedal-
Walker (c)
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(a)

(b) (c)

(d)

Figure 19: Hyperparameter transfer flow from SA to MA (a); Resulting improve-
ment of performance for 2, 3, and 4-walkers environment in (b) through (d)
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5.6 Parameter Sharing vs. Independent Learning in Multi-Agent DRL

Observation.

As observed in Figure 20, performance-wise (mean reward on y-axis) there is

not much difference between parameter sharing and independent learning, albeit

maximum average reward is little bit higher in independent learning (Table 11).

In parameter sharing multi-agents, all PPO runs for 2-, 3- and 4-walkers were

all completed up to 10K episode. However in independent learning multi-agent,

we could not complete the PPO run for the 4-walkers environment due to out of

memory capacity issue. Thus, it is clear that parameter sharing is scalable and

efficient strategy for the multi-agent DRL without any sacrifice of performance.

Figure 20: Comparison of Multi-Agent Learning Strategies

Interpretation & Supporting Information.

Before finding the optimal tuned hyperparameters, the PPO runs for the multi-

walker environment showed quite different performance between parameter shar-
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ing and independent leaning. However, such difference was vanished after apply-

ing to the optimal hyperparameters to the PPO runs. Probably such performance

difference indicates difficulty of convergence of training (thus required tuning

the hyperparameters) rather than behavioral difference of parameter sharing vs.

independent learning.

To sum up, we found the optimal hyperparameter set for the multi-agent

PPO algorithm, which improve performance much better than other studies as

tabulated in Table 10.

Table 10: Comparison of Performance for the 3-Walkers Environment with Other
Studies

Ref Agent Max Avg. Reward
(Independent Learning)

Max Avg. Reward
(Parameter Sharing)

Gupta et al. [11] TRPO 51 54

Terry et al. [12] PPO 38 41

This work PPO 145 121

Finally, we tabulate maximum average reward achieved from our PPO-based

MADRL runs for multi-walkers shown in Table 11. There is a clear scalability

of performance for the parameter sharing strategy. Yet, we still need to further

investigation on the scalability of performance in independent learning if more

memory resource is available.
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Table 11: Maximum Average Reward for Multi-Walkers Achieved in This Study
in 100K Episodes (except independent 4-walkers, terminated at 38K)

Environment Max Avg. Reward
(Independent Learning)

Max Avg. Reward
(Parameter Sharing)

1-Walker 11 --
2-Walkers 87 76
3-Walkers 145 121
4-Walkers 94 168
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CHAPTER 6

Conclusion & Future Work

Based on the findings from our MADRL experiments for the multi-agent walkers

using PPO algorithm, we can generalize three concepts.

First, Unlike DL with explicit target labels, DRL needs larger minibatch size

better estimate of values from various gradients. Therefore, minibatch size together

with experience replay buffer size are critical hyperparameters in PPO algorithm.

Second, for the homogeneous multi-agent environments, there is a mutual

transferability between single-agent and multi-agent environments to be able to

share the tuned hyperparameters.

Third, for the homogeneous multi-agent environments trained with a well

tuned hyperparameters, the parameter sharing is a better strategy for the MADRL

in terms of performance and efficiency with reduced parameters and less memory.

To reconfirm the findings with other cases as well as to refine the multi-agent

algorithms, we can think of the following four tasks as a future study.

The first study as one immediate next task will be a scalability check for the

parameter sharing strategy of the MADRL by increasing the number of walkers

up to 8 to 10.

The second study as another immediate next task will be a new collection of

DRL environments with a similar end-goal from both single-agent and multi-agent

settings. Mutual hyperparameter transfer will be attempt to the newly collected

environments to determine a new set of tuned hyperparameter set.

The third study as a short-term goal will be a dynamic/adaptive hyperpa-

rameter change to enhance performance (opposed to the fixed hyperparameters
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throughout the DRL runs used in this work) by Curriculum Learning (CL). CL

decomposes a task into several sub-tasks as pre-defined phases, monitors per-

formance metrics regularly and moves on to the next phase if the pre-defined

condition is met.

The fourth study as a long-term goal will be an explicit communication among

multi-agents. In this MADRL study, we assumed that multi-agents cooperate

via implicit communication by observing the existence of other agents as a part

of the shared environment. Very recently, there are more advanced studies on

the MADRL to combine Game Theory based Nash Equilibrium and explicit

communication among agents. [26, 28, 27]) We will set this as a long-term future

goal to better understand MADRL toward Artificial General Intelligence (AGI).

To conclude, reward-driven, sequential and evaluative learning, the DRL, would

be closer to AGI if multiple DRL agents learn to collaborate to capture the true

signal from the shared environment. This work provides one instance of implicit

cooperative learning of MADRL.
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APPENDIX

RLlib Installation on MacOS

Procedure

1. conda create –name LocalRay python=3.7

2. mkdir LocalRay

3. cd LocalRay/

4. git clone https://github.com/ray-project/ray.git

5. conda activate LocalRay

6. mv /Downloads/ray-1.1.0.dev0-cp37-cp37m-macosx_10_13_intel.whl .

7. pip install -U setuptools

8. pip3 install multidict==4.7.3

9. conda install -c anaconda psutil

10. conda install -c anaconda yarl

11. pip install ray-1.1.0.dev0-cp37-cp37m-macosx_10_13_intel.whl

12. pip install pandas

13. pip install ray[tune]

14. pip install ray[rllib]

15. pip install pettingzoo[sisl]

16. pip install tensorflow
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