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ABSTRACT

DETECTING DEEPFAKES WITH DEEP LEARNING

by Eric C. Tjon

Advances in generative models and manipulation techniques have given rise to

digitally altered videos known as deepfakes. These videos are difficult to identify for both

humans and machines. Typical detection methods exploit various imperfections in

deepfake videos, such as inconsistent posing and visual artifacts. In this paper, we

propose a pipeline with two distinct pathways for examining individual frames and video

clips. The image pathway contains a novel architecture called Eff-YNet capable of both

segmenting and detecting frames from deepfake videos. It consists of a U-Net with a

classification branch and an EfficientNet B4 encoder. The video pathway implements a

ResNet3D model that examines short clips of deepfake videos. To test our model, we run

experiments against the Deepfake Detection Challenge dataset and show improvements

over baseline classification models for both Eff-YNet and the combined pathway.
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1 INTRODUCTION

Deep learning techniques have made great advancements in computer vision [1].

Generative models such as generative adversarial networks (GANs) are able to produce

realistic and high quality digital images like never before. These models are also able to

manipulate existing images with relative ease. Using deep learning to change a person’s

face or identity visually is also known as deepfake. These deepfake videos are difficult to

quickly distinguish from genuine, photographic images even for human observers.

Therefore, it is necessary for automated detection models to identify deepfake videos as

shown in Fig. 1.

Fig. 1. Deepfake detection problem.

Prior to these developments, video forgery required expert knowledge and intensive

effort to pass as real [2]. Alteration methods often included manual editing and the high

cost of entry made the number of fake videos relatively small. However, deep learning

based techniques allow novice users to edit videos like never before. Publicly

downloadable tools such as DeepfakeLab are able to swap faces accurately on consumer

hardware [3].
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The ease and availability these tools increases the concern that fake images and videos

can spread through social media and deceive the general public. Used maliciously,

deepfake videos can misrepresent political figures and spread fake news. This

misinformation can affect secure elections, so it is necessary to detect the videos before it

can cause harm.

Two popular deep learning based generative models such as generative adversarial

networks (GANs) and variational autoencoders. These two techniques are able to model

complex swaps of faces. GANs generally create more realistic images but contain more

variation between frames in the same video. Variational autoendcoders are the most

popular method due to their smooth video production [1].

One way of stimulating research into this field is public competition. Specifically, one

contest named the Deepfake Detection Challenge (DFDC) [1] encourages participants to

build detection models to combat fake videos. DFDC is sponsored by Facebook,

Microsoft, AWS, and the Partnership on AI. It is hosted on kaggle with a final submission

deadline at the end of March 2020. The competition also hosts an extensive dataset

consisting of over 100,000 real and deepfake videos. This dataset has noticeable

improvements over prior data sets that make it suitable for research. The subjects within

the videos are hired actors and actresses that give their consent to alter their appearance.

Furthermore, the dataset utilizes a variety of modern techniques to alter faces that have

better quality than previously published datasets.

Effective detection methods are important to combat malicious spread and use of

damaging fake media. These detection methods utilize artifacts and inherent differences in

generated images to successfully distinguish between real and fake. However even as

detection methods improve, image generation techniques improve as well and are able to

bypass detection. Therefore, it is necessary to continue research into robust detection to

preemptively defend against stronger attacks.
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1.1 Project Overview

This research project aims to implement a detection algorithm for classifying the

DFDC dataset. This architecture would distinguish between real and fake videos by

analyzing the faces present in the video. The pipeline for detection includes extracting

frames from the source video, detecting and cropping a facial image in each frame, and

classifying it with a deep neural network. This project contains two distinct approaches

for classifying a video which focus on separate weaknesses in deepfake videos.

The first approach, called the frame based approach, examines individual frames

within the video. First, the videos are preprocessed into individual frames centered around

the detected face. These frames serve as the training data for an image classifier such as a

2D convolutional neural network. These models treat the videos as a collection of images.

In order to classify a single video, the model creates multiple predictions for multiple

frames. These predictions are combined with a strategy such as averaging to form a

prediction for the entire video.

We propose a novel dual task architecture called Eff-YNet for this task. In order to

highlight the differences between an altered face and its background, Eff-YNet performs

both image segmentation and image classification in the same network. The image

segmentation pathway is designed to segment altered pixels within the image and output a

predicted segmentation mask. The image classification branch determines if the image is

real or fake and outputs a binary classifier. Combining these two tasks allow the model to

focus on visual irregularities. The addition of the segmentation branch aims to improve

deepfake classification performance. It also produces segmentation masks that are not

commonly present in other deepfake detection methods. These segmentation masks can

be used to corroborate the classification prediction with visual evidence as well as provide

areas to examine for human observers.
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The second approach, named the sequential approach, examines a set of consecutive

frames within the video. This method is designed to examine temporal data, or how

consistent the video is between consecutive frames. Since the frames are consecutive, the

sequential model can examine motion and consistency over time where the frame based

model cannot. This approach requires video data preprocessing in order to create data in

the correct format. The video is cropped into shorter video clips containing the face. Next,

these video clips are loaded as a stack of consecutive frames into the sequential model,

creating a single prediction for a set of frames.

These two approaches target different features of the video and are combined to form

a more capable ensemble. The ensemble combines the output of the two classifiers with a

weighted average, improving the performance over the individual models alone.

1.2 Report Overview

Sections two and three survey existing work in the related fields of facial

manipulation, forged video datasets, and detection techniques. The facial manipulation

section covers both 3D modeling and deep learning based manipulation techniques.

Section three compares and contrasts different forged video datasets from different

sources. The fourth section presents detection techniques based on the types of

architecture and contributions towards advancing detection methods. Sections five, six,

and seven cover the targeted competition and rules, implementation, and results.
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2 VIDEO MANIPULATION

Video forgery involves altering a video from its original content. Different video

manipulation methods exist to change the identity of a person in digital media. Earlier

versions of these techniques require significant knowledge and effort to produce quality

results. Recent tools are more automated and produce more realistic images.

2.1 3D Modeling Techniques

Video Face Replacement [4] is one of the first automated techniques to replace faces

within videos. The technique uses a 3D model to track two faces in two different videos,

with one video being the source while the other is the target. This model is able to copy

the source face and paste it over the target face. In order for the source face to fit the new

video, the technique accounts for facial angle, motion, and alignment and warps the face

into the new position. It also calculates the best seam between the two faces and smoothly

blends them together.

The Face2face algorithm [5] aims for automated face reenactment, manipulating the

motions and actions of a person in a target video that match the motion and action in a

source video. The method tracks the facial expressions in both videos and uses an

efficient transfer between the two videos. The mouth is also warped to match the source

expression. This new target face is rendered into the target video, blending it into the

scene. This algorithm focuses on efficiency, so that it is able to work in a live set up.

Many more 3D modeling techniques exist to transfer faces. However, they require

specific post processing to produce photo-realistic output. Additionally, these models

often lack smooth motion between frames. These methods have largely favor for more

advantageous deep learning models.

2.2 GANs

Deep learning techniques are able to manipulate faces and recreate them accurately.

Two popular methods for this goal are Generative Adversarial Networks (GAN) and
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variational autoencoders (VAE) [2]. These techniques are able to learn how generate a face

in a certain pose, eliminating the need for complex modeling and extensive manual input.

Generative adversarial networks are a type of generative model which aims to take a

sample of data and estimate its probability distribution [6]. Generative models can either

define this distribution explicitly with a function or implicitly with the output of similar

data. GANs are designed to do the latter and output synthetic data that matches the

sample data distribution. Generative models are used for many tasks including data

generation, multi-modal output, and image manipulation.

GANs overcome many disadvantages of other generative models. Generative

stochastic networks and Boltzmann machines require the use of markov chains to sample

data that matches the target distribution [6], [7]. These markov chains create a new

sample by repeatedly applying transitions based on probabilistic rules to an existing

sample. This algorithm is computationally expensive and does not scale well to higher

dimensions. GANs are able to represent complex models and can generate a sample in a

single step once trained [8]. Compared to variational autoencoders, GANs generally

produce higher quality output [6]. Also, GANs are able to produce image transformations

more efficiently than other methods.

GAN architecture consists of two separate models called the generator and

discriminator. These models are typically implemented as a deep neural network such as a

convolutional neural network. A diagram of GAN architecture is presented in Fig 2.

The generator, labeled G, is the generative part of the architecture which attempts to

generate samples of data similar to the training set, labeled x. Its input is a vector, labeled

z, that is sampled from a uniform distribution [8]. This random noise vector allows the

generator to produce varied output and capture the full distribution of data belonging to

the training set.
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Fig. 2. GAN architecture.

The discriminator is the binary classification part of the architecture which helps train

the generator and shape its output. It does so by trying to distinguish between input from

the training set, labeled x, and input from the generator, labeled G(z). The input to the

discriminator is a sample of data from one of these sources, and the output is a binary

classification score. This score is 1 for so called real data and 0 for fake data.

These two parts of the GAN architecture are training in alternating steps. In this

process, both the generator and discriminator improve simultaneously. The goal of

training is to get the generator to produce realistic samples of data. If the discriminator

starts off too strong and instantly rejects data from the generator, it will have no chance to

improve. Therefore, the discriminator must start off weak and gradually improve. In the

step where the generator improves, the discriminator’s parameters, labeled θ (D), are fixed

while the generator optimizes its parameters. In the next step, the generator’s parameters,

labeled θ (G), are fixed and the discriminator updates its parameters.

The cross entropy loss that the discriminator tries to minimize is shown in equation 1.

The first term on the right side is the discriminator’s loss on a batch of data taken from

the training set. The discriminator aims to classify training set data as real. When it gives

it a label of 1, this loss goes to 0. The second term on the right is the discriminator’s loss

on data from the generator. It tries to classify this data as fake. When given a label of 0,

7



this term also goes to 0. The discriminator tries to minimize this loss through gradient

descent [8].

L(D)(θ (D),θ (G)) =−1
2
Ex∼pdatalogD(x)− 1

2
Ezlog(1−D(G(z))) (1)

The generator tries to maximize this loss by fooling the discriminator [8]. It also

optimizes its parameters through gradient descent. This optimization allows the generator

to produce more realistic data. The generator never receives samples from the training

data directly. All training is done through competition with the discriminator.

Conditional GANs extent the architecture of a plain GAN. It introduces conditions to

both the generator or discriminator. These conditions represents additional information

related to the data sample, such as a label, a classification, or an image [9]. The generator

uses the condition along with random noise to generate data. The discriminator classifies

the data by also looking at the condition and seeing if the sample matches. This condition

is normally encoded as a vector and fed into the neural network layers. This process is

illustrated in Fig. 3.

Fig. 3. CGAN architecture.
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Conditions allow greater control over the output of a GAN. For example, a plain GAN

trained with a set of handwritten numbers would produce a random set of numbers. A

conditional GAN can generate a set of the number 3 with a matching condition. This

feature along with high quality image output makes conditional GANs popular for

manipulating images [10]. Many different architectures have shown success with a variety

of conditions such as text, precursor images, and even videos. The following subsection

outline GAN architectures that can be used for manipulating faces and producing

deepfakes.

2.2.1 Deepfake CGAN Architectures

StyleGAN [11] demonstrates high quality image synthesis on a dataset of face images.

The training set that it learns to imitate is a set of high quality real faces. It also learns

different styles and features in an unsupervised manner. These features can be altered to

control the output face in features such as glasses, skin tone, and eye color.

Two-Pathway Generative Adversarial Network (TP-GAN) [12] is a GAN designed to

generate a frontal view of a face from a partial profile view of the face. It consists of a

local and global branch in both the generator and the discriminator. These branches are

able to preserve both local features such as texture and global features of identity in the

final output.

Disentangled Representation learning Generative Adversarial Network

(DR-GAN) [13] combines the task of learning a pose invariant face representation with

generating a certain pose of a face. The generator uses an encoder-decoder architecture

which learns an encoding of a face and decodes it into an image of a posed face. The

discriminator judges the generated image against real image of the correct pose. Using

this adversarial loss, DR-GAN can create a superior image over traditional methods.

Neural talking heads are another model that utilizes GANs to generate facial

videos [14]. It uses two stages of training. The first meta-learning stage learns how to
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create realistic talking heads from photos of a person. The second fine-tuning stage

rapidly learns this task for a small set of images of a person.

2.3 Deepfake Autoencoders

Deepfake autoencoders are another method of producing high quality face swaps [1].

Autoencoders were first utilized as a way to learn efficient encodings of data. The

architecture consists of two neural networks labeled the encoder and decoder. The encoder

takes in data as input and learns a smaller encoding of the data. This encoding is also

called the latent space representation. The decoder learns the inverse operation; it takes in

the encoding of the data and learns to reconstruct the original input. This technique is

useful for encoding data into smaller dimensions in an unsupervised way. The

autoencoder architecture is displayed in Fig. 4.

Fig. 4. Autoencoder architecture.

To turn this base autoencoder model into a generative model, variational autoencoders

are used [15]. It shares the same basic structure of an encoder and decoder pair with

slightly different outputs. The encoder receives the data input and encodes it into a latent

space data distribution instead of an exact representation. The decoder takes a sample

from the latent space and decodes it into the data’s original form. This change into having

a data distribution in the latent space allows the latent space variables to be more regular.

Using this technique, variational autoencoders are able to vary their latent space variables

to generate different data.

Algorithms collectively known as Deepfake utilize a form of variational autoencoders

to swap faces. These tools were originally dedicated to creating adult content where an
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actress’s face is inserted into a pornographic video [2]. These methods have no academic

source, but their code repositories are often publicly available. These unethically produced

videos received strong public backlash and brought attention to AI-manipulated videos.

While the original creator is no longer active, community developed implementations of

the algorithm persist and are popular for creating videos for entertainment.

Deepfake aims to replace the face in one source video with the face of another person.

It contains a pair of autoencoders that are trained simultaneously [1]. The encoders from

both networks share weights, so that they encode into the same latent space. The decoders

learn to generate their respective faces. Manipulation takes place by encoding the source

face image and decoding into the target face image.

2.4 Manipulated Video Datasets

Improvements in deep learning have made tools for video manipulation and synthesis

much more accessible. Publicly available applications such as DeepFaceLab [1] allow

users to create their own deepfake videos and distribute them. In order to study these

deepfake videos and evaluate detection methods, a consistent dataset is necessary to

benchmark different solutions.

The availability of forged videos is rather limited in natural settings. Furthermore, the

ethics of collecting these videos for research is questionable since the video’s subject

often cannot consent to their appearance being used in this way. Combined with the

computationally expensive production of multiple deepfakes, large datasets remain

limited. Three notable datasets in this field include FaceForensics++ [2], CelebDF [16],

and DFDC [1].

At the time of release, FaceForensics++ provided the largest dataset of deepfake

videos with more than a million extracted images from over 5,000 videos [2]. These

deepfakes were created with four different methods including deepfake autoencoders and

Face2face. These videos were sourced from public YouTube videos so they have
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questionable rights. An updated version of the dataset includes about 3,000 more videos

of paid, consenting actors contributed by Google.

Celeb-DF is another dataset that attempts to contribute to deepfake research [16]. This

dataset aims to provide higher quality data to work on. The authors note that other

datasets include poorly made deepfakes that are unlikely to fool human observers. To

improve the quality of their dataset, Celeb-DF focuses on creating realistic output. The

resolution of generated faces is increased to 256 by 256 pixels. This larger generated face

results in smaller distortion and blur when fitting the generated face into the target video.

Celeb-DF also uses post processing techniques to match the skin tone and scene lighting.

Video motion is improved with smoothing consecutive frames. However, these videos

have a public source, so licensing remains questionable.

2.4.1 Deepfake Detection Challenge

The Deepfake Detection Challenge [1] is an open challenge hosted on Kaggle, a

website dedicated for data analysis. It is sponsored by AWS, Facebook, Microsoft, and the

Partnership on AI to encourage research into.

In order to help Deepfake research, the DFDC has released a significant amount of

training data. This data is comprised of over 100,000 files containing 10 seconds of video.

This data is organized into 50 folders. The ratio of real to fake videos is approximately

1:4. The fake videos are manipulated through different and unrevealed methods. These

methods vary in output quality and represent real world attacks. A sample of various faces

from the dataset is shown in Fig. 5.

Any submitted model is tested against a hidden public test set. This test set contains

videos similar in source to the training set with additional augmentations. These

augmentations include frame rate reduction, resolution reduction, and lower encoding

quality. The hidden nature of the test set makes it difficult to properly validate a model

using just the training set.
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Fig. 5. Sample data from DFDC dataset.

The main limitation placed on the computational model within the competition is a

limited run time. The competition encourages training the model outside of Kaggle, but

requires the final solution to run inside of a Kaggle Notebook. Once submitted, this

notebook will run against a test set of 4,000 videos. The computation is limited to 8 hours,

so the inference solution must classify a video under an average of 6 seconds.

Furthermore, users can only submit two models a day to prevent error probing. The time

and limited amount of submissions make it difficult getting reliable feedback on the

private test set.

To judge the final performance at the end of the competition, two selected models

from each competitor is judged against a private test set. This test set represents a greater

variety of video, meant for simulating real world use cases. These videos are sourced

from real, organic videos and are hosted outside the Kaggle platform. For this project,

only the publicly available training set is used for training and results.
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3 CLASSIFICATION METHODS

Parts of section 3 also appear in this project’s conference paper [17], which has been

accepted for publication in IMCOM 2021.

Detection methods designed to detect these fake videos are necessary for information

security. While deep learning is used to create these videos, it is also used in automated

detection. Classification models for forged videos often use a convolutional neural

network (CNN) approach due to their state of the art performance in image recognition

tasks. There are numerous proposed models aimed at detecting manipulated images

ranging from simple to complex.

A task related to image classification is image segmentation. Instead of assigning a

label to the entire image, an image segmentation model outputs a prediction for each

individual pixel. This output has the effect of annotating the image with different labeled

regions. We introduce U-Net as a modern image segmentation architecture.

Since these forgeries consist of video data, multiple methods exist for approaching

this problem. One approach described as frame by frame is to process the video into

individual frames and treat them as images for an image classification model. The model

outputs a classification score for each image. These scores are combined to form the

classification for the entire video.

Another method is to use a sequential approach to the data. The video is processed

into a sequence of frames. A model is able to take this sequence of frames and make an

overall classification. This approach has the advantage of using temporal data within the

video.

3.1 Frame by Frame Architectures

These frame based architectures share significant overlap with image recognition

models. While image recognition tasks typically classify multiple classes, this problem

simplifies it to binary classification. This task still remains challenging as the visual
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Table 1
Selected Deepfake Detection Methods

Model Name Architecture Type Input
MesoNet [3] Custom 2D CNN Images

HeadPose [18] SVM Images
Xception-c23 [2] Generic 2D CNN Images
Multi-Task [19] Custom 2D CNN Images, Masks
Emotion [20] DFDC Video, Audio

ResNet 3D [21] 3D CNN Video
Eff-YNet (New) 2D CNN with U-Net Images

difference between real or fake is more subtle than object recognition. These detection

methods are designed to recognize small differences and artifacts of facial manipulation

methods. The generated faces may contrast with the background. They may also have

blending artifacts between the face and the rest of the person. A few popular 2D CNN

architectures include MesoNet, XceptionNet, and EfficientNet. A general overview of the

2D CNN architecture is shown in Fig. 6.

Fig. 6. 2D CNN architecture.

MesoNet is a CNN based detection method designed for detecting Deepfake and

Face2Face manipulations. The design of MesoNet comes from analyzing mid-level

features and only examines cropped faces from the source video. Small details of the

forged video may be lost in compression while high level features will generally be

correct even after manipulation. The architecture uses a deep neural network with a small

number of layers to focus on the right level of detail.
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A subsequent researcher uses a more complex model with higher performance called

XceptionNet, which uses depth-wise separable convolutional layers with residual

connections. This architecture was originally designed for general image classification, so

it can receive the entire video frame as input. When adapted for facial manipulation

detection, this network performed better than MesoNet [2]. However, it suffers from long

training time and higher model overhead.

EfficientNets are a newer family of CNN models aimed at providing efficient scaling

of resources. By balancing model width, depth, and resolution, EfficientNets outperform

other models with a comparable number of parameters. There are eight different sizes of

EfficientNets ranging from B0 at the smallest to B7 at the largest. These CNN models

perform well on general image classification so it is natural to adapt these to detect

Deepfakes.

ForensicTransfer is a more specific approach to classifying Deepfakes. This solution

emphasized generalization between different Deepfake datasets. Instead of a CNN based

model, it uses an autoencoder architecture consisting of an encoder and decoder. This

model learns a feature representation of a facial image and compares it to a cluster of real

faces. If the features are sufficiently distant from the cluster, it is classified as fake. This

model performs comparably well to 2d CNN models when trained and tested on the same

dataset. When tested on a new dataset, ForensicTransfer has a significant advantage.

3.2 Sequential Architecture

Sequential methods utilize a sequence of frames to detect fake videos. These methods

make use of temporal data as well as expected consistency between frames. These

approaches are much more varied in architecture. Some popular methods include 3D

CNNs and recurrent neural networks (RNNs).

A model with a recurrent neural network can target certain weaknesses within the

video movement and behavior [22]. A RNN considers previous frames as well as the
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current frame to generate output. The final output of the model is based on each frame of

the entire video, allowing it to examine behavior over time. The basic form of the RNN

uses the output from the previous data point as an additional input for the current

datapoint. Fig. 7 illustrates a single RNN cell.

Fig. 7. RNN architecture.

One problem in the basic RNN architecture is that it does not model long range

dependencies well. Earlier data points may be important, but their effect is reduced over

time. Long short term memory (LSTM) is a type of RNN architecture that is able to retain

data within a sequence. In addition to the output that is propogated between data points, it

also keeps track of a cell state. This cell state undergoes fewer functions than the model

output, allowing data to be retained.

For instance, early versions of Deepfakes failed to account for the human behavior of

blinking. Using cropped images of the eyes in a video, a model that utilizes long-term

recurrent convolutional network (LRCN) can be trained to detect the number of times the

subject blinks in the video [23]. Next, the model can compare the detected blinking to an

estimated rate of 17 blinks per minute. The model decides if the video is real or fake

based on this comparison.

Other models utilizing recurrent neural networks examine the general temporal

consistency within the video. The frame-to-frame transition of generated faces may have

artifacts from the generation process. Examining these with an appropriate model can

differentiate real and fake videos.
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Head Pose [18] is a model that examines inconsistencies in 3D head poses within

videos. The model crops and detects facial landmarks within the video. Next, the model

estimates the 3D pose of the facial landmarks. In poorly made deepfake videos, the 3D

pose of the face does not align correctly with the rest of the head. The estimated 3D pose

is fed into an SVM classification model to determine if the video is real or fake.

3D CNNs have proven to be useful in video classification [24], [25]. These models

take in a short clip of video and automatically classifies the action being performed in

them. Recent work has adapted these networks for deepfake detection [21]. These

networks focus on temporal features present in videos such as consistency between

frames and human movement. An example of 3D CNN architecture is illustrated in Fig. 8.

Fig. 8. 3D CNN architecture.

A model that examines human emotion [20] within video and audio has also shown

promising results. Two paired networks examine the emotions present within the face and

audio. The output of these two models are compared. If they are different enough, the

model classifies the video as fake.

3.3 Segmentation Architecture

Image segmentation is a closely related field to image classification. This task

involves identifying manipulated regions within an image. Instead of outputting a singular

label, these models can produce a bounding box containing an object or a semantic mask

of the image. This mask represents the image, where different classes are shaded in
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different colors. Image segmentation is commonly used in fields of medical imaging and

traffic object detection.

U-Net [26] is one popular model for image segmentation. Earlier segmentation

methods used a sliding window approach, where the image was divided into different

overlapping patches. A deep learning model would then classify the center of each patch

based on its surroundings. The sliding window approach was costly and slow. The U-Net

architecture attempts to address these problems with an autoencoder, consisting of a

downsampling encoder and an upsampling decoder as illustated in Fig. 9.

Fig. 9. U-Net Architecture.

Since the decoder increases the size of the output to match the input, these sliding

windows were no longer needed. The U-Net also contains skip connections between the

encoder and decoder. These connections carry information between encoding and

decoding layers of the same size, ensuring structural information is not lost within the

bottleneck of the encoder. This feature allows the decoder to upsample the encoded

features into a segmentation mask more accurately. This architecture represents a U shape

with the encoder descending on the left and the decoder ascending on the right.
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Since EfficientNets show state of the art performance in image recognition tasks, it is

beneficial to include them as an encoder. Eff-UNet [27] is a recent model combining the

effectiveness of an EfficientNet B7 model in a U-Net for fine grained segmentation. This

model was tested on road traffic images and won first place in the IDD lite segmentation

challenge for AutoNUE 2019. Our proposed model adapts Eff-UNet to deepfake detection

and segmentation.

Y-Net [28] is an extension of the U-Net architecture which adds a classification

branch to the end of the encoder. This combined architecture was originally created for

segmenting and classifying breast biopsy images. The U-Net portion segments the image

into cells of different type. The classification branch takes the encoded features and

classifies the image as benign or malignant. The authors found that this model was

effective in handling both tasks at the same time. We adapt this model for our deepfake

detection architecture.

3.4 Multi-Task Learning

Incorporating a segmentation model into a detection method has been shown to

improve performance before in detecting Deepfakes. Information gained through the

segmentation branch and classification branch is shared throughout the model, improving

the performance of both branches [19]. One multi-task learning approach combines three

different tasks to identify and segment manipulated faces in video. The multi-task model

is designed to output a classification, segmentation, and reconstruction of the image. The

loss for all three of these tasks are summed up with equal weights to form the total loss.

This model is trained to minimize the total loss, so it will learn all three tasks

simultaneously.

Multi-Task learning has promising results, but more research is needed to advance the

model. The existing model uses a simple segmentation and classification branch, leaving

room for improvement. Using a more advanced segmentation model would improve
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results. My proposed model would combine a segmentation model that utilizes U-Net

with a classification branch. These two tasks are related for detecting Deepfakes and

altered digital media. Using an advanced CNN within the U-Net could strengthen the

model as well. EfficientNets are state-of-the-art and can be adapted for this use.
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4 ARCHITECTURE IMPLEMENTATION

We developed two distinct pipelines to detect and classify deepfake videos. The first

pipeline is the frame based approach, which divides the video into individual frames.

These frames serve as input to a 2D CNN. The second pipeline is the sequential approach

which uses a short sequence of frames as the preprocessed input for each video. This

sequence of frames

Each architecture contains two main parts. The first part processes videos within the

dfdc dataset into face centered data used as input. This process requires reading in each

frame, detecting and aligning the faces with a face detector, and saving the result in the

correct format. The second part of the architecture uses

4.1 Frame Based Implementation

The frame based approach transforms the videos into a set of frames. Deep learning

classification models take these individual frames as input and generate a classification.

The classification for an entire video is made from the average of its frames. In this

subsection, we describe a pipeline that generates both frames and masks that highlight the

altered pixels. The pipeline then uses a novel dual task architecture called Eff-YNet to

predict the classification and segmentation mask based on the frames. The pipeline is

illustrated in Fig. 10.

Fig. 10. Eff-YNet detection pipeline.
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4.1.1 Face Extraction

The face extraction module is designed to process the video into both frames and

masks which are used by the Eff-YNet model. We use the opencv package to open and

read the frames from each video. Since it would be impractical to extract all frames of

each video for training, we extract 30 frames per video. There are many ways to sample

30 frames out of the 10 second video. One method is to choose 30 consecutive frames out

of the video. These frames would contain information on motion over time, but offers a

limited portion of the video to view. For the frame based method, we sample 30 evenly

spaced frames from the video.

We used the MTCNN face detector in the facenet-pytorch package to identify and

crop faces within a video frame. This detector was chosen for its combination of speed,

accuracy, and integration with PyTorch. This face detector uses cascaded CNNs in a three

stage process. The first stage rapidly produces candidate windows or bounding boxes. The

second stage refines these candidates and rejects false positives. The third stage outputs

the detected face as well as facial landmarks. MtCNN allows the use of batches as input,

so we collect 30 frames to input into the face detector at one time.

Once the face is detected, the pipeline calculates a bounding box with a margin that

adds 30 percent of the original length to each side. This margin allows the crop to include

more of the background, which is useful in identifying out of place altered pixels. Next,

these bounding boxes are cropped and are saved as a png file in its original resolution.

The model resizes these crops at training and test time.

Real videos and their corresponding fakes share identical frames at the same

timestamps. Only the faces are modified between videos. To efficiently process the data

and ensure consistency, bounding boxes are only calculated for real videos. The

corresponding fake videos use the same bounding box at the same time stamp to generate

a crop of the face.
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4.1.2 Segmentation Mask Generation

For the Eff-YNet architecture, we aim to create a model that segments altered pixels

from real ones. We train the model with target segmentation masks to achieve the goal.

These masks are generated through finding the pixel-wise differences between the original

and manipulated videos. The segmentation target for an original video is an empty mask.

The segmentation target for a fake video is a mask of the altered pixels.

Fig. 11. Segmentation mask generation.

We use structural similarity index (SSIM) to generate the real segmentation masks.

The SSIM metric aims to measure visually perceivable differences between two images

based on the surroundings and value of each pixel. More different pixels are giving a

greater value in the range of 0 to 255 in the mask. For use in our segmentation model, We

use a threshold of 50 to convert the SSIM mask into a binary mask with 0 for unaltered

and 1 for altered. An example of mask generation is presented in Fig. 11.

4.1.3 Eff-YNet Implementation

We propose Eff-YNet to classify Deepfakes. This model aims to identify the pixelwise

differences between real and fake. Eff-YNet derives its name from the combination of a

strong 2D CNN called EfficientNet B4 [29] with a UNet segmentation model [26]. A

classification branch is added to this combination, creating a YNet. A diagram of the

Eff-YNet model is presented in Fig. 12. The model takes in an input image of size 384 x
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384 and predicts both a classification and segmentation mask. While other input sizes are

usable, we chose this size since it is close to EfficientNet B4’s native resolution of 380 x

380. This size is also divisible by 32, a requirement of the UNet implementation.

Fig. 12. Eff-YNet model architecture.

For this model, we start with an EfficientNet B4 CNN model as the encoder. This

encoder takes in the image as the input and outputs a number of features which represent

an encoding. These features are fed into a classification branch and a segmentation branch.

The classification branch consists of a fully connected layer which takes this features and

makes a binary classification. The encoder and classification branch combined are

identical to the baseline architecture, which also uses EfficientNet B4. On its own, this 2D

CNN is able to classify deepfake images with reasonable accuracy. The addition of the

segmentation branch improves training and allows the model to focus on pixel differences

between altered areas and the original image.
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The segmentation branch referenced above is also called the decoder. It performs the

nearly the inverse task of the encoder. Starting with encoded features, it recreates the

original image as a segmentation mask. This decoder is attached to the EfficientNet CNN

within the U-Net architecture. The decoder receives additional intermediate features with

skip connections. These skip connections connect corresponding layers in the encoder and

decoder which allows the decoder to use contextual information in its recreation of the

original image. This architecture is implemented with the segmentation models pytorch

library.

The goal of this model is to train the model to identify altered pixels in order to

generalize better. Simply training a 2D CNN model may cause over fitting due to

recognizing faces. By adding the segmentation masks, the model can learn features of

altered areas and segment them, rather than looking at the identity of the person. These

tasks are able to learn from each other due to the shared encoder. We also test an

EfficientNet B4 model as a baseline for comparison.

4.2 Video Based Implementation

The video based approach processes each video into smaller video clips that are

cropped around the detected face. Next, consecutive frames in these clips are stacked to

create a 3D input. The classification model for this 3D input is a 3D CNN called ResNet

3D. We also test a similar, related architecture called ResNet(2+1)D. These 3D CNNs

operate similarly to the 2D CNN classification models, but also add time as an additional

dimension. This addition allows the model to examine spaciotemporal features such as

consistency and motion between consecutive frames. These 3D CNNs can take a variable

number of frames. We chose to use 32 consecutive frames of 112 x 112 resolution each to

balance batch size and training time.
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4.2.1 Video Clip Extraction

The 3D CNNs expect a video-like stack of consecutive frames as the input. However,

we also wish to emphasize the face in each video, cropping out the irrelevant areas. If we

use consecutive crops generated with the frame based face extraction, it would cause the

background to move while the face stays in the center of the frame.

In order to generate a cropped video clip, we use regions of interest that are available

on github [30]. These bounding boxes are made with a face extraction algorithm that

samples frames throughout the video. These frames serve as the input to an MtCNN face

detector, which generates a list of bounding boxes. The algorithm then detects stacks of

bounding boxes which overlap, which represents a single person’s face moving over time.

Then, it calculates a larger bounding box which contains the entire overlapping stack.

This large bounding box is cropped for consecutive frames, so the background stays static

while the face moves between frames. The crops generated from the video are saved as an

mp4 clip.

4.2.2 ResNet 3D Implementation

For video classification, we implement ResNet 3D and ResNet (2+1)D as provided by

the torchvision library. These models have shown success in video task recognition. We

adapt these models for binary classification, training them to distinguish between real and

fake videos.

The video clips produced by the algorithm above contain various lengths, resolutions

and aspect ratios. For use in the model, these clips are altered at training and testing time.

We extract 32 frames per video clip to standardize the length. Each frame is padded into a

square aspect ratio and resized to 112 x 112.

These 3D CNN models are designed to examine consecutive frames in a sequence. It

examines consistency and smooth motion that deepfake videos have difficulty

demonstrating.
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5 TRAINING

5.1 Validation Split

The training data underwent an 80-20 validation split based on folders. Folders 37-47

were chosen for validation. The remaining folders numbered from 0 to 50 were chosen for

training. In the training data, the source and manipulated videos are constrained to the

same folder. However, the actors and actresses in the video may appear in multiple

folders. This property causes a minor validation leak, but it is minimized through the

folder-wise validation.

5.2 Augmentations

We found that augmentations are necessary to prevent the model from overfitting. The

high tendency to overfit may be due to the model learning how to recognize faces rather

than identity-independent features. To combat this, we use a strong set of augmentations

as well as selective cutout.

Augmentations include flips, rotations, contrast adjustments, and image compression

to simulate variety in collected videos. These augmentations allow the model to train for

many epochs and avoid overfitting. The different augmentations are applied randomly for

each image. In the video dataset, a consistent augmentation is applied to frames from the

same video so it does not affect the consistency within a video.

The cutout augmentation is designed to reduce the model’s attempts to learn specific

identities in the model. We use both landmark cutout as inspired by the first place

solution [31] and random cutout. The landmark cutout removes one of the nose, eyes, or

mouth as bounded by the face detection model. The random cutout removes a 128 x 128

region from the image. The landmark cutout was applied at a higher rate than the random

cutout, 60 percent and 10 percent respectively.
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5.3 Hyperparameters and Loss

We found a low learning rate of 1e-4 was effective for our models. Too high of a

learning rate prevented the model from converging, possibly due to the separation of the

encoder and decoder. The training loss would oscillate too wildly for the model to make a

confident prediction. We used an Adam optimizer to train the models.

For the U-Net model, both the segmentation and classification branches were trained

simultaneously. The segmentation loss is dice loss between the predicted and actual

segmentation mask. The classification loss is binary cross entropy loss between the

predicted and actual classification. The total loss for the model is the average of these two

losses.

5.4 Batch Sizes and GPU Memory

All models were trained on a system with a Nvidia Geforce 2080 TI GPU with 11GB

of memory. In order to train them with GPU acceleration, the models, input data, and

training gradients must fit into the GPU’s memory. Due to this limitation, model size and

training batch sizes must be considered to balance training time with performance. A

table of model memory requirements during training is presented in Table 2.

Table 2
Model Parameter and Memory Size

Model Trainable Parameters Input Size (MB) Total Size (MB)
Eff-YNet 19,476,890 1.69 2066.79

EfficientNet 2D 17,550,409 1.69 1627.18
ResNet3D 33,166,785 4.59 1221.37

ResNet(2+1)D 31,300,638 4.59 3117.69

The 2D pathway models of Eff-YNet and the baseline models have a batch size of

eight, consisting of eight RGB images of size 384 by 384. Larger architectures such as

using EfficientNet B7 as the encoder were possible, but it took much longer to train when

reducing the batch sizes.
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The 3D pathway models of ResNet3D and ResNet(2+1)D had a batch size of 4, with

each input consisting of 32 consecutive images of size 112 x 112. We chose this

resolution since pretrained models were available with this input size. Increasing the

number of consecutive frames and the input size may increase performance, but since the

video clips must be processed as a whole, it is more difficult to fit into memory compared

to the 2D pathway.
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6 DEVELOPMENT OF MODEL

In developing the final solution, the overall pipeline went through multiple iterations

of classification models, training methods, and datasets. Since it would be difficult to

directly compare all the methods without extensive ablation studies, the development of

detection techniques are presented here. These intermediate results were essential in

developing our final, proposed models and methods.

6.1 Initial Baseline Models

6.1.1 Deepfake Faces Dataset

While all the datasets used in this project originate from the DFDC video dataset, the

process of extracting faces and frames affect their quality. Differences in margin, resizing,

and frame spacing can influence how a model fits to the data.

THe first dataset used in developing a detection method is the deepfake faces dataset

publicly available on kaggle. It contains a face crop from the first frame of each video as

detected by the python face recognition package based on dlib. It excludes about 20

percent of the training videos where no face or multiple faces were detected. These crops

are then resized to 224 x 224 and saved as a png. This collection was chosen for its early

availability and compatibility with pretrained models.

However, it has many downsides compared to future models. The dlib face extractor

processes single frames at a time and had slow performance. Furthermore, the crops were

resized without regard to the original aspect ratio. This resizing resulted in stretched faces,

making it harder for the model to have a consistent crop. The faces also included no

margin, so the image often cuts off the edges of the face.

Since the DFDC dataset is heavily unbalanced, containing far more fake faces than

real faces, we experimented with balancing the data by adding more real faces. To do this,

we added real faces from the Flicker Faces High Quality (FFHQ) dataset to the deepfake

faces dataset. Initially, this technique seemed promising as we could use all the fake
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videos within the DFDC while adding even more real faces to train on. Training the

model on this combined dataset also produced good results, as the training and validation

loss decreased compared to the original dataset. However, testing these models on the

original DFDC dataset showed worse results. We suspect that the FFHQ dataset has major

differences compared to the fake faces in the DFDC dataset, allowing the model to easily

detect these real faces. This attempt at balancing inflates the score while decreasing actual

performance.

6.1.2 2D CNN Model

The initial classification models consisted of 2D CNNs to act as a baseline and quick

proof of concept that deep neural networks fit the data suitably. The first model is ResNext

from the ResNet family of CNNs. The input size of this model matches the 224 x 224

resolution of the deepfake faces dataset, the first easily available dataset that we collected.

The second model, XceptionNet, was also tested on this model. This model was chosen

for its use as a baseline in other publications and increased resolution of 299 x 299.

These models started to weakly fit the training data after many epochs and performed

poorly on validation. We suspect that the performance can be improved with increased

resolution, more data, and more complex models.

6.2 LRCN Pipeline

The next class of model that we implemented is the Long-term Recurrent

Convolutional Network (LRCN) which aims to add examining temporal consistency to

the 2D CNN model. The LRCN model was originally designed for video activity

classification. It consists of two parts: a 2D CNN and a long short-term memory model

(LSTM). The 2D CNN base converts each frame of size 224 x 224 into a set of 1792

features. Next, the LSTM model takes in a list of frame features and outputs a list of

outputs, one for each frame. We feed the final output representing the last frame into a
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fully connected layer to create the final prediction. An overview of the LRCN architecture

is presented in Fig. 13.

Fig. 13. LRCN pipeline.

6.2.1 LRCN Dataset

The second dataset is the lrcn dataset which was designed for use in sequential

models. Sequential models use multiple frames to create a prediction, so this dataset

contains 10 faces per video. This dataset uses the MtCNN face detector implemented in

the facenet pytorch package. The video is sampled at 10 equally spaced frames, and the

first face returned by the face detector is cropped. If less than 10 faces were cropped, the

video is resampled at different points to obtain the requisite number of frames. These

crops are resized into 224 by 224 pixels.

This dataset has small improvements over the previous one. It uses MTCNN as the

face detector, which performs faster and more accurately than the dlib face detector. It

also has multiple frames per video and includes videos with multiple faces detected.

However, these crops use little margin, resulting in a zoomed image of each face.
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6.2.2 LRCN Model

The LRCN model aims to model long range temporal dependencies over multiple

frames. We chose to train the model using 8 frames per video due to space and time

constraints. The model consists of a 2D CNN encoder and a RNN decoder. The 2D CNN

is a pretrained EfficientNet B4 model with an input size of 224 by 224.

EfficientNets are a family of models that are designed for efficient scaling. There are

eight different models varying in size, labeled from B0 to B7. For this project,

EfficientNet B4 was chosen for its balance of parameters and accuracy. The encoder is

initially pretrained on the ImageNet dataset. When we tested the model with all weights

randomized, we found that it would not converge in a reasonable amount of time.

The encoder outputs 1792 features per image which is then fed into the RNN decoder.

The RNN is a LSTM model which takes in a stack of features from 8 frames. The final

prediction is made with the LSTM’s output on the final frame, after it has seen the

features of the prior 7 frames. The LSTM outputs 256 features at the final frame. These

features are fed into two sequential fully connected layers. These layers combine the

features and output the final prediction. This LSTM adds temporal modeling capability

over the baseline model. This model hopes to classify real and fake videos based on

consistency of faces as well as quality over time.

We found that the LRCN model was able to fit the training data well, but overfit

rapidly. The improvements in validation loss stagnated after a few epochs. We suspected

that this overfitting was inherent in the LRCN model, since it relies on a 2D CNN to first

extract the features. The LSTM decoder which models time dependent features only

works on the extracted features, so it is limited to what it can see. Furthermore, the data

generation is mismatched since the frames are not consecutive and rely on the face

detector for framing.
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7 RESULTS

Parts of section 7 also appear in this project’s conference paper [17], which has been

accepted for publication in IMCOM 2021.

For frame level inference, evaluate the Eff-YNet model as well as a baseline

EfficientNet B4 model with area under ROC curve (AUC) for the validation set. The ROC

curve is illustrated in Fig. 14. The baseline model trained quickly and fit the training set

well, but produced slightly worse results for the validation set. The Eff-YNet model took

longer to train, but yielded improvements in classification over the baseline model.

Fig. 14. Frame level ROC for tested architectures.

For video level validation, we adapt the two frame based methods above by averaging

their predictions on 16 frames per video. We also examine the 3D CNN models of ResNet

3D and ResNet (2+1)D as well as an ensemble. This ensemble consists of the weighted

average of Eff-YNet and ResNet 3D. Eff-YNet is weighted as twice the weight of ResNet

3D due to its greater performance.

We benchmarked our results against other methods that test the DFDC dataset. These

results are summarized in Table 3. Since the DFDC dataset is fairly new, direct
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Fig. 15. Video level ROC for tested architectures.

comparisons are limited. We describe 4 methods which are tested in [16] as well as a

recent video method [20] that utilizes emotional cues.

1) MesoNet [3] is a 2D CNN based detection method. It is specifically designed to

detect deepfake videos with a midsized network.

2) HeadPose [18] uses an SVM classifier to detect inconsistencies in head poses and

angles.

3) Xception-c23 [2] is a general purpose 2D CNN adapted to detect deepfakes on the

FaceForensics++ dataset.

4) Multi-Task [19] utilizes a 2D CNN with a segmentation and reconstruction branch. It

uses these tasks to aid in training and detecting deepfakes.

5) Emotion [20] uses Siamese networks to evaluate both face and speech emotion at the

same time and detects deepfakes on how well the emotions match. The AUC score

for this model is based on video-level predictions.

It is important to note the differences in training and testing environments in order to

make a fair comparison. The results for methods 1-4 were created using publicly available
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Table 3
AUC Scores for DFDC

Model Training Dataset Inference Type AUC %
MesoNet [3] Unpublished Frame 75.3

HeadPose [18] UADFV [18] Frame 55.9
Xception-c23 [2] FaceForensics++ [2] Frame 72.2
Multi-Task [19] FaceForensics++ Frame 53.6

Audio-Visual [20] DFDC Video 84.4
EfficientNet B4 DFDC Frame 93.0

Eff-YNet (Frame) DFDC Frame 95.6
Eff-YNet (Video) DFDC Video 98.7

ResNet3D DFDC Video 96.3
Eff-YNet/ResNet 3D Ensemble DFDC Video 99.2

code and weights in [16]. Since the tests are not done by the original authors of each

model, we rely on the faithful adaptions to compare our results. Furthermore, these

models are trained on different datasets such as FaceForensics++ [2] and tested on a

subset of the DFDC Dataset. Our model was both trained and tested on subsets of the

DFDC dataset, so we would expect better results. Both our model as well as models 1-4

report a frame-level AUC, where results for each video frame are included.

The Emotion model [20] operates on video-level results due to using video input. The

authors note that they select 18,000 random samples from the DFDC dataset. Since this

model both trains and tests on the DFDC dataset, we believe it serves as a fairer

comparison compared to the other benchmark models.

7.1 Segmentation Results

Our model also produces valuable segmentation results that are not present in other

models. Since most work in deepfake detection focuses on classification, we could not

find a comparison for our quantitative segmentation results such as dice loss. Instead, we

examine the predicted segmentation masks qualitatively.

We find that the segmentation mask prediction generally matches the classification

prediction. If the predicted mask is empty, the model predicts the image to be real. If
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Fig. 16. Sample segmentation results.

there is a large predicted mask, the model is confident that the image is fake. We present

selected results of the segmentation output in Figure 16. The model tends to produce

correct results on larger and clearer images, while incorrect results seem to stem from

blurry and small source images.

These segmentation masks are useful in understanding how the image influences

Eff-YNet’s classification label. It is able to identify the areas in the image that may be

altered by a deepfake algorithm. These results may be useful in real-world applications as

well. If a video is suspected of being a deepfake, the segmentation output can identify the

faces and areas that are manipulated. This feature poses an advantage over other

classification schemes.
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7.2 Discussion of Results and Limitations

The Eff-YNet approach seems promising as it generalizes well and avoids overfitting

the data. The Eff-YNet approach detects deepfakes based on differences between real and

fake regions and produces useful segmentation masks. We used a multitude of

augmentations ranging from random crops, contrast and brightness adjustment, and

cutting out part of the image. These augmentations encourage data diversity and

generalization since the same image can be augmented in different ways. Cutout seemed

to slow the training rate, but also improved the final result. This result suggests that

preventing the model from identifying specific faces allow it to focus on pixel level

differences.

This model is only trained on the DFDC dataset, which includes both real and fake

versions of each video. We utilize these pairs of videos to create segmentation masks, but

pairs of videos may not be always available in different datasets. The core concept of

segmenting altered regions from real regions may also be more difficult as deepfakes

improve. Detection methods that utilize harder to model features such as temporal

consistency [21] or emotional cues [20] would have an advantage with more complex

deepfake generation.

While Eff-YNet uses visual features to identify deepfake videos, it does not take

temporal features and consistency into account. In order to incorporate these features, we

also include 3D CNN models trained on the DFDC dataset, namely ResNet 3D [25] and

ResNet(2+1)D [24]. These models rely on short clips of video to detect any digital

alterations. The ResNet 3D model performs 3D convolutions while the ResNet(2+1)D

model imitates 3D convolutions with separate 2D and 1D pathways. These two pathways

represent spatial and temporal features respectively.

We found that these 3D models fit the data better than LRCN models in our initial

testing, supporting other research results [21]. These 3D models do not outperform
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Eff-YNet and the baseline in video level AUC scores. However, combining ResNet 3D

and Eff-YNet in an ensemble yielded improvements, despite the lower score. It is

interesting to note that combining Eff-YNet with the baseline EfficientNet model did not

improve the score. These results suggest that it is advantageous to rely on multiple

approaches to detect deepfake videos.

7.2.1 Model Size Limitations

Training complexity and memory efficientcy must also be taken into account. In the

field of CNN-based classification models, the number of trainable parameters is positively

correlated with model performance. Therefore, we should expect performance increases

with larger models.

The baseline EfficientNet B4 model produces comparable classification results at a

much smaller model size and training time. If deepfake classification is the only desired

result, a larger 2D CNN model may prove to be better than an Eff-YNet of comparable

size. 3D models offer a unique approach, but require much more space since they must

process an entire video clip instead of individual images. It is likely that they

underperform 2D solutions of comparable size.

7.2.2 DFDC Competition Winners

The DFDC competition winners are the best performing models in this area of

deepfake detection. Even though they are not formally published and not benchmarked to

a public data set, the winning architectures are described in detail online. It would be

beneficial to compare proposed models to these winning solutions.

The fifth place winning architecture [30] used an ensemble of multiple 3D CNN

models and a few 2D CNN models. By using differently trained models with different

input, they were able to create a well rounded ensemble capable of generalizing well.

The first place solution [31] used an ensemble of five EfficientNet B7 models. This

surprisingly simple architecture shows the power of using larger models that utilize space
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efficiently. The raw computing power of these 2D CNNs were able to detect deepfakes

from single images alone, averaged over a whole video. This solution’s performance

shows that scaling up simple solutions is comparable to using more complex methods.
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8 CONCLUSION AND FUTURE WORK

Facial manipulation methods utilize traditional 3D modeling and computer graphical

methods to change the facial identity of people in videos. Deep learning models can also

alter facial images to a high degree of accuracy. This technology may possibly be used for

malicious intent such as misrepresenting a political figure. Current manipulation

techniques are difficult for humans to identify, so automated detection methods are

needed to identify fake videos. Currently, convolutional neural network based

classification models are able to identify facial manipulation with reasonable accuracy.

Classification models exist for known manipulation methods, but these models are

vulnerable to newer attacks. Models need to detect a wide range of facial manipulation

techniques to implement effective detection. Benchmarks and challenges such as the

Deepfake Detection Challenge promote competition and stimulate research into this field.

In this paper, we present and evaluate a novel Eff-YNet architecture for both

classifying and segmenting video frames. This model utilizes inherent differences

between the altered faces and the background image to identify deepfake videos. This

model is evaluated on the Deepfake Detection Challenge dataset and compares favorably

to recent detection methods. Furthermore, our model produces valuable segmentation

results that identify possible altered regions and explain the classification label. We also

evaluate a ResNet 3D model that also performed well on videos. An ensemble of these

two methods yielded better results than each model alone.

Further research is needed to create a robust model that can handle different deepfake

generation algorithms. The Eff-YNet model is limited to examining visual differences

within individual frames. Other models [20], [21] can incorporate more complex features

such as audio, motion, temporal consistency, and emotion. Currently, our 3D CNN model

of ResNet 3D can model temporal features and provides reasonable accuracy. This model

addresses weaknesses in the Eff-YNet model and improves the performance in an
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ensemble. In the future, we would also like to test our Eff-YNet model on different

datasets and compare the results with other state of the art methods.

The winners of the Deepfake Detection Challenge also provide promising research

direction. The top five solutions in the competition all had varying model architectures

and briefly presented their results at CVPR2020. The first place solution [31] surprisingly

used a relatively simple architecture of ensembled 2D CNN EfficientNets. These top

solutions created for DFDC will prove useful in creating robust detection methods.
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