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ABSTRACT 
 

The most common synthetic polymers used for enhanced oil recovery (EOR) are 

polyacrylamide (PAM) and partially hydrolysed polyacrylamide (HPAM). Improving the 

performance of these water-soluble polymers would involve satisfying various 

specifications, including good solubility in water, good injectivity, and the polymer 

solution’s ability to maintain relatively optimum viscosity under the influence of 

challenging reservoir conditions such as high temperature, shearing and high water 

salinity during EOR polymer flooding applications.  

The mechanisms of PAM performance and stability under reservoir conditions are not 

clearly understood. In addition, a satisfactory technique for laboratory to evaluate, 

optimise and enhance the polymer performance before EOR applications integrated 

from laboratory is still not available. 

In recent times, the oil industry has shown increasing awareness towards maintaining 

optimum polymer selection and stability under reservoir conditions for the EOR 

applications through cost effective and better polymer design. 

This thesis presents a new synthetic approach called the polymer integrated technique 

(PIT) which can predict impact of environment and operational conditions on polymer 

performance and improve stability of PAM from extensive laboratory measurements 

carried out on formation water and polymers. 

In this study, the results of in-depth experimental research into polymer stability at 

elevated temperature, moderate and high salinity, different shear rates and ageing 

time and the relationships between them are presented. Correlation analysis was first 

conducted to determine the safe maximum temperature point (SMTP) for PAM in 

saline solution. It was found that different saline solutions like NaCl, CaCl2 and 

NaHCO3 possess different SMTPs. The proposed correlations provide a means of 

predicting the stability of PAM for reservoirs with different temperature, salinity and 

shear rates conditions. The effectiveness of the application of PAM in hydrocarbon 

reservoirs at different operational conditions was then investigated.  

Polyvinylpyrrolidone (PVP) and 2-acrylamido-2- methylpropanesulphonic acid (AMPS) 

was incorporated at different stages into the optimized polymer solution to stabilize 

and improve performance of PAM solutions at high temperature and extremely high 



v 
 

water salinity. The Fourier transform infrared (FTIR) and Nuclear Magnetic Resonance 

(NMR) were utilised to determine the degree of hydrolysis of the integrated PAM, PVP 

and AMPS polymer solution. Fann model 35 Couette and a Cole Parmer, were utilized 

to measure solution viscosity at different shear rates. 

A number of results are presented to illustrate how the new PIT can be used to 

characterize and optimise best fit mixture composition selection, evaluate polymer 

performance and stability. The PIT is useful as a design and analysis technique for 

EOR applications in the lab and in the field. Recommendations are also made for 

further work on this fascinating field of study based on polymer integrated technique 

developed in this research. 
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CHAPTER 1: INTRODUCTION 

 

1.1 Overview 

 

In petroleum recovery, 67% of the original oil in place (OOIP) remains in reservoirs 

after application of conventional primary and secondary recovery processes [1]. 

This residual oil could be produced by application of chemically enhanced oil 

recovery (CEOR) technique. Polymer flooding is one of the principal chemical 

enhanced oil recovery (EOR) techniques currently being deployed to extract the 

residual oil as to meet the growing global demand for a continuous supply of energy 

[1 - 4].   

Polymer EOR is an augmented water flooding technique introduced in the early 

1960’s [3]. In a water flooding technique, water is injected into the reservoir through 

injector wells to push oil towards production wells. The injection water could 

possess a low viscosity thereby acting as displacing fluid compare to oil with high 

viscosity. This causes the injection water to finger or channel towards the production 

well faster than oil, leading to production problems commonly known as viscous 

fingering and heterogeneity [5 - 9]. Mitigation of these problems is achieved by 

increasing the viscosity of injection water with high molecular weight water-soluble 

polymers. This will reduce the mobility ratio of the aqueous phase, enlarge the 

swept volume and consequently improve oil recovery efficiency. 

Two most commonly used water-soluble polymers for mobility control in water 

floods are synthetic polymer (polyacrylamides (PAM) or hydrolysed PAM) and 

biopolymers (Xanthan gum) [3]. However, this work focuses on synthetic polymers 

precisely polyacrylamides (PAM) and HPAM because of their significance industrial 

impact of low cost, low risk, good solubility in water and strong viscosifying strength 
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[10 – 11, 18]. Historically, Polyacrylamides (PAM) was the first used polymer as 

thickening agent for aqueous solution [3].  From the 1970’s onwards, researchers 

such as [12 - 16] identified that limiting conditions of polyacrylamides are due to it 

sensitivity to degradation.  

Degradation of polyacrylamides occurs during dissolution and injection processes 

through three means; chemical, mechanical and thermal [18]. Chemical 

degradation occurs through oxidation or effect of ionic ions; accordingly, the amount 

of oxygen in the solution must be minimized using an oxygen scavenger [17]. 

Mechanical degradation arises through shearing of the fluid that occurs in the pipes, 

chokes, valves and pumps [18 - 19].  

Thermal degradation depends on the reservoir temperature which results to 

hydrolysis [13 – 16, 18]. The mechanism of thermal degradation is described as 

when PAM is aged in moderate or high temperature of (50oC and > 75 oC) the amide 

group (CONH2) in the polyacrylamide structure hydrolyses to form a carboxylate 

group (COO-) [13 – 14, 16]. The presence of negative charges on the backbone of 

the polymers (carboxylate) could initially increase the viscosity because of charge 

repulsion but when anionicity increases above a critical level of 25% to 35%, the 

hydrolysed PAM become too sensitive on latter interaction to salinity (total dissolved 

solids TDS containing Mg2+ and Ca2+) leading to a large effect on the rheological 

properties of the polymer solution and loss in solution viscosity [3, 11, 16].  

Researchers has discovered that polyacrylamide applications in EOR operations is 

restricted to reservoir temperatures of about less than 75oC [11, 18], but 

successfully, PAM has been implemented for EOR applications in several oilfields 
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at low and moderate temperatures (< 50oC and < 75oC) and salinity levels (< 30000 

ppm) [10]. 

Above 75oC temperature and high salinity (> 30,000 ppm), stability limitations 

occurs in PAM or HPAM operation during EOR applications. Evidence of such was 

experienced in Class III reserve of Shengli Oilfield in China, where the temperature 

exceeds 85oC and the salinity (total dissolved solids (TDS)) is > 30,000 ppm with 

the total amount of divalent cations being > 800 ppm [11] 

Lately, the oil industry has shown increasing cognizance towards maintaining 

optimum polymer selection and stability under harsh reservoir conditions of higher 

temperatures (>75oC) and higher salinity of 30,000 ppm even up to 200,000 ppm 

(TDS) [20 – 21]. It is clear that a research gap exist to address the stability 

limitations of PAM and HPAM gels used in reservoirs where the temperature is 

higher than 75oC precisely 90oC and beyond and higher salinity (>30,000 ppm, even 

up to 200,000 ppm (TDS)) as shown in figure 1. Under these harsh reservoir 

conditions, this work focuses on facing these problems by maintaining optimum 

polymer mix selection that can stabilise the polymer gel for better design during 

EOR applications  

 

Figure1: Extending polyacrylamide (PAM) in harsh reservoir conditions of 90oC 

temperature and salinity up of 200,000 ppm (TDS). 
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1.2 Research Aims and Objectives 
 

The principle aim of this work is to determine the optimum mix of copolymers that 

can extend the use of PAM/HPAM gels to high temperature (> 75 oC) and high 

salinity reservoirs (>30,000 ppm, even up to 200,000 ppm (TDS)). It will be achieved 

by completion of the following objectives:   

 Development of a correlation analysis on safe maximum temperature point (SMTP) 

for polyacrylamide (PAM) polymer in saline solutions.  

  Characterisation of standard PAM gels under extreme conditions through: 

o Determination of the effectiveness of a standard polyacrylamide (PAM) application 

in Hydrocarbon reservoirs at different operational conditions. 

  Examination and optimisation of the temperature stability of the polymer gel by 

addition of Poly Vinyl Pyrrolidone (PVP) to the polymer mix. 

 Examination and optimisation of the temperature optimised mixture (PAM: PVP) for 

use at high salinity reservoir by addition of 2 – acrylamido-2-

methylpropanesulphonic acid (AMPS) to the polymer mix. 

 Verification of Laboratory results for comparative simulation and modelling on 

polymer flooding using Eclipse and petrel software.  

1.3 Contribution to Knowledge 
 

Significant industrial and research effort has been made to identify and develop a new 

synthetic polymers with improved stability and increases viscosity of injection water. 

The primary approach is to meet the criteria of inactivity or insensitivity to salt 

concentration containing divalent cations at high temperature and resistant to 

hydrolysis. The mechanisms of PAM performance and stability under reservoir 

conditions are not clearly understood. In addition, a satisfactory technique for 
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laboratory to evaluate, optimise and enhance the polymer performance before EOR 

applications integrated from laboratory is still not available. Although, alternative ideas 

to increase the polymer solution viscosity on harsh reservoir conditions such as high 

temperature and high salinity reservoirs have been studied over the last years.  

This thesis presents a new synthetic approach called the polymer integrated technique 

(PIT), a chemical modifications which can predict impact of environment and 

operational conditions on polymer performance and improve stability of PAM from 

extensive laboratory measurements carried out on formation water and polymers, the 

essence is developing better polymers and optimizing to fit reservoirs with hostile 

conditions .  

The synthetic approach screened polymers experimentally, a non-extant 

Polyvinylpyrrolidone (PVP) weight proportion of 80 wt % was found to be the optimum 

concentration of the composition resulting to overall optimum composition of 

copolymer PAM: PVP (20:80) wt % with low degree of hydrolysis of 29.9% for use in 

temperature of 90oC and high salinity of 43,280 ppm polymer flooding applications  

In furtherance polymer integration technique (PIT) were extended to high salinity of 

200,000 ppm TDS by adding AMPS to the temperature optimized  polymer of 20 wt % 

PAM and 80 wt % PVP mixture. Accordingly, the polymer integtration technique (PIT) 

favoured the specification criterion that is acceptable for polymer flooding application 

during EOR operation by reducing the initial degree of hydrolysis (DHi) to 22.2%. A 

novel AMPS weight proportion of 10 wt % was found to be the optimum concentration 

to overall optimum composition of 18:72:10 ter polymers of PAM: PVP: AMPS to 

enhance the performance of polymer application at temperature of 90oC and salinity 

of 200000 ppm.  
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According, this research also provided insights into the chemistry behind PAM 

degradation which could be helpful in predicting the maximum safe temperature point 

of polyacrylamide operations in the presence of brine and at any ageing time of interest 

during chemical IOR/EOR techniques. 

1.4 Format of Thesis  
 

This thesis adopted the following format and are structured into eight chapters: 

Chapter 1:  Introduction: An overview of polymer flooding during EOR applications 

and discussion of the challenges/limitations encountered when 

synthetic water-soluble polymers are applied is given. The identified 

research gap is presented along with the aim of the study, research 

objectives and proposed solution method.  

Chapter 2: Literature review: crude oil extraction: focusing on secondary recovery 

precisely water flooding, oil displacement efficiency, fractional flow 

equation for reservoir fluid, factors affecting displacement efficiency, 

EOR classification, polymer – augment water flooding selection, 

rheology properties of PAM; viscosity dependence factors, polymer 

stability, factor affecting polymer stability, optimization of polymer for 

effective performance  

Chapter 3: Methodology and approach used in studying the effectiveness of 

polyacrylamide (PAM) application in Hydrocarbon reservoirs at 

different operational conditions  
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Chapter 4: Correlation development on Safe Maximum Temperature Point  

      (SMTP) for PAM from published data                     

Chapter 5:  Results and discussion of studying the effectiveness of polyacrylamide 

(PAM) application in hydrocarbon reservoirs at different operational 

conditions. 

 Chapter 6:  Modification and optimization of PAM with Polyvinylpyrrolidone (PVP) 

for use at high temperatures.  

Chapter 7: Modification of integrated PAM: PVP performance with AMPS to face 

challenge of extreme high salinity conditions. 

Chapter 8: Conclusions and Recommendation 
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CHAPTER 2:   LITERATURE REVIEW 
 

 2.0 Crude Oil Extraction.  

Crude oil is recovered from underground porous sandstone or carbonate rock [19]. 

This recovery process take place in three stages (see figure 2.1): The first stage is 

primary recovery where natural energy prevailing in the reservoir is utilised to 

displace the oil from the reservoir through the wellbore and up to the surface 

production facilities [22 – 23]. This stage can only recover up to 30% of the original 

oil in place (OOIP) [2, 20 - 21]. Over time the natural pressure of the reservoir will 

fall leading to a drop in production. The second stage is supplementary or 

secondary oil recovery where additional energy is introduced into the reservoir e.g. 

water or gas to maintain its pressure and to displace the oil to the surface, during 

this stage the oil recovery increases to 50% of OOIP with 10 to 20% incremental 

recovery over secondary water flooding [24, - 25, 22]. The primary and secondary 

recovery stages are regarded as conventional recovery techniques. 

 

Figure 2.1 Improved and enhanced oil recovery system [2] 
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After conventional recovery techniques has reach their economical limits or has 

been exhausted. The next step in oil recovery is the enhanced oil recovery (EOR) 

also known as tertiary recovery techniques [1, 26]. The enhanced oil recovery 

(EOR) is when oil is recovered by injection of chemicals or gas and or thermal 

energy into the reservoir to improved oil recovery [27, 17]. Because the EOR 

definition focus on improving recovery, the technique could be regarded as a 

subgroup of the improved oil recovery (IOR). Accordingly, Improved Oil Recovery 

(IOR) could be defined as any processes which involves the addition of injection 

fluid to increase the recovery of oil from a hydrocarbon reservoir [28, 2]. This implies 

that improved oil recovery (IOR) apparently describes the secondary and tertiary 

recovery with exception to primary (natural) recovery. For instance, IOR processes 

includes the following: [27, 28]   

 Water flooding (for pressure maintenance and oil sweep) 

 Immiscible gas flood (dry gas, carbon dioxide, nitrogen, alternating injection with 

water) 

 Miscible flooding  with hydrocarbon (carbon dioxide or nitrogen as an injecting fluid  

solvent) 

 Steam flood (including steam assisted gravity) 

 In - situ combination – forward: dry, wet, huff and puff steam flood, hot water drive; 

electromagnetic  

 Well simulation (acidizing and fracturing) 

 Enhanced waterflood ( Surfactant, polymer and alkaline)  

Because the Improved oil recovery (IOR) process is a supplement to primary 

recovery. However, more emphasis are placed on secondary oil recovery process 

precisely water flooding before proceeding to enhanced oil recovery (EOR). 
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2.1 Secondary Oil Recovery 
 

Secondary oil recovery is a process of oil recovery that is carried out through 

injection of external fluids such as water and or gas, mainly for the purpose of 

pressure maintenance and volumetric sweep efficiency [22]. There are two types of 

secondary recovery process – gas flooding and water flooding [5]. The gas flooding 

process in secondary recovery is when gas is injected into a zone of free gas (i.e. 

gas cap) to maximize recovery by gravity drainage. The injected gas is usually 

produced from natural gas within the reservoir in question [5]. In recent times, 

utilising gas injection is limited because of its low oil displacement effectiveness and 

often demand of gas for supplies in the global market [29]. Whereas, water flooding 

is the principal or most applied secondary recovery method. Accordingly, more 

emphasis are placed on water flooding technique in this research because it form 

the basic problem statement. 

2.1.2 Water flooding 
 

Water flooding is a process used to inject water into an oil – bearing reservoir for 

pressure maintenance as well as for displacing and producing incremental oil after 

or sometimes before the economic production limit has been reached [22]. This 

technique is one of the most common IOR technology applied for recovering oil and 

has been in existence over 100 years.  It became famous and significant in the 

1950s when field applications increased production rates rapidly [30]. Traditionally, 

water flooding has been performed only on light oil reservoirs and even screening 

criteria indicated that water flooding is most efficient in reservoirs with oil viscosity 

that is less than 30 mPa.s [31]. The mode of water flooding operation is that water 

is injected into an oil-bearing reservoir through the injection well, to push and 
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displace some of the residual non-produced oil to surface production facilities as 

shown in figure 2.2. The amount of oil recovery through displacement of oil by water 

flooding determine the efficiency of the technique because recovery efficiency is the 

fraction of the oil in place (OOIP) that can be economically recovered. 

 

Figure 2.2. Process of water flooding operation for secondary oil recovery [32]  

2.2 Efficiency Displacement of Oil by Water Flooding 
 

In water flooding technique, oil displacement efficiency is termed as the percentage 

or volume of initial oil in place (OOIP) that injection water could sweeps from a bank 

of reservoir [33]. The crucial targets is to increase the overall oil displacement 

efficiency (E). This depend on the efficiency of the macroscopic or volumetric 

displacement efficiency (EV) and the microscopic displacement efficiency (ED) [34, 

5].  Macroscopic (volumetric) displacement efficiency is defined as the volume of oil 

that an injected fluid or displacing fluid are able to sweep or recover when in contact 

with reservoir. whereas the microscopic displacement efficiency measure 

effectiveness of the injected fluid or displacing fluids in mobilizing the residual oil 

trapped at pore scale by capillary forces once the fluid has contact [3, 34, 23]. The 

microscopic efficiency is affected by: interfacial and surface tension, wettability, 
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capillary pressure and relative permeability. While macroscopic displacement 

efficiency is affected by: heterogeneities and the mobility ratio of the displacing 

fluids (water or brine) compared with the displaced fluids (oil). The overall 

displacement efficiency in a waterflood or any supplementary processes could be 

defined as the product of the macroscopic or volumetric displacement efficiency 

(EV) and the microscopic efficiency (ED) as written in equation 2.1a. 

E = EVED,                                                                                                                     2.1a 

Where E is the overall hydrocarbon displacement efficiency, the volume of 

hydrocarbon displaced divided by the volume of hydrocarbon in place at the start of 

the process measured at the same conditions of pressure and temperature; EV 

macroscopic (volumetric) displacement efficiency; and ED is microscopic 

hydrocarbon displacement efficiency.                                    

 

Figure 2.3 Sketches on macroscopic and microscopic sweep efficiency [35]   
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In furtherance, the macroscopic or volumetric displacement are sub grouped into 

two different means: the areal sweep Es efficiency and the vertical Ei sweep 

efficiency as seen in figure 2.3.  The areal sweep efficiency represent the fraction 

of the reservoir area that the water will contact [3]. It depends primarily upon the 

relative flow properties of oil and water; accordingly, both the injection and the 

production well take place at a particular point. This points lead to the development 

of pressure distributions and corresponding streamlines between the injection and 

production well [33]. Whereas vertical sweep efficiency is defined as the cross 

sectional area contacted by the injected fluid divided by the cross sectional area 

enclosed in all layers behind the injected fluid front [36]. Descriptively, the injected 

fluid will move as an irregular front; however, in more permeable portions of the 

reservoir, the injected water will travel rapidly and in the less permeable portions it 

will move slowly.  Accordingly, the volumetric efficiency (EV) measure the three – 

dimensional effect of reservoir heterogeneities and it could be equivalent to the 

product of the pattern areal sweep efficiency (EP) and the vertical sweep efficiency 

(EI) as ibn equation 2.1b. 

EV = EP X EI                                                            2.1b 

It is more emphasizing that the volumetric sweep efficiency is placed in frontline. 

Because it explain a detailed approach during which the displacing fluids (water) is 

injected at one corner in the reservoir and the displaced fluids (oil) are produced at 

another corner. This mechanisms is based on the relative permeabilities and the 

fluid viscosities which determine the manner in which oil is displaced by water. More 

understanding on the displacement efficiencies and the behaviour of fluids within 

the reservoir can be achieve through a basis concept of fractional flow or frontal 

advance method by Buckley - Leverett. 
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2.2.1 Fractional flow for reservoir fluids 
 

In 1941 Leverett [37] pioneered a concept on fractional flow equation for water and 

oil as written in equation 2.1c. The concept monitored the knowledge behind the 

change in reservoir properties of permeability to oil, permeability to water, water 

viscosity and oil viscosity even to their respective change in water saturation. 

Basically, it could connote that the fractional flow of water (fw) for given set of rock, 

reservoir formation and flooding conditions is a function of water saturation alone.  

fw = 

1+ 
𝑘

𝑢𝑡

𝑘𝑟𝑜
𝑢𝑜

  ( 
𝜕𝑃𝑐
𝜕𝐿

−𝑔∆𝜌𝑠𝑖𝑛𝛼𝑑)

 1+ 
𝑢𝑤
𝑢𝑜

 
𝑘𝑜
𝑘𝑤

                                        2.1c 

Where fw = fraction of the water flowing in the flowing stream passing at any point 

in the rock (i.e. water cut), k = formation permeability, Kro = relative permeability to 

oil, Ko = effective permeability to oil, Kw = effective permeability to water, µo = oil 

viscosity, µw = water viscosity, Vt = total fluid velocity, Pc = capillary pressure = po 

– pw = pressure in oil phase minus pressure in water phase, L = distance along 

direction of movement, g = acceleration due to gravity, ∆p = water – oil density 

differences = pw – po, αd= angle of the formation dip to the horizontal. For practical 

usage, the fractional flow under capillary pressure in equation 2.1c is converted to 

equation 2.2 

fw = 
1+0.001127 

𝑘

𝑢𝑡

𝑘𝑟𝑜
𝑢𝑜

 
𝐴

𝑞𝑡
 ( 

𝜕𝑃𝑐
𝜕𝐿

−0.433∆𝜌𝑠𝑖𝑛𝛼𝑑)

 1+ 
𝑢𝑤
𝑢𝑜

 
𝑘𝑜
𝑘𝑤

               2.2           

And for the horizontal displacement of oil by water, equation 2.2 was simplified into 

equation 2.3. 
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fw = 

1−  
𝑘

𝑢𝑡

𝑘𝑟𝑜
𝑢𝑜

 (𝑔∆𝜌𝑠𝑖𝑛𝛼𝑑)

 1+ 
𝑢𝑤
𝑢𝑜

 
𝑘𝑜
𝑘𝑤

                                          2.3 

fw = 
1

 1+ 
𝑢𝑤
𝑢𝑜

 
𝑘𝑟𝑜
𝑘𝑟𝑤

                                                       2.4 

Based on the initial work of [37 - 38] presented what is recognized as the basic 

equation for describing two - phase, immiscible displacement in a linear system. 

However, for incompressible displacement, the velocity of a plane shape of constant 

water saturation travelling through a linear system is given in equation 2.4a and 

also is the fractional flow plot against the reservoir saturation as seen in figure 2.3a 

 v = 
𝑞

𝐴∅
 (

𝜕𝑓𝑤

𝜕𝑆𝑤
)                                                                       2.4a 

 

Figure 2.3a Fractional flow curve with its water saturation derivative [39]  

2.3 Problems Encountered in Displacement of Oil by Water 
 

The overall displacement efficiency were discussed in section 2.2. Displacement of 

oil by water flooding through the macroscopic or volumetric are controlled by some 

factors that is dependence on the areal or pattern sweep efficiency and vertical or 
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invasion sweep efficiency. The areal sweep efficiency depend primarily upon two 

factors: the flooding pattern, reservoir heterogeneity and mobility of the fluids in the 

reservoir whereas the vertical or invasion sweep efficiency depend upon the 

heterogeneities (distribution of the permeabilities within the reservoir) and mobility 

of the fluids [5]. Apparently, the reservoir heterogeneities and fluid mobility control 

are the challenging factors that contribute to the overall process efficiency. 

2.3.1 Reservoir Heterogeneity 

 

The amount of oil recovered by water flooding are reduced due to the 

heterogeneous nature of the reservoir rock. In heterogeneous reservoir, the 

displacing fluid (water) entering a rock system will preferentially flow faster through 

high permeability zone than that of the low permeability zone as seen in figure 2.4. 

This implies that high permeability zone exhibit very low resistance to flow [40]. This 

channelling through high permeability layers and gravity segregation of the injected 

water below target oil may lead in oil being bypassed where more injected fluid 

(water) is produced from the wellbore to the surface facilities [41]  

 

Figure 2.4 Reservoir heterogeneity behavior [41] 

The displacement of a viscous oil by a less viscous solvent is fundamentally 

unstable, even when the porous medium is homogenous, basically the reservoir 
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rocks are rarely homogeneous, though variations could occur in permeability and 

porosity of the reservoir [42]. Reservoir geologic heterogeneities may cause a large 

volume of mobile oil to be bypassed and remain within a field. This is a result of 

poor sweep efficiency when injected displacement water moves preferentially 

through higher permeability zones toward the production well [1]. 

2.3.2 Viscous Fingering (Unfavourable mobility ratio)  
 

In displacement of oil by water, a problem could be encountered due to viscosity 

difference between both fluids. The mobility challenges arises when a less viscous 

fluid displace a more viscous fluid inside a porous media and resulting to 

instabilities. Accordingly, the process were simulated into a model system by 

Saffman and Taylor in 1958 and it was done in a thin linear channel or Hele – shaw 

cell [43 - 47]. Moreover, the interface between the less and more viscous fluid 

develops an instability leading to the formation of finger – like patterns called 

viscous fingering [48 - 49]. The viscous fingering instability during displacement of 

oil by water, is shown in figure 2.5. According to Homsy [50] to understand the 

basic mechanism of viscous fingering instability. He considered a displacement in 

a homogeneous porous media, characterized by a constant permeability K. The 

flow involve the displacement of a fluid of viscosity 𝜇1 and density 𝜌1 by a second 

of viscosity 𝜇2 and density𝜌2 and velocity U under gravity g. The flow may be taken 

to satisfy Darcy’s law, in a one – dimensional steady flow as written in equation 2.5a 

𝜕𝜌

𝜕𝑥
 = µU/K +𝜌𝑔                                                                       2.5a 

Because the interface or boundary of the fluid density, viscosity and solute 

concentration changes rapidly. Accordingly change is driven by the pressure force 



18 
 

(𝜌2 −  𝜌1)  on the displaced fluid as a result of a virtual displacement 𝜕𝑥 on the 

interface and is given in equation 2.5b 

𝜕𝜌  = (𝜌2 − 𝜌1)  = [(𝜇1 −  𝜇2)U/K + (𝜌2 −  𝜌1)g] 𝜕𝑥                    2.5b 

Assuming the net pressure force is positive, then any little displacement will 

increase, leading to an instability. Though, we see a combination of unfavourable 

density and/ or viscosity ratios and flow direction can conspire to render the 

displacement unstable. For instance, for downward vertical displacement of a 

dense, viscous fluid by a lighter and less viscous is equal to  (𝜇1 −  𝜇2) > 0,(𝜌2 −

 𝜌1 ) < 0 and U > 0. However, gravity is a stabilizing force, while viscosity is 

destabilizing, leading to a critical velocity 𝑈𝐶 above which there is instability as in 

equation 2.5c 

𝑈𝐶 = 
(𝜌1− 𝜌2   )𝑔𝐾

𝜇1−𝜇2
                                                                  2.5c 

An easier statement could be made when the gravity force is absent, for instance 

in a horizontal displacement of oil by water. In this case, instability always results 

when a bigger viscous fluid is displaced by a lighter viscous one, since the lighter 

viscous fluid has the bigger mobility.  The mobility ratio (M) is defined as the ratio of 

the mobility of the displacing fluid (water) and the mobility of the displaced fluid (oil) 

where the mobility of the fluid (λ) is the ratio of effective fluid permeability (K) to fluid 

viscosity (μ) [51]. This is shown in equation 25d: 

M = 
𝜆𝐷

𝜆𝑑
 =  

𝐾𝑟𝑤

µ𝑤
/ 

𝐾𝑟𝑜

µ𝑜
                                              2.5 d     
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Where λD = mobility of the displacing fluid phase and λd = mobility of the displaced 

fluid phase, M = mobility ratio and is dimensionless, 𝐾𝑟𝑤 relative permeability of 

water, µ𝑤 viscosity of water, 𝐾𝑟𝑜 is the relative permeability of oil, µ𝑜 viscosity of oil. 

Mobility ratio is extremely important parameter in any displacement process. It 

affects areal and vertical sweep efficiency as discussed in section 2.2. Both areal 

and vertical sweep efficiency sweep decreases as M increases for a given volume 

of fluid injected. M affects the stability of the displacement process with flow 

becoming unstable when M > 1. 0. At this point the injected water is much less 

viscous than the oil it is meant to displace, the water could begin to finger or channel 

through the reservoir.  

 

 

 

 

 

 

Figure 2.5 Viscous fingering instability during displacement of oil by water [23]  

In a summary, the limitations of water flooding due to instability are incurred from 

viscous fingering (unfavourable mobility ratio) and reservoir heterogeneity which 

could lead to significant bypassing of residual oil and lower flooding efficiencies. 

The solution to this problems is to modify the properties of the water flooding by 

applying enhanced oil recovery (EOR) technique that could in particular increase 

Waterflood  

Water 

Production well 

Oil and Water 
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the viscosity of the injection water as to reduce or control the mobility ratio and its 

behaviour in the reservoir.  

2.4 Enhanced Oil Recovery (EOR) Techniques 
 

 Enhanced oil recovery (EOR) is the third stage in oil recovery process. The process 

is used after secondary oil recovery technique (water or gas flooding) becomes 

uneconomical. The technique involves the injection of fluids such as gas, steam, 

surfactants, polymers or other chemicals into the reservoir to improve reservoir 

productivity [52 - 53]. The injected fluids and injection processes supplement the 

natural energy present in the reservoir to displace oil to a producing well [26, 23, 

52]. Detailed explanation of EOR technique is seen in figure 2.6. The EOR process 

are categorized into four types namely: chemicals, miscible gases, thermal energy 

and other process such as microbial [23, 5]. Chemical EOR process includes; 

polymer, micellar polymer, alkaline flooding and microbial flooding. Thermal process 

include hot water, steam cycling, steam drive and in situ combustion. Whereas the 

miscible displacement includes carbon dioxide (CO2) and gas injection. Thermal 

process are applicable in reservoirs containing heavy crude oils whereas for 

chemical and miscible displacement process are suitable for reservoirs containing 

light crude oils. In Table 2.1 give a descriptive unique areas of application of various 

EOR techniques and its characteristic or mechanism during operation.  
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Figure 2.6 General sketches on enhanced oil recovery [54]   

Table 2.1: Guide and characteristics of available for EOR techniques [1] 
 

EOR 
Technique Working Principle Outcome/Results When to Use 

Gas 
Injection 

Injecting gas or 
nitrogen (immiscible) 

Push out crude or thins 
it, reduce rock - oil 

surface tension 

Follow - up to water 
injection development 

(WAG - water 
Alternating Gas 

injection) 

Thermal 
Injection 

Heat is injected to 
the reservoir to 

reduce the viscosity 
of the oil 

Oil becomes lighter and 
flows more easily  

Heavy crude fields 

Chemical 
Injection 

Different type of 
chemicals 
(polymers, 

surfactants and 
others) 

  * Increase flooded 
water viscosity  * 

Reduce interfacial 
tension 

Follows waterflood to 
capture residual oil; 

Sandstone, carbonate 
and less limestone 

CO2 
Injecting Carbon 
Dioxide (CO2) 

CO2 Swells oil and 
reduces viscosity  

Follows waterflood to 
capture residual oil 
(generally used in 

Limestone reservoir) 

Microbial 
EOR  

Inoculated suitable 
bacteria and 

Nutrients , are 
injected 

Formation of stable oil - 
water emulsions, 

mobilization of residual 
oil as to reduce 

interfacial tension. 

Follows waterflood to 
capture residual oil; 

Sandstone, Carbonate  
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2.4.1 Thermal Recovery Technique 
 

This technique is mostly used for recovery of heavy or viscous oils. Heavy oil is 

defined as crude oil which has a viscosity ranging from 100 to 10,000 cp and API 

gravities less than 20 [2]. Conversely, primary and secondary oil production from 

reservoirs containing heavy, low gravity crude oils is usually a very small fraction of 

the initial oil in place (OOlP). This is due to the fact that these types of oils are very 

thick and viscous and as a result, do not migrate easily to the producing wells [5].  

In such cases the viscosity ratio can be drastically reduced by increasing the 

temperature. It could be reasonable to increase the temperature of a crude oil in 

the reservoir from 100oF to 200oF over the normal reservoir temperature, the oil 

viscosity will reduced significantly and will flow much more easily to the wellbore 

down to the surface production facilities. This is achieved by one the following 

methods (a) hot water injection (b) steam injection and in – situ combustion. 

However, according to Selby et al., [55] thermal recovery methods precisely steam 

or hot water injection and in - situ combustion are best for recovering in moderately 

viscous or heavy oils provided the reservoir conditions are favourable, basically 

such conditions are; thin reservoir formation of less than 10 m, and large depth of 

greater than 1000 m and low formation permeability, low oil saturation and porosity. 

Under such conditions, a non – thermal recovery method considered are: miscible 

and immiscible carbon flooding, solvent flooding, improved water floods, polymer 

flooding, surfactant, caustic and other chemical floods. Accordingly, they are 

discussed in the next sections. 
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2.4.2 Miscible (Gas or CO2) Injection Technique  
 

Miscible injection technique is a process of mixing of two fluids – for instance, oil 

and a solvent such as carbon dioxide (CO2) into a single phase fluid and it could be 

a continuity between the oil and injected gas, due to a multiphase transition zone 

between the two fluids [1]. Basically, the miscible flooding process focuses on 

mobilizing the light oil components, reduction of oil viscosity, vaporization and 

swelling of the oil, and the lowering of the interfacial tension [56]. The displacing 

fluid and residual oil mix form one phase due to the dissolved injected CO2 that 

spread on the crude oil phase at the minimum miscibility pressure (MMP) [57]. 

When the reservoir pressure is above the MMP, miscibility between CO2 and 

reservoir oil is achieved through multiple – contact or dynamic miscibility, where 

intermediate and higher molecular weight hydrocarbon from the oil vaporize into the 

CO2 [56]. It is preferable in microscopic displacement efficiency because it play a 

function of interfacial acting between the rocks and the displacing fluid [58 - 59]. In 

general, there are two types of miscible process [58 – 59].  

The first type is referred to as the single – contact miscible process and involves 

the injection of fluids such as liquefied petroleum gases (LPG) nitrogen, CO2, flue 

gas (mainly nitrogen and CO2) and alcohols [26, 5]. These solvents are miscible 

with residual oil immediately on contact to overcome capillary forces and increase 

oil mobility. Conversely, Carbon dioxide is a special case of high pressure miscible 

recovery is injected into the selected oil reservoir either as continuous gas or as 

water – alternating gas injection also known as WAG, however, all reservoirs may 

not be suitable for CO2 EOR but there are certain criteria that could be encouraging 

base on proper screening on factors such as reservoir geology, oil gravity, minimum 

miscibility pressure and viscosity to identify the most likely candidates for miscible 
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CO2 [60]. This gas is highly soluble in crude oil, swelling the oil and reducing its 

viscosity, while simultaneously extracting lighter hydrocarbon by vaporization. The 

problem associated with miscible gas flood EOR is that a low viscosity fluid is being 

used to displace a higher one. Under these conditions a Saffman-Taylor instability 

occurs as discussed in subsection 2.3.2, the interface of the two fluids tend to allows 

viscous fingers to form and propagate through the displaced fluid, leaving much of 

the hydrocarbon behind [61]. The primary means of attacking this problem is the 

water – alternating – gas (WAG) technique. In this process, water flood and gas 

flood are alternated, with the design parameters being timing and the ratio of water 

to gas. The second type is the multiple – contact or dynamic miscible process. The 

injection fluid in this phase are usually methane (CH4), inert fluids, or an enriched 

methane gas supplemented with a C1 – C6 fraction. This fraction of alkanes has the 

unique ability to behave like a liquid or a gas at many reservoir conditions. However, 

the injected fluid and oil are usually not miscible on first contact but obviously rely 

on a process of chemical exchange between the two phases for miscibility to occur 

[5] 

2.4.3 Microbial Recovery Technique 
 

The microbial enhanced oil recovery (MEOR) flooding involves the injection of 

microorganism that react with reservoir fluids to assist in the production of residual 

oil [62]. MEOR process is divided into two types. Firstly, is those microorganism 

that react with reservoir fluids to generate surfactants and the second is those 

microorganism that react with reservoir fluids to generate polymers.  MEOR have 

same mechanism as obtained from other chemical enhanced oil recovery (CEOR) 

although it possess an advantage that indicate that microbial metabolites are 

produced within the reservoir rock formation [63] 
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For those microorganism that react with reservoir fluids to generate either surfactant 

or polymers in the reservoir. Once either the surfactant or polymer has been 

produced, mobilizing and recovery of the residual oil becomes similar to those of 

the chemical flooding [5]. For instance a microorganism could be injected along 

with a nutrient usually molasses. This nutrients and suitable bacteria grows under 

anaerobic reservoir conditions and are injected into the reservoir. The microbes 

feed on the oil and microbial metabolic products that include bio surfactants, 

biopolymers, acids, solvents, gases and enzymes, modify the properties of the oil 

to form polymers [64]. The injected solution will enter high permeability zones and 

react to form the polymers that will then act as a permeability reducing agent. 

Equally, the solution microorganisms can react with the residual crude oil to form 

surfactant. The surfactant is to reduce the interfacial tension of the brine – water 

system, which thereby mobilizes the residual oil. 

The resultant reaction of the microorganism with the reservoir fluids may also 

produces gases, such as CO2, N2 H2 and CH4 [5]. The production of these gases 

will result in an increase in reservoir pressure, which will thereby enhance the 

reservoir energy. In MEOR heterogeneous issues may occur, it is advisable to 

generate polymer in situ, which could be used to divert fluid flow from high to low 

permeability channels and carefulness should be taken to avoid reservoir brine 

inhibiting the growth of the microorganisms. According to Craft and Hawkins [5] 

MEOR project has been applied in reservoir brines up to less than 100,000 ppm, 

rock permeabilities greater than 75 md and depth less than 6800ft and temperature 

of 75oC on light crude of API gravities between 30 and 40. 

 



26 
 

2.4.4 Chemical Enhanced Oil Recovery (CEOR) Technique 
 

Chemical recovery processes entails the addition of one or more chemical 

substance as an augmented injected fluid either to reduce the interfacial tension 

between the reservoir oil or to improve the sweep efficiency of the injected fluid 

through increasing the viscosity and improving the mobility ratio. Accordingly, 

chemical recovery technique comprises of four types; Alkaline flooding, surfactant 

flooding, polymer flooding and alkaline – surfactant polymer (ASP) flooding [65]. 

Firstly, is the polymer flooding where high molecular weight molecules is used to 

increase the displacing fluid (water) viscosity. The process bring leads to improved 

sweep efficiency of the reservoir. The next two methods are micellar (Surfactant) 

polymer flooding and alkaline flooding. This two methods make use of chemicals 

that reduce the interfacial tension between oil and a displacing fluid. More recently 

Nano fluids or liquid suspensions of nanoparticles dispersed in distilled water or 

brine have recently been investigated and considered as Chemical EOR [66]. 

2.4.4.1 Micellar (surfactant) flooding for chemical EOR 

This polymer flooding uses a surfactant as augmented injection fluid to lower the 

interfacial tension between the injection fluids (water) and the reservoir oil. A 

surfactant is a product of soap and detergent, which is liken to surface – active 

agent that contains a hydrophobic (dislikes water) as part of the molecule 

composition and a hydrophilic (water like) [65]. The surfactant migrates to the 

interface between the oil and water phases and could help make the two phase 

more miscible. As the interfacial tension between an oil phase and a water phase 

is reduced, the capacity of the aqueous phase to displace the trapped oil phase 

from the pores of the rock matrix increases [65]. The reduction of the interfacial 

tensions results in a shifting of the relative permeability curves so that the oil will 



27 
 

flow more readily at lower oil saturations. The micellar solution exist when 

surfactants is above a critical saturation in water – oil system. Accordingly, micellar 

(surfactant) polymer process are made up of two types namely; low concentration 

surfactant solution (less than 2.5 wt%) but large injected volume (50% Pore volume) 

and high concentration surfactant solution (5 to 12 wt%) and a small injected volume 

(5% to 15% pore volume), however both process has potential of achieving low 

interfacial tensions with a wide variety of brine crude oil systems [5].  

2.4.4.2 Alkaline flooding for chemical EOR 
 

Alkaline flooding is a process that relies on a chemical reaction between the caustic 

and organic acids in the crude oil to produce in – situ surfactants that lower 

interfacial tension between water and oil [66]. The alkaline solution is injected into 

a reservoir, it reacts with the acid component of the crude oil and a surfactant 

commonly known as soap and it is generated from the in situ. The alkaline solution 

includes sodium hydroxide (NaOH), sodium orthosilicate, sodium metasilicate, 

sodium carbonate, ammonia and ammonium hydroxide and the mechanism is that 

they are mixed with certain crude oils to form a surfactant [67]. When the formation 

of the surfactant molecules occurs in situ, the interfacial tension between the brine 

and oil phases could be reduced [68, 69]. A lot of alkaline process mechanism has 

been identified as aid in oil recovery. They includes: lowering of interfacial tension, 

emulsification of oil and wettability changes the rock formation [68]. The 

emulsification mechanism has been suggested to work by either of two methods 

[66]. The first is by forming an emulsion which becomes mobile and later trapped 

in downstream pores. The emulsion could blocks the pores, which thereby diverts 

flow and increases the sweep efficiency. The second mechanism also form 
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emulsion, which becomes mobile and carries oil droplets that could be transported 

to downstream production facilities. 

2.4.4.3 Nano particles (fluid) enhanced oil recovery 

The nanoparticle are found as smart fluids containing Nano additives, and the 

systems occur in the form of suspensions or emulsions known as nanofluids, nano-

catalyst suspension or micro emulsions [70 - 72, 52]. Accordingly, nanofluids 

flooding or nano flooding is a new chemical EOR technique whereby nanomaterial 

or nanocomposite fluids are injected into oil reservoirs to effect oil displacement or 

improve injectivity [72 – 73]. These fluids particles are considered appropriate for 

EOR due to their strong particle surface interaction with solvents, its helps to 

overcome density difference that enable materials to float or drop down in a system. 

These materials are classified into three: (a) materials with lumps three-dimensional 

separated by distances in the order of nanometers (b) porous materials with particle 

sizes in the nanometer range or nanometer sized metallic clusters dispersed within 

a porous matrix (c) polycrystalline materials with nanometer sized crystallites [70]. 

The nano- emulsions are emulsion that exhibit unique characteristics such as great 

stability in comparison to micro – emulations. Accordingly, Poettman [74], claimed 

that emulsion shows a promising solution to recover a large fraction of residual oil 

left in the reservoir after water flooding and polymer. The efficiency of oil/water 

emulsion flooding can be successfully enhanced unless the stability of injected 

emulsion gets affected by the in situ reservoir conditions. The reservoir temperature 

and pressure can destabilize oil/water emulsion by increasing droplet size due to 

temperature and flocculation due to pressure resulting in unsuccessful penetration 

of the emulsion droplets into the oil reservoirs [52] 
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2.4.4.4 Polymer flooding for chemical EOR 

Half of the global oil production is improved using water flooding [75]. But the 

technique causes poor effectiveness due to mobility control of the injection water. 

The process or technique is augmented by adding polymer to the injection water. 

Polymer flooding is a process of adding high molecular weight molecules water 

soluble polymer to injection water as to increase its viscosity for effective EOR 

operation. Increasing the viscosity of the injection water reduces the mobility ratio 

of the system as to overcome the problems associated with viscous fingering and 

reservoir heterogeneity described in section 2.4.2. Specifically polymer – 

augmented water flooding is used in two situations:  

(a) When the mobility ratio of a waterflood is unfavourable (M>1) causing viscous 

fingering, continuous injection of polymer solution is used to increase the 

microscopic displacement efficiency at a particular oil/water ratio and increases the 

macroscopic or volumetric efficiency in the reservoir 

  (b) Even when the mobility ratio is favourable (M, <1), reservoir heterogeneity 

precisely where the reservoir is stratified in the vertical direction causing poor 

volumetric sweep efficiencies. In this case, polymer augmented water flooding 

maybe used to reduce the water mobility in the high permeability layers, so that oil 

can be displaced from  the lower – permeability layers [23].  

Two types of polymer are used in enhancing oil recovery: natural biopolymers for 

example xanthan gum and synthetic polymers for example polyacrylamide (PAM) 

[25] 
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2.4.4.4.1 Xanthan gum biopolymer  
 

Biopolymers are polysaccharide based and produced commercially by microbial 

action of the organism Xanthomonas campestris on a carbohydrate feed stock [23]. 

The polymers act like a semi rigid rods to resist mechanical or shear degradation. 

Xanthan gum is the most commonly used biopolymer for EOR operation [76, 23]. 

The molecular structure of xanthan gum is given in figure 2.7. The molecular 

weights of xanthan gum range from 1 million to 15 million, depending on the method 

used to determine the molecular weight. Xanthan gum are susceptible to oxidative 

attack by dissolved oxygen in the injected water. The degradation is detected by the 

loss of solution viscosity with time. At low temperature, the reaction rate is slow and 

can go undetected in short tests. The degradation rate increases as temperature 

increases. Xanthan gum are prone to biological attack resulting in the loss of 

solution viscosity from the destruction of carbohydrate backbone. The advantages 

and disadvantages are given below: 

The main advantages of Xanthan gum [77 – 78]:  

The molecular structure gives a degree of rigidity or stiffness and it provides an 

excellent resistance to mechanical shear degradation 

 High viscosity yield and resistance to salt water. 

 High shear stability and resistance, when pumped at high flow rate it results in a 

slight increase in the well head pressure. 

Disadvantages of Xanthan [77 – 78]: 

 High cost, more expensive than synthetic polymers. 

 Degradation by enzyme usually results in a decrease in the solution’s viscosity  
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 Bacteria sensitivity (care must be taken to prevent bacteria attack) 

 Degradation due to  dissolved oxygen in reservoir  

 Difficulty in preparation to achieve uniform solution [79] 

 Greater potential wellbore plugging 

 

Figure 2.7 Molecular Structure of Xanthan gum [19] 

2.4.4.4.2 Polyacrylamide synthetic polymers 

        

In polymer flooding application, a high molecular weight synthetic polymer, 

polyacrylamide (PAM) or its derivative is added to thicken the viscosity of displacing 

fluid (water) so as to reduce the mobility of the aqueous phase, enlarge the swept 

volume and consequently improve oil recovery. Polyacrylamides are water soluble 

polymers obtained from synthetic linear co – polymers of acrylic acid and 

acrylamide (non-ionic) monomers used in polymer EOR [3, 79]. However, it 

undergo partial hydrolysis which introduces negatively charged carboxylic group 

(COO-) on the backbones of polymer chain. Figure 2.6 is the structural 

representation of hydrolysed polyacrylamide (PAM). The basic mechanism during 
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the hydrolysis process is that some of the amide group (CONH2) would be replaced 

by negative charge carboxylate groups (COO-). The negative charges on the 

backbones of polymer chains have a large effects on the rheological properties [79 

– 81]. The advantages and disadvantages are given below: 

The main advantages of polyacrylamides  

 High yield in normal water or fresh water because of its high molecular weight and 

could reduce viscous fingering  

 Less cost compare to biopolymers 

 More widely applied in the field operation than biopolymer as water mobility control 

agents 

 Provides high injectivity  

 Resistance to bacteria attack  

Polyacrylamides have the following disadvantages: 

 The hydrolysed polyacrylamide (HPAM) solution are sensitive to salts could 

dramatically reduce the viscosity of the properties 

 The hydrolysed polyacrylamide (HPAM) solution is susceptible to the presence of 

oxygen, which is a source of instability and chemical degradation. 

 The high temperature (> 70oC) causes the thermal degradation 

 The hydrolysed PAM are sensitive to oxygen. However oxygen scavenger are need. 

 Polyacrylamide are sensitive to shear which degrade the polymer into smaller into 

smaller molecules. 
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Figure 2.8 Chemical structure HPAM [84] 

Hydrolysed Polyacrylamide (HPAM) 

Hydrolysed polyacrylamide (PAM), is the most widely used polymer in EOR 

operations, shows strong viscosifying power in fresh water and at relatively low 

temperature (<75 oC) because of its extremely high molecular weight  and synthetic 

linear copolymer of acrylic acid and acrylamide (non-ionic) monomers, with 

negative charges in the carboxylate groups [11]. HPAM molecules have long 

flexible chain structures and generally are long-winded coils in water solution and 

elastic deformation occurs in shear flow field [82]. Some amide groups (CONH2) 

would be replaced by carboxylate groups (COO-) during the hydrolysis process and 

thus, have strong interactions with cations. The degree of hydrolysis is the mole 

fraction of amide groups converted to carboxylate groups. Typical fresh injection 

water, the higher hydrolysed polyacrylamides of 15 - 35% produce the most viscous 

solutions [79]. The higher the present hydrolysis, the more polyacrylamides are 

affected by brines containing divalent ions and at 35% hydrolysis level may begin 

precipitate. In high brines containing divalent ion, a 15% or lower percentage 

hydrolysed polyacrylamide can produce greater solution viscosity [85]. Hydrolysis 

is faster at higher than moderate temperatures. PAM and HPAM polymer does not 

tolerant high temperature [83, 86]. Because hydrolysis is a function of viscosity, 
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hydrolysis of the PAM or (HPAM) polymer is regarded as necessary parameter 

which could be examined in polymer fluid rheology testing. 

Other PAM Derived Polymers 

Other PAM derived polymer are synthetic water soluble polymers made from 

byproduct of acrylamide through integration process. Other PAM derived polymers 

used in EOR process include hydrophobically associating polymer, salinity – 

tolerant PAM (KYPAM) [87, 76] and 2 – Acrylamido -2 – methylpropanesulfonate 

(AMPS).  It could be worth emphasizing that integration of other PAM derived 

polymers could presumed close connection between polymer stability under harsh 

reservoir conditions and polymer solution stability. This is because the stability 

limitation of PAM at high temperature in brines are consequence of hydrolysis of the 

amide functional groups, the primary approach followed has been that of 

substituting part of the acrylamide co-monomers with co-monomers meeting the 

criteria of inactivity toward divalent cations, resistance to hydrolysis [16]. Their 

advantages and disadvantages are given below: 

The main advantages of other PAM derived polymers 

 AMPS as part of the other PAM derived polymer contains sulfonated moieties that 

give it unique ability to tolerate high – salinity brines especially those containing 

divalent cations such as calcium (Ca2+) and magnesium (Mg2+) [4]  

 High resistance to shear and excellent Injectivity  

Disadvantages of other PAM derived polymers 

 They are sensitivity to the presence of oxygen and could advisable to mitigate with 

oxygen scavenger. 
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2.5 Selection of polyacrylamide synthetic polymer 
 

There are various criteria for candidate selection of PAM as water soluble polymer 

for reservoir flooding. 

 Polyacrylamide and its derivative (HPAM) are advantageous for increasing or 

thickening the viscosity of injections water during water flooding.  

 Polyacrylamide and its derivative (HPAM) are suitable at high mobility ratio (M>1) 

where viscous fingering occurs leading to poor sweep efficiencies 

 Polyacrylamide and its derivative (HPAM) are suitable in heterogeneous reservoir, 

where the displacing fluid (water) entering a rock system will easily flow faster 

through high permeability zone than that of the low permeability zone 

 Polyacrylamide and its derivative (HPAM) are cheap in price and have good 

solubility compared to Xanthan gum (biopolymer) [ 76, 17- 18, 25, 76, 88]  

2.6 Polymer Solution Viscosity  
 

The polymer solution viscosity is a key parameter to improve the mobility ratio 

between oil and water [11]. The polymer viscosity augment the water flooding to 

modify viscous instability [17, 76]. Amongst the water soluble polymer, 

polyacrylamide (PAM) happened to be the first polymer used as thickening agent 

for aqueous solutions [20]. The thickening ability of PAM dwell mainly in its high 

molecular weight [11, 83]. PAM is applied as the reference and preferred model 

polymer for EOR applications [20]. From partial hydrolysis of PAM, the HPAM could 

be obtained. The viscosity of polymer materials such as PAM and HPAM can be 

significantly affected by variables like shear rate, temperature, concentration, 

salinity and time of shearing and it is clearly important for us to highlight the way 

viscosity depends on such variables. To facilitate this, is to consider the shear rate, 
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from the rheological properties point of view, which is the most important influence 

on viscosity. 

2.7 Rheology Properties of polymers 

  

Rheology is the study of fluid flow and deformation of materials as accepted when 

the American society of Rheology was founded in 1929 [89 – 90]. Studying fluid 

behaviour is to measure the internal friction of the fluid viscosity [91]. The fluid could 

be apparent when the layer of the fluid is made to move in the relation to another 

layer. The larger the friction, the larger the amount of force required to cause 

movement which is termed as shear. The shearing occurs whenever the fluid is 

physically moved or distributed, even as in pouring and mixing. Highly viscous fluids 

like high molecular weight water soluble polymers such as Polyacrylamides (PAM) 

fluids produce increase in viscosity and decrease in permeability. The viscosity 

could decrease as the shear rate increase such behave is known as non - 

Newtonian fluids. Accordingly, viscosity could be dependence on various properties 

such as (a) shear rate (b) time (c) temperature (d) salinity and polymer 

concentration (e) molecular weight. 

2.7.1 Viscosity dependence on shear rate 

Shear rate dependence is one of the most important and defining characteristics of 

non – Newtonian fluids. Because Polyacrylamides (PAM) behave as non - 

Newtonian fluids and are pseudo plastic in viscosity behaviour [9]. Its means that 

the viscosity are strongly depends on the shear rate and other properties as 

previously mentioned in section 2.11. The evidence is seen in figure 2.7 on the log 

plot viscosity against shear rate. The polymer solution behaves like a pseudo plastic 

or shear thinning fluid leading to decrease in viscosity as shear rate increases. 

Dilatant fluid behaviour indicate that viscosity of fluids increases as the shear rate 
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increases. From the figure dilatant behaviour point of increase started at the second 

critical point by breaking the shear rate bond as to elongate the viscosity flow. 

 

Figure 2.9 Viscoelastic fluid flow behavior [17]  

Newtonian fluid is a fluid which create a linearly proportionality between stress and 

viscosity in its corresponding shear rate. The viscosity is maintained stationary or 

constant before reaching the first critical shear rate. Between the first critical shear 

rate and the second critical shear rate is the non – Newtonian fluids, the shear rate 

varied and the shear stress don’t vary in the same proportion however, considering 

that the shear rate varied, the viscosity of such fluids change. The change in 

viscosity is based on application of the shear stress against shear rate. Viscosity 

could be defined in equation 2.6. It connote that the change in viscosity is due to 

stress applied on the solution per unit shear rate. The stress causes molecules to 

align themselves with the shear field as to reduce internal friction.  

µ =
𝝉

𝛾
                                                                      2.6                                                    
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Where µ is the solution viscosity, 𝜏  is the shear stress (N/m2), 𝛾 is the shear rate (s-

1). Subsequently, time - independent fluids are function of shear rate, reduction in 

polymer solution viscosity possibly represent the rheological properties of a shear 

thinning fluid are classified into four fluids models of time – independent group: the 

power – law , Ellis,  Carreau and Hershel – Bulkley [91 - 93, 97]. 

The power law is given in equation 2.7 

𝜇  = 𝑘 𝛾(𝑛−1)                                                                2.7a 

Where  𝜇 is the viscosity, K is the flow reliability index or constants that characterize 

the fluid, n is the flow behaviour index or power law exponent and 𝛾 is the shear 

rate. In the pseudo plastic region, n >1 is used to model shear thinning though it 

can also be used for modelling shear thickening as in figure 2.10a [97]. From the 

figure disadvantage exist in the power law model which is the absence of plateaux 

at low and even high shear rate. At different shear rate, n has little changes, but for 

a Newtonian fluid n = 1 and K is simply the constant viscosity µ [11].  

 

Figure 2.10a Rheology of a power law of time – independent fluid [98]  
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The absence of plateaux at low and even high shear rate of power law model 

brought about the Ellis model. The model became a substitute for the power law 

model and is appreciably better in matching experimental measurement [97, 99]. 

Ellis model is distinct from power law model by having Newtonian plateau at low 

shear rate without plateau at high shear rate as seen in figure 2.10b 

 

Figure 2.10b Rheology of an Ellis model on time independent fluid [97] 

Accordingly, Ellis model, the fluid viscosity µ is given in equation 2.7b 

µ = 
µ0

1+ (
 𝜏 

 𝜏 1
2

)𝛼−1

                                     2.7b 

Where µ0 is the low – shear viscosity, 𝜏 is the shear stress  𝜏 1

2

 is the shear stress at 

which µ =
µ0

2
  and 𝛼 is an indices parameter related to the power index 𝛼 =

1

𝑛
. 

To have Newtonian plateau at low shear rate and plateau at high shear rate, a more 

general model is the Carreau model as seen in figure 2.10c [93, 90, 94]. Carreau 

equation is given in equation 2.8 

𝜇 −  𝜇∞ = (𝜇0 −  𝜇∞) [1 + (𝜆𝛾)2](𝑛−1)/2                     2.8            
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Where 𝜇∞ 𝑖𝑠 the limiting viscosity at high even approaching infinite shear limit and 

is generally taken as the water viscosity 𝜇𝑤,  𝜆 and n are polymer – specific empirical 

constants: and 𝛼 is generally taken to be 2. 𝜇0 and 𝛾 are defined. Whereas, µ and 

𝜇0 are much larger than 𝜇∞ and (𝜆𝛾)2 is much larger than 1. Thus equation 2.8 

become the power law equation of the form  𝜇 = 𝜇0 (𝜆𝛾)𝑛−1 which describes the 

viscosity at the intermediate and high shear rate regions. At the low shear rate 

region, 𝜇 = 𝜇0  

 

Figure 2.10c Rheology of a Carreau model on time independent fluid [17]  

2.7.2 Viscosity dependence on time 

   

The viscosity of Water soluble polymer such as polyacrylamide (PAM) is apparently 

dependence on time. The fluids will display a change in viscosity with time under 

conditions of constant shear rate. However, if the fluid undergoes a decrease in 

viscosity with time while it is subjected to a constant shear rate, it is known as 

thixotropic fluid behaviour whereas the rheopexy is the opposite thixotropic 

behaviour, in that the fluids viscosity increase with time at constant shear rate [17, 

97].  As shown in the figure 2.11. In rheological investigation, time dependent shear 

effects are determined using constant shear measurement. This method would then 
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establish the independent effect of both shear rate and time on the viscosity 

behaviour of a given material.  

 

Figure 2.11 Viscosity dependence on time [97]  

2.7.3 Viscosity dependence on Temperature 

The viscosity of a polymer solution is dependent on temperature. At low shear rate, 

the viscosity of the polymer solution decreases with temperature [76]. According to 

Meyer [95] temperature is dependent on viscosity and polymer viscosity could be 

found to follow the simple exponential relationship of the Arrhenius equation, as 

stated in equation 2.9. 

µ = A𝑒−(
𝐸𝑎
𝑅𝑇

)                                                   2.9 

Where µ𝑎 is viscosity, 𝐸𝑎  is the activation energy of the polymer solution (viscous 

flow) A is a constant, R is universal gas constant, and T is the temperature. This 

implies that the viscosity of PAM, its longevity (ageing time) and the thermal stability 

of the polymer solution depend on reservoir temperature [83]. Equation 2.9 shows 

that the viscosity decreases rapidly as the temperature increases. As the 

temperature increases, the activity of polymer chains and molecules is enhanced 
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and the friction between the molecules is reduced; thus, the flow resistance is 

reduced and the viscosity decrease. 

Different polymers have different activated energy.  Polymer with higher activated 

energy, the viscosity is more sensitive to temperature. According to Sheng [17] 

HPAM has two activated energy: when the temperature is less than 35oC, activated 

energy is low and the viscosity does not change too much as the temperature 

increases. When the temperature is higher than 35oC, activated energy is high and 

the viscosity is more sensitive to the variations in the temperature [47, 76]. Because 

temperature is dependence on kinetic rate coefficient of a polymer viscosity, the 

Arrhenius equation in 2.9 could be rewritten as equation 2.10 [83, 68]  

𝜇𝑎 = 𝜇𝑎,ref exp {Ea(
1

𝑇
−

1

𝑇ref
 )}                                                               2.10 

Where 𝜇𝑎 is the apparent viscosity, 𝜇𝑎,ref is the viscosity at the reference 

temperature,𝑇ref, T is the reservoir temperature calculated from solving the energy 

balance equation, 𝑇ref is the reference temperature assumed to be equal to the 

reservoir temperature, Ea is the activation energy of the apparent viscosity.  

2.7.4 Viscosity dependence on Salinity and Concentration 
 

Polymer solution viscosity is dependence on salinity and polymer concentration. 

Accordingly, Flory – Huggins equation which explained that at zero shear rate the 

polymer viscosity solution dependence on polymer concentration and brine salinity 

(Flory 1953). It is given in equation 2.11 

𝜇0= 𝜇𝑤(1+ (𝐴𝑃1𝐶𝑃 + 𝐴𝑃2𝐶
2
𝑃

 + 𝐴𝑃3 𝐶
3
𝑝

 )𝐶
𝑆𝑃

𝑆𝑒𝑝
)                          2.11 

Where 𝜇0 the viscosity at zero shear rate, 𝜇𝑤 is the water viscosity, 𝐶𝑃  is the 

concentration in water (gmol/m3),𝐴𝑃1,𝐴𝑃2, 𝐴𝑃3 and 𝑆𝑃 the fitting constants and 𝑆𝑝 
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the effective salinity for polymer (meq/ml). However, the factor 𝐶
𝑆𝑃

𝑆𝑒𝑝
 allow for 

dependence of polymer viscosity on salinity and hardness. According to Sheng [17] 

the effective salinity for polymer solution, 𝐶𝑆𝑒𝑝  is given in equation 2.12 

𝑪𝑺𝒆𝒑 =
𝑪𝟓𝟏+(𝜷𝒑−𝟏)𝑪𝟔𝟏

𝑪𝟏𝟏
                                                                2.12 

Where 𝐶51, 𝐶61 and 𝐶11 are the anion, divalent and water concentration in an 

aqueous phase and 𝛽𝑝 is measured in the laboratory which is about 10. The unit for 

C51 and C61 is meq/ml and the unit for C11 is water volume fraction in the aqueous 

phase. Accordingly, polymer solution concentration is an influencing factor during 

the course of polymer flooding. The higher the polymer concentration, the higher 

the viscosity of the solution and the higher the efficiency in performance. According 

to Wang et al., [100] higher polymer concentration cause greater reduction in water 

cut (percentage water production over the total production) and increases the 

enhanced oil recovery efficiency. Accordingly, figure 2.12 shows comparative plot 

of polymer viscosity against salinity concentration and polymer concentration, it 

demonstrated that viscosity is reduced as the salinity solution increases from 1000, 

4000 and 7000 mg/l. even at lower solution polymer concentration of 200 mg/l the 

viscosity is low compare to 1000 mg/l.  

 

 

Figure 2.12 Viscosity dependence on polymer concentration at different salinities [100]  
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2.7.5 Viscosity dependence on molecular weight 
 

Polymer molecular weight significantly affect the performance effectiveness. 

According to the Wang et al., [100] the polymer with higher molecular weight 

provide greater viscosity to the polymer with lower molecular weight as seen in 

figure 2.13.  The molecular weight of 38 million Daltons have more viscosity 

compare to molecular weight of 25 million Daltons.   

 

Figure 2.13 Viscosity versus polymer concentration and versus Molecular weight 

[101] 

In furtherance, Xiaoqing et al., [101] reported that polymer solutions with higher 

molecular weight have better absorption, higher resistance and residual resistance 

coefficient. This imply that to recover a given volume of oil, less polymer is needed 

when using a high molecular weight polymer than with a low molecular polymer.  

2.8 Polymer Rheology Behaviour in Porous Media 
 

 The rheology behavior of polymer solution is a non-Newtonian fluid behaviors, such 

as shear thinning and shear thickening effects that leads to different viscosity 

properties as discussed in sub section 2.11.1. Basically, viscosity at any shear rate 

is important parameter for measurement of rheology. When a polymer solution 
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viscosity is injected into a reservoir from an injection well. The fluid flow velocity 

which is related to shear rate, will change from wellbore to in – depth of a reservoir; 

however the polymer solution viscosity will also change from near wellbore to in – 

depth of a reservoir [36, 103]. Earliest investigation studies have shown that 

rheological characteristics or viscosity fluid flow could be determined in the 

laboratory in two ways [6] (a) viscosity solution measurement using viscometer and 

(b) coreflood experimental analysis. Although, different nomenclature are used to 

recognize viscosity. Firstly, Bulk viscosity is measured in a viscometer whereas the 

in situ viscosity in porous media [17]. The in situ viscosity is not directly measured 

but instead it is calculated using coreflood experimental data according to the Darcy 

equation as seen in equation 2.13 

 𝝁𝒂𝒑𝒑= k 
𝑨∆𝑷

𝑸𝑳
                                                         2.13 

Where Q is the liquid volume at designated time interval, A is the cross sectional 

area, L is the length of the sample in the macroscopic flow direction,  𝜇𝑎𝑝𝑝 is the 

calculated viscosity of a fluid flowing through a porous media known as the apparent 

viscosity, ∆𝑃 is the pressure drop across the porous media, k is the absolute 

permeability for porous media. 

However, equation 2.13 is the apparent viscosity from Darcy’s law used to describe 

the macroscopic rheology of a polymer fluid flow in a porous media whereas 

effective viscosity is from Poiseuille’s law to describe polymer viscosity in a single 

capillary channel, which is in microscopic [79]. The effective viscosity is seen in 

equation 2.14 

𝝁𝒆𝒇𝒇  =
𝝉

𝜸
                                                            2.14 
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Where 𝜏 is the shear stress (N/m2) which represent the force per unit area,  𝛾 is the 

shear rate (s-1) representing the velocity change through the thickness, 𝜇𝑒𝑓𝑓 is the 

effective viscosity. 

Most time the polymer solution viscosity in porous media cannot be directly 

measured, however is predictable from the Darcy equation if coreflood tests are 

conducted. At this process several coreflood tests need to be run and is reasonably 

expensive and preferably, it could be advisable to model polymer viscosities at 

different flow rates in porous media from the bulk solution viscosities at different 

shear rates [17]. However, to determine polymer solution viscosities at different flow 

rate using bulk solution viscosities at different shear rates, there is need to convert 

the flow rates into shear rates. The converted shear rates is known as equivalent 

shear rate which is equivalent to the viscosities of the bulk viscometer. 

2.9 Mobility Control with Polymer Solutions 
 

When the mobility ratio for water displacing oil is unfavorable as discussed in sub 

section 2.8.4. The injection water need to be improved to overcome the difficulty 

emanated by displacing fluid (water). To improve the displacement efficiency, water 

soluble polymer viscosity solution should be added to reduced Mobility ratio (M) 

from the value of 1 or less. Equation 2.5d is converted to equation 2.15 

R =  
𝜆𝑤

𝜆𝑜
/ 

𝜆𝑝

𝜆𝑜
   =     

𝜆𝑤

𝜆𝑝
                               2.15 

 

R = 
𝑘𝑤

µ𝑤
/ 

𝑘𝑝

µ𝑝
                                             2.16 

Where 𝜆𝑤 and 𝜆𝑝 refer to the mobility ratio of the water and polymer solution 

respectively, and  𝜆𝑜 mobility ratio of oil.  
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Resistance factor (R) is defined as the mobility ratio of the water or brine to the 

mobility ratio of the polymer solution at residual oil saturation [9, 11 102]. 𝑘𝑤 is the 

effective permeability of water or bine solution, 𝑘𝑝 is the effective permeability of 

polymer solution, µ𝑤 is the viscosity of the water or brine and µ𝑝 is the viscosity of 

the polymer solution. 

Equation 2.15 and 2.16 shows the mobility ratio of a polymer solution compared to 

the flow of the water or brine. It could be acceptable that the displacement of oil by 

polymer could be give mobility ratio less than 1 which is favorable for oil recovery. 

According to Seright (1983) resistance factors of polyacrylamide solutions are 

greater than viscosities, this suggests that polyacrylamides reduce water mobility 

both by increasing solution viscosity and reducing effective permeability to water. 

Measure of permeability reduction is retained after a polyacrylamide bank is 

displaced by brine. One method of assessing the degree of polymer solution 

(polyacrylamide) efficiency is to compare solution viscosities. 

2.10 Polymer stability 
 

Stability of polymer solution is essential requirement for EOR application. It is well 

established that in the presence of reservoir temperature and brine. Polymer can 

degrade under certain conditions leading to polymer instability. Polymer 

degradation is defined as any process that breaks down the molecular structure of 

macromolecules properties [104, 18]. Though, loss of solution viscosity with time is 

the major means to detect degradation [23]. Polymer degradation includes 

chemical, thermal, mechanical and biological [21, 23, 68]. But the Biological 

degradation is more prevalent in Biopolymer [23]. PAM and HPAM exhibit instability 

due to degradation such as chemical, thermal and mechanical. Figure 2.14 shows 

the plot evidence of different point of degradation from injection well point to the 
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wellbore. Mechanical degradation occurs at the injection point decreasing down the 

reservoir due to shearing. Chemical degradation occurs in the wellbore with 

exponential drop or slide decrease due to oxidation attack. Thermal degradation 

causes decrease in the reservoir. The decrease depends vividly on ageing time in 

the presence of reservoir temperature and salinity brine. It could be improve by 

controlling the degree of hydrolysis as to have polymer stability over long period. 

 

 

Figure 2.14 Stages of Polymer stability [105]  

2.10.1 Chemical degradation 
 

Chemical degradation is the breakdown of polymers molecules [66]. This 

breakdown are caused by factors; contaminants such as oxygen and iron and even 

long term attack on the molecular backbone by process of hydrolysis [104]. It is well 

established that both polyacrylamides and biopolymers are prone to oxidative 

attack by dissolved oxygen in the injected water. Many factors affects chemical 

degradation but two most important are oxygen and ferric ion.  
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2.10.1.1 Effect of oxygen and ferric ion on PAM stability 
 

Polymer degrade chemically and the degradation are caused by oxygen which in 

turn could create a reaction with metals or metal ions [106]. The oxidative 

degradation reaction are catalysed by dissolved metal ions such as Fe3+. In the 

oxidization reaction process, oxygen is a major means to accelerate the metal –

induced degradation and more importance is the reaction that occurs between 

oxygen and ferrous ions to form radicals as shown in equation 2.17 and 2.18 which 

subsequently reacts with the polymer molecule to initiate a degradation chain 

reaction [107 – 108]. 

For instance, the oxidization of Fe2+ to Fe3+ produces a free radical O-. Then the 

highly reactive oxygen-anion radical O- may become attached to the polymer chain 

to produce peroxide and break the backbone. Oxidization could also proceed via 

the free radical mechanism [104, 108]. According to Fenton [109], this mechanism 

occurs via a solution of hydrogen peroxide and an iron catalyst, and is use to oxidize 

contaminants or wastewater. The chemical reaction creates two different oxygen-

radical species, H+ + OH-, with water as the by-product in the case of PAM. The 

active intermediate HO* in equations 2.19 to 2.22 can react with ferrous iron, 

hydrogen peroxide or other components contained in the reaction mixture. As 

shown in equation 2, iron (II) oxidized by hydrogen peroxide to become iron (III), 

forming a hydroxyl radical and a hydroxide ion in the process. The iron (III) is then 

reduced back to iron (II) by another molecule of hydrogen peroxide forming a 

 
2 3 *

2 2
Fe O Fe O                       2.17  

*

2
O R H RO OH                 2.18  
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hydroperoxyl radical and a proton, the step by step reaction are shown in equations 

2.15 to 2.18  and it proposed by Haber and [110]. 

 

   
2 3 *

2 2
Fe H O Fe OH HO                               2.19 

  
* *

2 2 2 2
HO H O H O HO                                       2.20 

 

      
* *

2 2 2 2 2
HO H O O H O HO                                  2.21                         

 
* 2 3HO Fe Fe OH                            2.22            

                                  

Degradation by oxidative attack can be prevented or minimized by reducing the 

oxygen content of the water or brine to less than a few parts per billion. This is 

usually done by use of oxygen scavengers. For example, sodium dithonite used for 

stabilizing polyacrylamides. Even Yang and Treiber [111] provided guidelines for 

the use of oxygen scavengers to prevent degradation of polyacrylamides in field 

brines under simulated reservoirs conditions. 

 

2.10.2 Mechanical degradation  

 

Mechanical degradation refers to the breakdown of macromolecules chain at high 

flow rate when fluid stresses are developed during deformation, or flow become 

large enough to break the polymer molecular chain [76, 112]. This occurs in pipes, 

through chokes, valves or pumps above a certain velocity or pressure drop as down 

hole through perforation [18]. Most viscosity loss occurred from the high pressure 

injection pumps and mixing system to the near wellbore. Drastically the reduction 

in polymer viscosity are due to the effect of shearing  
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2.10.2.1 Effect of Shear on PAM stability 
 

Polyacrylamides (PAM) and HPAM are sensitive to shear degradation because of 

the flexible coil molecule [76, 86]. Shear degrades the polymer into smaller 

molecules. It is well established that the higher the molecular weight, the higher the 

sensitivity to mechanical degradation and the more viscosity loss. The rate of 

polymer chain rupture in high shear flow depends on the molecular weight. Larger 

molecules offer more resistance to flow, consequently experience larger shearing  

 

 

Figure 2.15 Effect of shear degradation on polyacrylamide with different molecular 

weight and NaCl Concentration [113]. 



52 
 

One method of assessing the degree of polymer mechanical degradation is to 

compare solution viscosities. However, figure 2.15 is an experimental evidence on 

level of mechanical degradation on PAM where the apparent viscosity of PAM 

decreases with an increasing shear rate and to the brine solution, the higher NaCl 

brine concentration the more decrease in apparent viscosity as the shear rate 

increases. Accordingly, earlier experiment done by Maerker [112] found that the 

mechanical degradation of the polymer could be more severe in higher salinity 

brines and that the presence of calcium ions (Ca2+) had a particularly damaging 

effect over and above that expected from the simple increase in the solution’s ionic 

strength.  

2.10.3 Thermal Degradation 
 

Thermal degradation depends on reservoir temperature. Moreover, temperature is 

the determining factor for efficiency in performance of polyacrylamides (PAM) 

during polymer flooding application. Because temperature is a function of degree of 

hydrolysis. Degree of hydrolysis is defined as the degree of amide groups (CONH2) 

that are converted into carboxyl groups (COO-) [76, 114]. According to Choi et al. 

[83] the term hydrolysis was considered as different phenomenon from the chemical 

degradation which is sensitive to calcium ions. Chemical degradation should not be 

confused with acrylic backbone by radical mechanism which is referred as thermal 

degradation. In thermal degradation of polymer solution like polyacrylamide (PAM), 

the amide group (CONH2) hydrolyse at elevated temperature to form carboxylate 

groups (COO-) latter interaction with divalent ions Ca2+ and Mg2+ leads to a sharp 

reduction in polymer solution viscosity. Albonico and Lockhart [16] stated that the 

degree of hydrolysis at which PAM separate from solution depend directly 

proportional to salinity brine containing divalent ions and inversely proportional to 



53 
 

temperature. The aforementioned led to the recommendation of 70 – 82oC as safe 

maximum temperature (SMT) for the use of polyacrylamide in polymer flooding [13 

– 15, 115]. Above the aforementioned temperature limit become elevated 

temperature. Elevated temperature is define as a temperature above the safe 

maximum reservoir temperature (SMRT) at which a particular polymer gel solution 

becomes unstable [84]. Various water soluble polymer have difference safe 

maximum temperatures (SMT) and they are categorised as low, high or ultra-high 

[116], as indicated in Figure 2.16 which represents in plot (a) the low and moderate 

safe temperature range up to 82°C, in plot (b) the high safe temperature range 

between 90 - 150 °C, and in plot (c) ultra-high safe temperatures of above 150 °C.  
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Figure 2 16. Various water-soluble polymer gels with maximum safe temperatures 

[84] 
 

In commercial applications of polyacrylamide (PAM) suitable range of degree of 

hydrolysis are reported to be from 15 – 35% [36]. Because, when PAM is presence 

at temperature above moderate, the hydrolysis will increase faster and PAM may 

not be able to withstand high temperature [83]. Accordingly, Ryle’s [15] 

experimental test confirmed that dissolved salinity brine had just less effect on 

hydrolysis rate however, the temperature is the main determining factor.  
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2.10.3.1 Effect of Temperature of Hydrolysis of PAM 
 

Temperature has an influencing impact on polyacrylamide rheological properties. 

Because, polyacrylamide (PAM) as a synthetic water-soluble polymer in pure state 

are electrically neutral possessing a hydrogen bond [117]. But when mixed with 

water in presence of elevated temperatures, and its amide groups are converted 

into carboxylate groups [117 – 118] as shown in Figure 2.15. The hydrolysing 

nature basically depend on the elevated temperature. Because at elevated 

temperature gives a transformation into carboxylate group. The carboxylate group 

carries a negative charge and represents a reactive site, promoting ionic interaction 

with molecules such as monovalent and divalent cations. The mechanism of 

chemical transformation are in Figure 2.17 

 

Figure 2.17. Effect of elevated temperature in hydrolyzing PAM [84]. 

In an understandable chemistry mechanism, for carboxylic group (RCOOH) to be 

converted into a carboxylate group (RCOO-), there must be a loss of a proton (H+), 

as shown in equation 2.23.  

- +R-COOH R-COO H                 2.23   
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Making the carboxylate group (RCOO-) open for interaction with monovalent (NaCl) 

and multivalent ions, especially CaCl2 and MgCl2, as shown in Figure 2.19. In 

furtherance, if the temperature increases, the negative charge on the rock surface 

is increased, resulting in higher electrostatic repulsion. Thus, the ionic polymer 

HPAM adsorption is reduced.  

 2.10.3.2 Effect of Formation Water Salinity on Hydrolysed PAM 
 

Formation water salinity has a strong effect on polymer viscosity, especially for 

Hydrolysed PAM. Formation Water salinity is a measure of the total dissolved ions, 

such as Na+, K+, Ca2+ and Mg2+, carried by water that naturally exist within the pores 

of a reservoir sedimentary rock. When water containing monovalent (NaCl) and 

multivalent ions (predominantly CaCl2 and MgCl2) interact with hydrolysed PAM. 

The polymer viscosity decreases. However, the exact chemistry is in figure 2.16.  

 

 

Figure 2.18. Effect of Ca2+ or Mg2+ on hydrolyzed PAM [84]. 
 

Apparently, reservoir containing high formation water salinity causes precipitation 

and decrease in the viscosity of polymer solution which could lead to poor mobility 

control. A clear evidence was a numerical simulation studies at Daqing oilfield China 

where oil recovery efficiency decreased from 30% to 50% when salinity increased 

from 2500 to 10,000 mg/l [100]  
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 2.11 Resultant Effect of High Temperature and Salinity 

 

  Elevated temperatures and the presence of formation water salinity containing 

divalent cations (Ca2+ and Mg2+) have a strong effect on polyacrylamide during EOR 

applications. They cause polymer syneresis and precipitation. 

2.11.1 Polymer Syneresis 
 

Polymer syneresis is a phenomenon where the polymer gel structure collapses, 

expelling water and in turn resulting in contraction or shrinkage of the volume of the 

gel [84, 115, 119]. According to Albonico and Lockhart [115] it is reasonable to 

expect that severe syneresis could result in a reduction of 90% or more of the 

original gel volume, and this could have a significant impact on the performance of 

a gel within porous reservoir rock. However, the percentage of syneresis could be 

determined in laboratory by calculating the difference between the weights of a 

sealed vial containing polymer gel before placed in the oven and the weight of a vial 

in which syneresis has occurred, the difference are divided by the initial weight of 

the sealed vial containing polymer gel multiplied by one-hundred.  

There are two ways in which syneresis may occur: (1) excessive cross-linking 

[120,121]; and (2) at elevated temperatures or in conditions of high salinity [122]. 

Excessive cross-linking, occurs during the transformation of polymer solution into 

gel via a chemical cross-linker. In this process, the cross-linker freely bonds the 

reactive groups to the polymer chains, and the effective molecular weight of the 

polymer increases. Consequently, if too much cross-linker is present in the vicinity, 

cross-linking may continue beyond the point of gelation, the polymer starts to 

contract in volume, and water is expelled [120].  
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Karimi et al., [119] demonstrated how excess cross-linker could lead to syneresis 

in an experiment using four different weight ratios of polymer to cross-linker with a 

polymer concentration of 11,000 ppm and at a temperature of 80oC. The polymer-

to-cross-linker weight ratios were 10 to 20; no syneresis occurred after 150 days 

but with a ratio of 40 to 60, syneresis occurred and increased. It became obvious 

that once the cross-linker concentration exceeds a certain value, the rate of 

syneresis starts to increase.  

Whereas in elevated temperature and in conditions of high salinity, syneresis could 

occur when the polyacrylamide solution with high salinity is place in an oven over 

an extended period. The polyacrylamide solution experiences hydrolysis and the 

acrylamide groups on the polymer backbone converted into acrylate, further 

interaction with divalent cations leads to the syneresis of the polymer gel. According 

to Karimi et al.'s [119] experimental report, syneresis occurred when 

polyacrylamide (PAM) was placed in an oven for 6 months at temperatures of 80 

and 100oC, but did not occurred when it was placed in the oven at 30 or 60oC. The 

temperature increase from 30 and 60oC to 80 and 100oC respectively resulted in 

syneresis, with some degree of reduction in gel volume. This implies that, as the 

temperature increases, the percentage of syneresis increases. Karimi et al., [119] 

also showed that salinity has an effect on syneresis by adding NaCl, MgCl2 and 

NaHCO3, however, reductions in the volume of the polymer gel was observe. 

2.11.2 Polymer Precipitation  
 

Polymer precipitation is the result of interaction between the formation water salinity 

containing divalent cations (Ca2+ and Mg2+) and the carboxylate groups (COO-) on 

the hydrolysed polymer Zaitoun and Potie [13]. This interaction implies that, as the 

percentage of carboxylate groups increases, solubility decreases. However, if this 
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happens to excess, it will eventually amount to precipitation and the polymer 

solution will not transform into polymer gel [14, 115, 13 121].   


2.12 Control of Polyacrylamide (PAM) degradation 

The earlier researchers discovered that polymer flood projects are suitable to 

relatively ideal reservoirs with low temperature and low salinity but when applied in 

hostile reservoir conditions, such as high or elevated temperature and high salinity, 

the polymer suffer from degradation leading to substantial loses in polymer solution 

viscosity [12, - 16, 21]. The key mechanism of PAM degradation was found to be 

amide group hydrolysis. The rate of hydrolysis was found to vividly depend on 

temperature. Hydrolysis appears to be the key factor affecting polymer stability 

followed by precipitation in the phase of salinity containing multivalent ion (CaCl2 

and MgCl2). The polymer degradation becomes more severe as temperatures 

increases, especially above 70oC [15, 21, 76]. Above 75oC PAM could give rise to 

extensive thermal hydrolysis up to 80 mole % [15]. Moreover, polymer flood project 

at different field globally is challenging because of high reservoir temperature and 

high salinity of formation water [86]. To withstand the news problems and limitations 

caused by high temperature and high salinity concentration. This study adopted and 

designed research materials and methods as discussed in Chapter 3. The purpose 

is to meet the criteria of inactivity or insensitivity to moderate and high salinity 

concentration at high temperature and resistance to hydrolysis. Firstly, before the 

synthetic experimental approaches followed a correlation analysis was conducted 

to determine the safe maximum temperature point (SMTP).  
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CHAPTER 3: MATERIALS AND METHOD 
 

Polyacrylamide (PAM) and it derivatives HPAM have been successfully 

implemented for EOR applications in several oilfields [86,123] at moderate 

temperatures and salinity levels to control the mobility ratio and improve the sweep 

efficiency. But the current challenges being faced in modern fields is that many 

oilfield tend to have higher temperatures (>75oC) and high salt concentrations 

>30000 ppm TDS [2].  Facing these challenging reservoirs conditions, materials 

and research methods were adopted as to fit in the existing technical gap and 

address the stability limitations of PAM.  

3.1 Materials 

A high molecular weight (5 – 6 x 106 Dalton) non-ionic water-soluble polymer of 

Polyacrylamide (PAM) as shown structurally in figure 3.0 were utilized as basic 

material for this work because it possesses thickening (viscosity) capacity for EOR 

applications based on its high molecular weight [20]. The challenging situation of 

PAM under EOR applications is that PAM is apparently unsuitable for use under 

harsh reservoir conditions of high temperature and high salinity. Facing the 

challenging high temperature situation, poly vinyl Pyrrolidone (PVP) of Mw ~ 55,000 

Dalton were combined with PAM in saline solution of 43280 ppm. The molecular 

structural of PAM and PVP mix is shown in figure 3.2. The main purpose of PVP 

additive to PAM,  is that PVP act as resistant to PAM degradation at high 

temperatures and its also exhibits a non toxic and envirionment – friendly behaviour 

[124 – 127]. In furtherance the optimised solution of PAM and PVP mix were 

extended to extreme salinity of 200000 ppm but the results showed that instability 

occurred. Facing extreme salinity of 200000 ppm, 2 – acrylamido-2-

methylpropanesulphonic acid (AMPS) of Mw: 207.25 g/mole were added to the 
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optimised solution of PAM and PVP mix. AMPS were deployed because the 

polymer contain sulfonate groups that are expected to offer high stability in solution 

and can tolerate high salinity [88]. The molecular structural of PAM PVP and AMPS 

mix is shown in figure 3.3. To avoid substantial chemical degradation of polymers 

solutions in the presence of oxygen, Sodium thiosulphate (Na2S2O3) concentration 

were added to the polymers solution as an oxygen scavenger [106]. The three 

water soluble polymers PAM, PVP and AMPS were sourced from Sigma-Aldrich 

Company (St. Louis, USA). 

                 

Figure 3.0. Partial structure of water soluble polymer polyacrylamide (PAM) 
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Figure 3.1: Sequential order of this work research methods  
 

Research Methods 

STEP 1: 

Estimation of Safe Maximum 

Temperature Point (SMTP) for PAM in 

saline solution 

 Correlation of Temperature on 
the degree of hydrolysis (DH) of 
PAM. 

 Correlation of temperature on 
the viscosity of PAM 

 

Synthetic Experimental 

Approach 

 

STEP 2:  

Studying PAM at 

different Operational 

conditions  

STEP 3: 

Modification of 

PAM with PVP for 

High Temperature 

Reservoir 

STEP 4: 

Modification of 

optimised PAM: PVP 

mix with AMPS High 

salinity Reservoir 

Characterization (degree 

of hydrolysis) of polymers 

 Degree of hydrolysis 
FTIR and NMR 
Sample preparation 
of polymers 

 FTIR AND NMR 
testing of the extent 
of degree of 
hydrolysis on 
polymers 

 

Rheology (viscosity) Testing 

polymers 

 Viscometer sample 
preparation for viscosity 
testing 

 Viscosity testing and 
analysis using Fann 
Model 35 Couette and 
Cole Parmer rotational 
viscometer at 
temperatures and 
shearing   

STEP 5: 

Validations of 

LAB results 

via simulation 

and modelling 



63 
 

       3.2 Research Methods 
 

       This study adopted two research methods: first method, deduced safe maximum 

temperature points (SMTP) from published data(s) and second method conducted 

synthetic experiment on the polymers as to fit in the existing technical gap and address 

the stability limitations of PAM. The sequential order of the research method is shown 

in figure 3.1 

3.3 Safe Maximum Temperature Point (SMTP) Method  

 

In determining the safe maximum temperature point (SMTP) of PAM under improved 

and enhanced oil recovery (IOR/EOR) applications. A correlation were deduced based 

on previously published data (s) on PAM studies and it is sectioned into two: 

 Correlation of temperature on the degree of hydrolysis (DH) of PAM in 

saline concentration. 

 Correlation of temperature on the viscosity of PAM in saline concentration 

 

3.3.1 Correlation of temperature on the degree of hydrolysis (DH) of PAM 
 

This approach involved two stages; firstly, plotting the degree of hydrolysis of PAM 

against ageing time in three different oilfield brines of (5% NaCl), (9% NaCl and 1% 

CaCl2), (3% NaCl and 1% NaHCO3) at temperature of 25 to 93oC made available from 

published data.  

Secondly, plotting the gradient of the degree of hydrolysis against the temperature 

ranges in presence of the oilfield brines. This approach was repeated also in 

Correlation of temperature on the viscosity of PAM. 
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3.4 Synthetic Experimental method  

The synthetic experimental method is a quantitative research method designed to 

determine the limit of operational performance of PAM and effects of presumed causes 

of instability while in operation. The key chronological step includes: sample 

preparation, laboratory measurement with equipment such as Fann model 35 and 

Cole Parmer rotational viscometer for viscosity testing and Fourier transform infrared 

(FTIR) and neutron magnetic resonance (NMR) for testing the extent of degree 

hydrolysis and finally the results analysis before validations of results as shown in 

figure 3.1.  

3.4.1 Sample preparation for Rheology (viscosity) testing 

Studying the effectiveness of polyacrylamide at different operational conditions, a high 

molecular weight (5 – 6 x 106 Dalton) non-ionic water-soluble polymer of 

Polyacrylamide (PAM) was selected and sourced from Sigma–Aldrich. Two types of 

polymer solution were then prepared: type 1 using deionized water and type 2  

synthesized formation water (hereafter called brine) mimicking the Draugen reservoir, 

North Sea, with total dissolved salts of 43,280 ppm [128]. The reservoir is of sandstone 

formation, Table 3.1 presents the composition of the synthesized saline and brine used 

in this research. The polymer solution with or without brine was prepared using a 1% 

(w/v) polymer (10g) concentration in a 1000 ml beaker mixed with an electric stirrer for 

3 hours. To prevent polymer degradation due to the presence of oxygen, 1% (w/v) or 

10g Sodium thiosulphate (Na2S2O3) concentration was added to 1000 mL of the 

solution as an oxygen scavenger.  
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Table 3.1: Composition of the Synthetic Saline and Brine 
 

Ion Synthetic Saline (ppm)  Synthetic brine (ppm) 
 

NaCl 34700 170,000 
 

CaCl2. 6H2O 
 

4900 15000 

MgCl2.6H2O 
 

2700 10000 

KCl 
 

400 2500 

NaHCO3 
 

400 1500 

SrCl2.6H2O 
 

120 600 

BaCl2.6H2O 60 400 

TDS 43,280 200,000 

 

To maintain high quality testing results the following steps have been followed: 

1. Mix the required solution from the same chemical manufacturing batch for 

operational conditions. 

2. Ensure that the quality control testing procedure has been applied. 

3. Maintaining high quality control, the results presented for the viscosity of 

each solution at different conditions is the average of three measurements 

and the error calculated based on test repeatability. 

3.4.2 Viscometer Technique 
 

Viscosity is the measurement of the internal friction to fluid flow [129] and is 

measured with an instrument known as viscometer. A viscometer is special type of 

rheometer (instrument for measuring rheological properties) which is limited to the 

measurement of viscosity [90 – 91]. Basically in polymer solution viscosity, two 

major viscometer are used: capillary viscometer and rotational viscometer. Capillary 

Viscometer measure viscosity by timing how long it takes for a transparent or 
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translucent fluid to flow between two points of capillary tube and its viscosities 

measurement is always at zero shear rate (𝛾=0) Whereas rotational viscometer use 

a torsion spring to measure the torque required to rotate a cone, plate and a spindle 

in the materials and it viscosities measurement is always at different speed 

rotational or shearing (𝛾>0). Because polymer viscosity measurement is based on 

internal friction, the fluid is meant to move from one layer in relation to another layer. 

The greater the friction, the greater the amount of force required to cause this 

movement, which is called shear. Shearing occurs whenever the fluid (polymer) is 

mixed and pumped and it physically moved or distributed from wellbore to a few or 

far hundred feet away from the bore; accordingly, the viscosity of the polymer 

solution will change [91]. This sudden rheological change is based on viscosity 

dependence on shear rate and shear degradation effect on fluid (polymer) as 

discussed in sub section 2.11.2 and 2.14.2. Moreover, effective shear degradation 

research studied cannot be observed or measured at only point zero. It need go 

beyond zero shearing, that imply that rotational viscometer is best suitable for this 

research measurement. 

 

 

 

 

 

Figure 3.2.  Two Rotational Viscometers (a) Cole Parmer [143] and (b) Fann 

35A Couette utilised in measuring viscosity [96]. 

 

(a) 

(b) 
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3.4.2.1 Viscosity testing and Analysis 
 

 Two different rotational viscometers namely; a Fann model 35 Couette and a Cole 

Parmer, were utilized to measure solution viscosity as shown in figure 3.2. 

Accordingly, the Fann viscometer system utilized concentric cylinder with rotor and 

bob radius of 1.8415 and 1.725 cm respectively, and also is Cole Parmer rotational 

viscometer with R2 stainless steel spindle. The prepared PAM solutions were aged 

in an oven at temperatures of 50, 70 and 90oC for time intervals of 0, 1, 2, 4, 10, 20 

and 30 days, where an ageing time of zero refers to any measurements immediately 

after PAM preparation. To assess the effect of shear rate and rheological test on 

PAM stability, viscosity was measured at rotational speeds of 3, 6, 10, 30, 100, 200, 

300 and 600 rpm corresponding to shear rates of 5, 10, 17, 51, 170, 340, 510 and 

1021 sec-1 respectively. Accordingly, to analyse the measured viscosity test results 

for FANN viscometer, the rotor – bob combination (R1B1) were utilised as shown 

in Table 3.2. 

Table 3.2 Constants for Viscosity calculations 

 

The shear viscosity of a fluid (µ) is calculated by dividing the shear stress (𝝉) to the 

shear rate 𝛾 as given in equation 2.6.  Accordingly, for Newtonian fluids µ is a 

Constant  
Rotor – Bob (RB) Combinations 

R1B1 R2B1 R3B1 R1B2 R1B3 R1B4 

Overall 
Instrument 
Constant, K 
Standard F1 
Torsion Spring 

300 94.18 1355 2672 7620 15200 

Shear Rate 
Constant K3 (Sec-
1 Per rpm) 

1.7023 5.4225 0.377 0.377 0.268 0.268 

Shear Stress 
Constant for 
Effective Bob 
Surface K2 (Cm-3) 

0.01323 0.01323 0.01323 0.0261 0.0529 0.106 
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constant but for a non – Newtonian fluids it will be a function of the prevailing shear 

stress and shear rate put together as seen in equation 3.0a and equation 3.0b 

respectively. Hence the viscosity or effective viscosity is measured at any particular 

shear stress when divided by the shear rate and is expressed in equation 3.1 and 

3.2 [96]. Accordingly, the sequence of rheological (viscosity testing) and analysis 

of polymers are given in figure 3.3 

Shear stress (𝝉)  = 1 Fann = 5.11 dynes/cm2            3.0 a 

Shear rate 𝛾 = 1/sec = 1.7023 N                                3.0 b 

The viscosity (µ) = (
5.11 𝜃

1.7023𝑁
) 𝑋 100                              3.1 

Effective Viscosity (µe) = 300 X (
𝜃

𝑁
)                            3.2 

Where N is revolution per minutes (rpm), 𝜃 Fann dial reading 

 

 

 

 

 

 

 

Figure 3.3. Sequence of rheological (Viscosity testing) and Analysis of 

polymers. 
 

Viscosity Testing 

& 

Analysis 

Shear stress (𝝉)  = 1 

Fann = 5.11 dynes/cm
2

             

Shear rate 𝛾 = 1/sec = 

1.7023 N                                 

The viscosity (µ) = 

(
5.11 𝜃

1.7023𝑁
) 𝑋 100                               

Effective Viscosity (µ
e
) = 

300 X (
𝜃

𝑁
)                             

Where N is revolution 

per minutes (rpm), 𝜃 

Fann dial reading 

Analysis  



69 
 

3.4.3 FTIR AND NMR Techniques 
 

Measuring the degree of changes in hydrolysis gives a measure of the degradation 

of the polymer gel. This is due to the fact that primary mechanism of polyacrylamide 

degradation was found to be caused by amide functional group hydrolysis [15]. 

Accordingly, degree of hydrolysis is defined as the actual number of carboxylate 

(COO-) groups that could replace the amide group (CONH2) divided by the total 

number of amide and carboxylate groups [114, 117, 130]. To determine the degree 

of hydrolysis, two techniques were utilized proton nuclear magnetic resonance (1H 

NMR) and Fourier transform infrared (FTIR) [12]. The Sequential operation FTIR 

and NMR testing and analysis in determination of degree of hydrolysis are given in 

figure 3.4 

 

Figure 3.4. Sequence of FTIR and NMR testing and analysis of degree of 

hydrolysis 
 

3.4.3.1 NMR Technique  
 

Basically, the Nuclear Magnetic Resonance NMR spectroscopy as given in figure 

3.5 is used in determining the structures of molecules. But major application of NMR 
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spectroscopy in polymers is in study of chain configurations and microstructure. 

This is obtained by measuring, analysing and interpreting of spectra. NMR has an 

advantage in that it allows study of the motion and positions of protons, which are 

not readily detected by most other means [95]. The technique utilises the property 

of spin which is angular momentum and its associated magnetic moment 

possessed by nuclei whose atomic number and mass number are both even. Such 

nuclei include 1H, 13C, 17O and 19F. Oftentimes the nuclides that mainly utilised are 

the protons (1H) and carbon – 13 (13C) because their resonances are the most 

important for determining the structures of organic molecules [131]. They shows 

strong magnetic field to material containing such nuclei splits the energy levels into 

two, representing states with spin parallel and anti – parallel to the field.  Measuring 

the displacement in resonance is termed as chemical shifts. The size of the 

chemical shift scale is measured with part per millions (ppm). Experimentally, 

deuterated solvents are often used as the solution solvent because they contribute 

no resonance. Considering the cost of the deuterated solvent. D2O and CDCl3 are 

the most commonly used solvents because they are the cheapest and yield 

satisfactory results most of the time. In 1H NMR spectroscopy, the chemical shifts 

of protons are determined mainly by the diamagnetic shielding because hydrogen 

atom have one electron and other nuclei with spherically symmetric charge 

distribution [131]. The chemical shift (δ) is expressed in ppm and it shift range from 

0 to 12 ppm. According, Friebolin [131] stated that 95% of 1H NMR shift in organic 

molecules lie within the narrow range of δ = 0 to 12. Whereas in carbon – 13 (13C) 

NMR spectroscopy shift range from 0 to 240 ppm and are determined by 

paramagnetic shielding to correct these discrepancies by taking into account the 

effect of the non – spherical charge distribution. Both the protons (1H) and carbon 
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– 13 (13C) NMR could identify the peak area as assigned to the functional group. 

Due to availability or accessibility this research utilised the protons (1H) NMR to 

identify the peak area, accordingly, the proton (1H) NMR structure – chemical shift 

assignments shown figure 3.5b. 

 

 

 

 

 

 

 

Figure 3.5a. NMR equipment for polymers degree of hydrolysis testing [144] 

3.4.3.2 NMR Sample Preparation and Analysis  
 

Initial degree of hydrolysis (𝐷𝐻𝑖)  of polyacrylamide (PAM) samples collected at 

zero time were tested and analysed using proton nuclear magnetic resonance 

spectroscopy (1H NMR). The 1H NMR detect the information about type of protons 

and the number of each type of proton area. 

Accordingly, the NMR samples were prepared with 20 mg of the PAM solution 

dissolved with deuterated solvent of 1 ml of deuterium oxide (D2O) on a small vial 

container which was then placed at three different temperatures of 50, 70 and 90oC 

on a hot block for over 3 hours. The mixed solution after ageing was then transferred 

from the vial container to a NMR tube on sample level depth of 5.5 cm with a glass 
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Pasteur pipette. The NMR tube was inserted into the Bruker Advance III 400 MHz 

triple-NMR spectrometer with fast magnetic angle spinning (MAS) at 65 KHz and a 

rotor diameter between 1.3 and 4 mm to achieve the results. The results were 

analysed via identification of the peak area assigned to the functional group before 

further processing using Bruker Topspin 3.5 software. The Bruker topspin 3.5 

software integrate the amount of H atoms within the integration. The integrating 

values indicate the amount of H atoms within the integration region by assessing 

the number of H atoms that give rise to the peak. This help to identify the carbon 

skeleton such as methine (CH), methylene (CH2) and methyl (CH3) or other 

equivalent H atoms. 

3.4.3.3 FTIR Technique 

 

Fourier transform infrared (FTIR) spectroscopy given in figure 3.6 is one of the 

important analytical technique for study of the molecular interaction. In water soluble 

polymers, it examine the change in the intensity of amide group absorption of water-

soluble polymers. This technique mechanism is based on the vibrations of the 

atoms of a molecule. The spectrum is commonly obtained by passing infrared 

radiation through a sample and determining what fraction of the incident radiation 

is absorbed at a particular energy [132]. The spectrum and positions of peaks are 

sensitive to environmental changes in the conformations of the macromolecule as 

could be identified by the chemical interaction on the shifts band.  Eventually, this 

change in the absorption bands of the functional groups occurs when molecules 

undergo transition between quantum states corresponding to two different internal 

energies; the frequency of the radiation emitted or absorbed by quantum. The peak 

in FTIR are represented in transmittance and absorbance against the wavelength. 

The spectrum peak when in transmittance (%T) could be converted to absorbance 



73 
 

(A). Moreover, the absorbance is equal to the difference between the logarithms of 

the intensity of the light entering the sample (I0) and the intensity of the light 

transmitted (I) by the sample. The conversion from transmittance to absorbance are 

represented in equation 3.3 – 3.5.  

A = log I0 – log I = log (
 𝐼0

𝐼
)                                             3.3 

Percentage transmittance (%T) 

%T = 100 x T                                                                 3.4 

A = - log 
% 𝑻

𝟏𝟎𝟎
                                                                   3.5 

In infrared absorption spectrum, there is always bands that appear can usually be 

assigned to particular parts of molecule according to functional group. 

 

Figure 3.6: FTIR equipment for measuring change in absorbance of amide 

functional group hydrolysis in polymers [144]  

 

3.4.3.4 FTIR Testing  
 

The Fourier transform infrared (FT-IR) analytical technique was used to measure 

the percentage change in absorbance of amide functional group hydrolysis after 

ageing. The aged PAM solutions, were cast into a watch glass and allowed to dry 

before being placed on a Perkin Elmer spectrum 100 FTIR – Attenuated total 
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reflectance (ATR) spectrometer sensor for recording. In Perkin Elmer spectrum 100 

FTIR is an attached diamond ATR crystal material, where the samples is placed 

and an arm that is screw down onto the sample, to enhance a perfect contact to the 

diamond phase. Then the spectrum will begin to appear on the computer screen, 

continue screwing until good spectrum is obtain. The resolution of FTIR spectra 

recorded wave numbers ranging from 650–4000 cm-1 with 32 average scans. The 

absolute measurement provided by the 1HNMR on the time zero samples was used 

as a calibration point for the change in absorbance measurements obtained from 

the FTIR  to derive the absolute degree of hydrolysis of the aged polymer samples.   

3.5 Modification of PAM with PVP for High Temperature Reservoirs Application 

 

Improving the performance of PAM focuses on two aspects. The challenging 

reservoir conditions such as high temperature and high salinity. Two stages were 

involved to achieve the improvement process. The first stage is to face high 

temperature challenge in a moderate salinity and the primary synthetic approach 

followed has been that of substituting part of the polyacrylamide (PAM) with 

Polyvinylpyrrolidone (PVP). PVP is non-toxic water soluble polymer that effectively 

protects the polyacrylamide or acrylamide group against extensive thermal 

hydrolysis [125 -127]. Whereas the second stage is to extend the optimised polymer 

of PAM and PVP mix to extreme high salinity solution.  

3.5.1 PAM AND PVP Mix Sample Preparation 

 

To face the challenge of high temperature reservoir, two stages in sample 

preparation approach were utilized. First stage, two water-soluble polymers (A high 

molecular 5 – 6 x 106 Dalton non – ionic polyacrylamide (PAM) combined with 

Polyvinylpyrrolidone (PVP) of Mw ~ 55,000 Dalton) were utilized and which were 
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made available by Sigma-Aldrich Company (St. Louis, USA) and the molecular 

structure are presented in figure 3.2. The modified polymer solution overall 

composition was prepared with 1% (w/v) 10g concentration as seen in Table 3.3  

and are dissolved in 1000 ml beakers containing formation water with moderate 

salinity of 43280 ppm as presented in Table 3.1 and mixed with electric stirrer for 3 

hours. The prepared polymer solutions were aged in an oven at temperature 90oC 

for each time intervals of 0, 1, 2, 4, 10, 20 and 30 days.  

Second stage, the optimised composition of PAM and PVP were extended to 

synthesized formation brine of TDS (200000 ppm) and the results proved that the 

degree of hydrolysis started increasing and the viscosity decreased. Values of 

weight ratio and synthesized formation water salinity are presented in Tables 3.1 

respectively. Accordingly, to prevent the degradation of the integrated polymer 

solution from the presence of oxygen, 1% (w/v) or 10g of Sodium thiosulphate 

(Na2S2O3) concentration were added to the polymer solution as an oxygen 

scavenger.  

   

Figure 3.4. The Molecular structure of copolymer of Poly (acrylamide and vinyl 

Pyrrolidone) 
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Table 3.3: The weight composition of PAM:PVP 
 

Sample No: 
PAM 

wt (%) 
PVP 

 wt (%) 

1 100 0 
2 90 10 
3 80 20 
4 70 30 
5 60 40 
6 50 50 
7 40 60 
8 30 70 
9 20 80 

10 15 85 
11 10 90 
12 5 95 
13 0 100 

 

3.6 Modification optimised PAM: PVP Mix with (AMPS) for High Salinity 

Reservoir. 

 

The optimised composition of PAM and PVP were extended to synthesized 

formation salinity of 200000 ppm TDS and the results proved that the degree of 

hydrolysis started increasing and the viscosity decreased. Improving the optimised 

PAM and PVP with 2 – acrylamido-2-methylpropanesulphonic acid (AMPS). AMPS 

is a copolymer of acrylamide with sulfonated co-monomers which offer hydrogen 

bonding capability and polyelectrolyte behaviour in aqueous solution and in turn 

giving good stability in high salinity [88].  

3.6.1 PAM, PVP and AMPS Mix Sample Preparation 
 

To face the challenge of extreme high salinity with TDS 200,000 ppm,  2 – 

acrylamido-2-methylpropanesulphonic acid (AMPS) of Mw: 207.25 g/mole made 

available from Sigma-Aldrich Company (St. Louis, USA) were added to the 

optimised mixture of PAM and PVP solution. The modified polymer solution overall 
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composition was prepared with 1% (w/v) 10g concentration as indicated in Table 

3.4 in 1000 ml beakers containing formation water with extreme high salinity of 

200000 ppm as seen in Table 3.1 and mixed with electric stirrer for 3 hours. The 

prepared polymer solutions were aged in an oven at temperature of 90oC for time 

intervals of 0, 1, 2, 4, 10, 20 and 30 days. Figure 3.3 is the molecular structure of 

PAM, PVP and AMPS. Accordingly, to prevent the degradation of the integrated 

polymer solution(PAM, PVP and AMPS) from the presence of oxygen, 1% (w/v) or 

10g of Sodium thiosulphate (Na2S2O3) concentration was added to the polymer 

solution as an oxygen scavenger.  

Table 3.4 The weight composition of PAM:PVP:AMPS 
 

Sample No: 
PAM 

wt (%) 
PVP  

wt (%) 
AMPS  
Wt (%) 

1 20 90 0 
2 19 76 5 
3 18 72 10 
4 10 40 50 
5 2 8 90 
6 0 0 100 

    

CH2 CH

C O

NH

C CH3H3C

S OO

OH

2 Acrylamido - 2 - methyl propane - sulfonic acid

m

n

CH2
CH

C O

NH2

N

CHCH2

O

copolymer of Poly (acrylamide and vinyl Pyrrolidone) 

 

Figure 3.3 The Molecular structure of PAM, PVP and AMPS 
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CHAPTER 4: ESTIMATION OF SAFE MAXIMUM TEMPERATURE POINT (SMTP) 

FOR PAM IN SALINE SOLUTION 

 

Serious technical challenge exist when PAM and it derivative HPAM are applied 

in harsh reservoir conditions of elevated temperature and high salinity during 

polymer flooding enhanced oil recovery (EOR) operation however, they represent 

a powerful means of increasing the viscosity of injection water and most importantly, 

improving mobility ratio [11]. The selective criteria or screening requirement for 

industrial application of water soluble polymer polyacrylamide (PAM) during 

improved and enhanced oil recovery (IOR/EOR) is to ensure that the polymer does 

not degrade as it moves through the reservoir. Accordingly, Ryles [15] and 

Albonico and Lockhart [16] stated that the PAM degradation depend vividly on 

the hydrolysis of the amide functional group. The degree of hydrolysis at which PAM 

separate or degrade from solution depend directly on the salinity containing divalent 

cations concentration and inversely on temperature [14]. Such considerations have 

led to the recommendation of 70 – 82oC as the maximum safe temperature for the 

use of polyacrylamide in polymer flooding [13 – 16, 115]. Recent study have also 

claimed that gels produced with polyacrylamide and it derivatives (HPAM) used in 

(IOR/EOR) for treatment of reservoirs with temperature below 75oC [11]. To 

maintain a safe operation during PAM application in (IOR/EOR) operation, there is 

need to establish a correlate on safe maximum temperature in saline solution. 

Based on the aforementioned, this work through accessible published data on 

PAM’s properties, draw correlations between temperature and saline concentration 

on the degree of hydrolysis, and the viscosity of PAM solutions. The correlation 

analysis were based on gradient of PAM hydrolysis and viscosity as a function of 

time, temperature (within the range of 25 to 93oC) and salinity, to determine the safe 
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maximum temperature point (SMTP) during improved and enhanced oil recovery 

(IOR/EOR) applications. 

4.1. Correlation of temperature on the degree of hydrolysis (DH) of PAM  
 

According to Borling et al., [117], the proportion of amide groups that convert 

to carboxylate are called the degree of hydrolysis (DH). The degree of hydrolysis 

varies from 0 to 60%, in this form the polymer is referred to as a partially hydrolysed 

polyacrylamide (HPAM). Gao [86] explained that the loss of solution viscosity in 

formation water or brines is the major problem encountered in the use of HPAM for 

improved oil recovery, due to the presence of monovalent ion and multivalent 

cations under elevated temperature.  

      The effect of elevated temperatures on the degree of hydrolysis of PAM was 

analysed in three different oilfield saline solution of: (5% NaCl), (9% NaCl and 1% 

CaCl2), (3% NaCl and 1% NaHCO3) [14 -15, 11] as to ascertain suitable safe 

maximum temperature (SMTP) of PAM in EOR application. 

Figure. 4 (a, b, and c) shows the relationship between degree of hydrolysis (%) 

and ageing time (days) for PAM solutions at temperature ranges of 25 to 93oC in 

the presence of 5% NaCl (figure 4a) 9% NaCl -1% CaCl2 (figure 4b) and 3% NaCl-

1% NaHCO3 (figure 4c), respectively. The plots are in two regimes, where first 

regime represents the linear and second regime non-linear curve. The degree of 

hydrolysis seen to be sensitive to temperature changes, where increases in 

temperature result in a higher degree of hydrolysis. Moreover, the hydrolysis is 

enhanced with addition of salt to the solution. For all cases in the first regime degree 

of hydrolysis (∂H) appears to be a linear relationship with time as shown in equation 

4: 
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𝒚 =
𝝏𝑯

𝝏𝒕
𝒙                                 (4) 

 

 

 

Where 
𝝏𝑯

𝝏𝒕
   is the gradient of degree of hydrolysis against time     

       

 

However, for all cases in second regime, degree of hydrolysis (∂H) shows a fit 

function in the increase form of exponential decay with time as in equation 4.1  

 

             y = ∂Ho𝒆𝒌𝒙                        (4.1)                                                 

Where ∂Ho is the intercept at the degree of hydrolysis, k is the gradient or slope 

 Comparing results from three different studies [14 -15, 11]. It can be concluded 

that as the temperature increases the gradient DH of PAM for both first regime and 

second regime increases hence the stability of polymer reduces. Furthermore, the 

higher the temperature, the more the degree of hydrolysis (DH) of PAM increases 

in presence of divalent ions (CaCl2) and monovalent salts (NaCl) and the lesser the 

ageing time. For instance, in figure 5b second regime, it is demonstrated that a 

percentage DH of PAM increased within 12 - 38% by 578 days of aging time at 

temperature of 50, 60 and 70oC, while at 90oC percentage DH increased to 58% 

with lesser ageing time of 154 days. It implies that at higher temperature like 90oC, 

the more hydrolyzed it become and the lesser the ageing time. This is also 

applicable to the first regime with linear relationship, the higher temperature, lesser 

the ageing time and lower the temperature, the higher the ageing time 
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Figure 4 (a). Effect of temperature on hydrolysis of PAM in the presence of 5% 
NaCl [14].  

The curve for each temperature can be divided in two regions where first region 

presents the linear and second region non-linear. The plot on the top of figure is 

related to the first region where the gradient was evaluated from.  

 

 

Figure 4 (b). Effect of temperature on hydrolysis of PAM in the presence of 9% 

NaCl -1% CaCl2. [15].  
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The curve for each temperature can be divided in two regions where first region 

presents the linear and second region non-linear. The plot on the top of figure is 

related to the first region where the gradient was evaluated from. 

 
Figure 4 (c). Effect of temperature on hydrolysis of PAM in the presence of 3% 
NaCl -1% NaHCO3 [108].  
 
 The curve for each temperature can be divided in two regions where first region 

presents the linear and second region non-linear. The plot on the top of figure is 

related to the first region where the gradient was evaluated from. To try to have 

better understanding on SMTP of PAM’s hydrolysis in presence of saline solution, 

the next step involved plotting the gradient change of hydrolysis against 

temperature. The results are presented in Figure 4.1.   
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Figure 4.1. Graphically determination of safe maximum temperature point (SMTP) 

from the gradient ∂H/∂t (degree of hydrolysis with ageing time) against temperature 

for PAM solution in the presence of 5% NaCl, 9% NaCl - 1% CaCl2, and 3% NaCl-

1% NaHCO3. 

In Figure 4.1, there is a sharp shift from slow hydrolysis rate to high hydrolysis 

rate at a certain temperature. This temperature can be defined as safe maximum 

temperature point (SMTP), which varies as the ambient solution changes. In the 

presence of 9% NaCl and 1% CaCl2 this shift (SMTP) is observed at 74oC and the 

correlation on degree of hydrolysis (∂H) against temperature shows a fit function in 

the increase form of exponential decay with time as seen in equation 4.2a 

H/T (9 % NaCl + 1 % CaCl2) = 0.0005e0.077x                                 4.2a 

Whereas for 5% NaCl and 3% NaCl and 1% NaHCO3 solutions it is observed 

at about 71oC and 65oC, respectively. Accordingly, 5% NaCl and 3% NaCl and 1% 

NaHCO3 correlations on degree of hydrolysis (∂H) against temperature shows a fit 

H/T (9 % NaCl + 1 %  CaCl2)= = 0.0005e0.077x

H/T (5 % NaCl )= 0.0041e0.0577x

H/T (3 % NaCl + 1% NaHCO3 )= = 0.1449e0.0214x
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function in the increase form of exponential decay with time as seen in equation 

4.1b and 4.1c respectively 

H/T (5 % NaCl) =0.0041e0.0577x                                                          4.2b 

H/T (3 % NaCl + 1% NaHCO3) = 0.1449e0.0214x                     4.2c 

Based on this, it is clear that hydrolysis of PAM varies with salinity hence its stability. 

The abnormally low temperature of 65°C observed for 3% NaCl/1% NaHCO3 is 

thought to be due to the increased alkalinity in this solution, which suppresses the 

SMTP. 

4.2. Correlation of temperature on the viscosity of PAM 

The viscosity of polymer solution is known to vary widely with temperature. It is 

obvious that a change in polymer viscosity solution with temperature is associated 

with the concurrent change in the volume of the polymer. This is because as the 

temperature increases, the hydrolysed polymer solution opens to the anionic 

charge attached to the polymer backbone.  According to Bill Meyer Jr. [95] 

temperature dependence of viscosity is found to follow the simple exponential 

relationship of Arrhenius equation as stated in equation 10. 

µ = Ae-(E/RT)                                                                    (4.3)  

Where µ is viscosity in mPa.s, E is activation energy for viscous flow, A is a 

constant, R is gas constant and T is the temperature. 

From the Arrhenius equation, the viscosity of the polymer solution (µ) depends 

directly on the ratio of the activated energy (E) of the viscous flow of polymer 

solution to the temperature. This implies that the viscosity of PAM solution or 

thermal stability of polymer solution depends on the reservoir temperature.  
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 The effect of temperature on viscosity of PAM against ageing times is 

demonstrated in Figure 4.2a for the solution of 9% NaCl and 1% CaCl2 at 30 

rev/min. At 50⁰C the viscosity reduction is seen to drop linearly with time at lower 

rate, while at the higher temperatures of 70⁰C and 90⁰C a drastic shift in behaviour 

is seen where viscosity decreases at higher rate.  

 

 
 

Figure 4.2. (a) Effect of temperature on viscosity of PAM against ageing time (b) 
absolute viscosity gradient of 9% NaCl and 1% CaCl2 30 rev/min [15]. 

This shift in polymer’s viscosity is illustrated in Figure 4.2 by plotting the 

absolute value of viscosity gradients extracted from Figure 4.2 a. Figure. 4.2b can 

be used to obtain the safe maximum temperature point (SMTP) for the application 

of a polymer in a saline solution, in a similar approach to that obtained from the 

gradient of degree of hydrolysis. It is worth mentioning that the SMTP obtained from 

viscosity data is similar as the one obtained from hydrolysis data for the same 

solution which shows the accuracy of proposed method in obtaining the polymer 

SMTP for specific saline solution.  

As it is reported by Stahl and Schulz [81] the polymer solutions used in an 

oilfield are non-Newtonian fluids which are usually affected by shear rate. As shear 

   a 

  b 

  SMTP~74oC 
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rate is a function of viscosity, any changes in mechanical degradation which may 

occurs in pipes, through choke, valves or pumps above a certain velocity or 

pressure drop, can influence the solution’s properties. Accordingly, at a low shear 

rate the polymer fluid behaves as a Newtonian fluid and thus the viscosity does not 

vary with the shear rate.  However, as the shear rate increases the polymer 

molecules deform and the viscosity decreases. Such a situation, where the polymer 

viscosity solution reversibly decreases with increasing shear rate is termed shear 

thinning. The effect of shear thinning on SMTP has been investigated by fitting data 

measured for a saline solution of 9% NaCl and 1% CaCl2 at 60 and 12 revolutions 

per minutes (two and five times lower that the revolution speed for the data 

presented in figure 4.2. These data are presented in Figure 4.3 a, and b. As 

temperature increases viscosity decreases, hence the aging time decreases. It is 

also worth mentioning that following decrease in the rotational speed (rev/min) of 

the device, a decrease in shear rate impacted the viscosity results, especially for 

lower temperature, where higher rotational speed increased the viscosity in contrast 

to the lower rotation which shows normal and expected trend. 

  

Figure 4.3. Effect of temperature on viscosity of PAM against ageing times 9 % 
NaCl + 1 % CaCl2 for (a) 60 rev/min and (b) 12 rev/min [15]. 
    

a b 
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The absolute values of a viscosity gradient for the data presented in Figures 4.2 a, 

b, and Figure 4.3 are plotted in Figure 4.4 as a function of temperature. The 

estimated SMTP values for these solutions at 30, 12 and 60 rev/min are 74, 78 and 

63oC respectively in the presence of 9 % NaCl + 1 % CaCl2. Comparing these 

results, it is apparent that SMTP for higher share rate of 60o decreases about 25°C, 

which indicates that the polymer become instable in shorter aging time at higher 

shear compared to lower shear rate. Higher the shear rate, lower the SMTP value 

                       

Figure 4.4. The absolute viscosity gradient against temperature in the presence of 

9% NaCl and 1% CaCl2 at 12, 30, and 60 rev/min. 
 

In summary, PAM degradation in the presence of brine containing divalent cations 

depends on the extent of degree of hydrolysis which is caused by temperature [14]. 

Such considerations have led to the recommendation of 70 – 82oC as the maximum 

safe temperature for the use of polyacrylamide in polymer flooding [13 – 16, 115]. 

Recent study have also claimed that gels produced with polyacrylamide and it 

derivatives (HPAM) used in (IOR/EOR) for treatment of reservoirs with temperature 

below 75oC [11]. To maintain a safe operation during PAM application in (IOR/EOR) 

operation, correlate on safe maximum temperature in saline solution have been 

established. 

SMTP (60 rev/min)~63oC  

SMTP (30 rev/min)~74oC 

SMTP (12 rev/min) ~78oC 
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The results obtained from SMTP correlation analysis proved that different saline 

solution like NaCl, CaCl2 and NaHCO3 contain different SMTP. Accordingly, at 5% 

NaCl, the SMTP was about 71oC, while a combined saline solution containing 9% 

NaCl and 1% CaCl2, the SMTP was 78oC and 65oC at 3% NaCl and 1% NaHCO3. It is 

worth mentioning that the SMTP obtained from viscosity data is similar as the one 

obtained from hydrolysis data for the same solution which shows the accuracy of 

proposed method in obtaining the polymer SMTP for specific saline solution. The 

proposed correlations provide a means of predicting the stability of PAM for reservoirs 

with different temperature, salinity and shear rates conditions.  

The correlations provided an insight in the experimental studies on the effectiveness 

of PAM application in hydrocarbon reservoirs at different operational conditions of 

moderate and high temperature, shear rate and moderate salinity of 43,280 ppm 

discussed in Chapter 5. 
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CHAPTER 5: STUDYING THE EFFECTIVENESS OF POLYACRYLAMIDE (PAM) 

FOR EOR APPLICATION AT DIFFERENT OPERATIONAL CONDITIONS. 
 

Degradation of polymer solution (PAM) is determined by measuring the solution 

viscosity as discussed in chapter 2.  However, this implies that the polymer solution 

viscosity plays an important role in successful polymer flooding projects during EOR 

operation. The specification for application of polymer solution such hydrolyzed 

PAM in EOR tertiary recovery must maintain a relatively apparent viscosity (≥ 11.5 

mPa.s) under the influences of moderate and high temperatures, shearing and 

formation water salinity [10]. Accordingly, in studying the extent of polymer solution 

(PAM) performance under the influence of the aforementioned variables, it is 

facilitated through a detailed practical investigation ranges from degree of 

hydrolysis in temperature aged sample to the viscosity change observed on 

shearing time and in depth shear rate, which is view from rheological behavior. 

5.1 Hydrolysis of PAM in thermally aged samples. 
 

The rate of hydrolysis of amide groups has been found to be the primary mechanism 

behind polyacrylamide (PAM) degradation. Later interaction between the 

hydrolysed polyacrylamide and saline solutions containing monovalent salt (NaCl) 

and multivalent salts (MgCl2 and CaCl2) could cause significant losses in solution 

viscosity. However, the rate of hydrolysis was found to depend mostly on 

temperature; apparently, the higher the temperature, the higher the degree of 

hydrolysis [15]. The more increase in the amide group hydrolysis, the more changes 

in solution properties and rheology of polyacrylamide solution is affected. To study 

the characteristic or rheological behaviour of polyacrylamide and determine the 

extent of hydrolysis at moderate and high temperature of 50, 70 and 90oC. FTIR 
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and NMR spectroscopy were utilised and the experimental approach are discussed 

in chapter 3. 

5.1.1 FTIR Analysis for PAM Amide group Hydrolysis. 
 

Previous studies by [114, 117, 130] have proposed that the proportion of amide 

(CONH2) groups that is converted to carboxylate (COO-) is termed as the degree of 

hydrolysis (DH). FTIR can be used to monitor the change in absorbance associated 

with the stretching of the secondary amide (CONH2) C=O to give a measure of the 

change in degree of hydrolysis of the amide functional group. Emission or 

absorption spectra arise when PAM molecules undergo transitions between 

quantum states corresponding to the internal energy. In infrared spectroscopy, the 

presence of different functional groups results in the absorption of energy at specific 

wavelengths and its re-transmission results in the formation of peaks. Table 5.0 

shows the assignment of the FT–IR characterization of the bands and spectra of 

PAM.  

Table 5.0: Assignment of the FT – IR Characterization of bands of the PAM 
 

Frequency Assignment 

3340 – 3332 Primary amide NH2 asymmetric stretching 

3300 – 3250 Secondary amide N – H stretching 

3190 – 3170 Primary amide NH2 symmetric stretching 

3100 – 3060 Secondary amide II overtone 

1680 – 1630 Primary amide C = O stretching 

1630 – 1603 Secondary amide C = O stretching 

Carbonyl containing compound 

The major bands which appear in the infrared spectra of carboxylic acids 

(which contain the COOH group) summarized below: 



91 
 

1603 – 1330 COO- stretching 

1330 – 1300 C – O stretching 

1300 - 1000 C – O – H in plane bending 

900  - 992 C – O – H out of plane bending 

 

Primary amide NH2 symmetric stretching occurred at 3190–3170 cm-1 and the 

asymmetric stretching band of NH2 appeared at 3340–3332 cm-1. A combination of 

these two peaks was used to determine the transmittance of the amide group. 

Secondary amide N–H stretching was observed at 3300–3250 cm-1 with a 

corresponding secondary amide II overtone. The primary amide C=O stretching 

(CONH2) was assigned in a shift range of 1680–1630 cm-1. The vibrational modes 

of amide groups may be affected due to hydrogen bonding. Therefore, the 

secondary amide C=O stretching (CONH2) was assigned at a point between 1630–

1603 cm-1. 

Four significant peaks for carboxylate groups were observed at 1330-1600 cm-1 due 

to stretching of acrylate. The vibration on the band shifted at C–O stretching at 

around 1200–1300 cm-1; the vibrations also existed in plane bending around 1000–

1300 cm-1 and out-of-plane bending at 900–992 cm-1. Figures 5.0 presents the 

percentage transmittance versus wave-number for PAM solutions in pure water and 

brine respectively. 
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                                          a) PAM in pure water 

 

                                         b) PAM in brine 

Figure 5.0:  FT-IR Spectra of PAM in pure water (a) and brine (b) 

  
For relevance in application, the value of transmittance is converted into 

absorbance using equation 3.3 [132]. The amide group content of the hydrolysed 

polyacrylamide was determined from the intensities of the absorbance in the amide 

group (CONH2). In water soluble polymers like polyacrylamide, the absorption 

spectrum is often surprisingly consider as the large number of atoms involved in the 

normal vibrations of same frequency and therefore appear in the spectrum as one 

absorption band. The absorption band wavelengths arising from the functional 
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group and atomic vibrations. These results are presented in Figure 5.1a and Figure 

5.1b. 

         

                                                          

Figure 5.1a: FT-IR Spectra absorbance of PAM at 50oC in pure water.  
 

 

Figure 5.1b: FT-IR Spectra absorbance of PAM at 50oC in brine.  
 

The percentage increase in amide absorbance is equal to the difference between 

the initial amide absorbance at day zero (A0) and each amide absorbance at the 

designated ageing times (A0, 1, 2, 4…30) over the initial amide absorbance expressed 

as a percentage, as shown in equation 4.0:   

050010001500200025003000350040004500
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CONH2 Coo-

050010001500200025003000350040004500
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Percentage change in Absorbance (%) =  
𝑨𝟎,𝟏,𝟐,𝟒…𝟑𝟎− 𝑨 𝟎

𝑨𝟎
 𝑋 100              4.0                                   

Figures 5.2a, b and c present the percentage change in absorbance of amide 

groups (CONH2) against ageing time in days at 50, 70 and 90oC for both PAM in 

pure water and PAM mix with brine. As shown in these figures, the percentage of 

amides absorbance at 50, 70 and 90oC increases from 18 to 30%, from 33 to 57%, 

and from 48 to 57% at the different temperatures. It is also noticed that the more 

the ageing time, the more the percentage amides absorbance increases at the 

designated temperature. 

 

Figure 5.2a: Percentage change in absorbance in PAM solution in presence of and 

without brine at 50oC. 
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Figure 5.2b: Percentage change in absorbance in PAM solution in presence of and 

without brine at 70oC. 
 

 

Figure 5.2c: Percentage change in absorbance in PAM solution in presence of and 

without brine at 90oC. 
 

These results prove that the percentage change in the absorbance of amide groups 

present in PAM increases as the temperature increases, indicating that temperature 

is the major driving force for the degradation of PAM. In the presence of brine, the 
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amide group in PAM is further hydrolysed, where at the same temperature 

conditions as in the absence of brine the percentage of amide groups increased 

from 25 to 61%, from 38 to 75% and from 62 to 88%, at the three different 

temperatures. Therefore, the interaction of PAM with brine at 50, 70 and 90oC 

shows greater percentage increases in amide groups in the solutions than when 

brine is not present. It also shows that percentage absorbance of amide functional 

group hydrolysis is quite rapid at 90oC compare to 50 and 70oC both for PAM (no 

brine) and PAM with brine addictive. 

5.1.2 NMR measurements on time zero samples  
 

In the section 4.1.1, the FITR was utilised to determine the percentage amide group 

absorbance which is a step to amide functional group hydrolysis. Nevertheless, 1H 

NMR in this section is used in determining the degree of hydrolysis. The analysis of 

the degree of hydrolysis was performed by processing the calibration axis and 

integration of the peak area using Bruker topspin 3.5 software. In Bruker topspin 

3.5 software, the integral values from the peak area indicate the total amount of 

hydrogen (H) atoms within the molecular structure, and this could help in identifying 

the functional groups such as methine (CH), methylene (CH2) and methyl (CH3) that 

contain the amide (CONH2) and carboxylate (COO-) groups. Figure 5.3 illustrates 

the 1H NMR spectra for PAM dissolved in pure water and brine.  
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(a) PAM dissolved in pure water 
  

  

 

(b) PAM dissolved in brine 
 

Figure 5.3: (1H NMR) spectra: (a) PAM dissolved in pure water (b) PAM dissolved 

in brine. 
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The first peak in these two scans positioned at 4.8 ppm represents water content in 

the deuterium oxide solvent. The peaks measured at 2.20 - 2.40 and 1.60 -1.80 

ppm represent hydrogen (H) atom in functioning group of methine (CH) attached to 

amide (CONH2) and carboxylate (COO-) groups, respectively. The degree of 

hydrolysis (DH) was calculated using equation 5.1. 

DH (%) =  
𝒏𝒂

𝒎𝒂+ 𝒏𝒂
 X 100                                            5.1                                                          

   

Where na is the position of the amide groups (CONH2) on the peak shift as assigned 

by the hydrogen atom in methine (CH), ma is the position of the Carboxylate group 

(COO-) in the peak shift as assigned by the Hydrogen atom in methine (CH). 

The degrees of hydrolysis of the initial samples for PAM dissolved in both pure 

water and brine are recorded in Table 5.1. 

Table 5.1: Initial degree of hydrolysis (𝐷𝐻𝑖) for pure water and brine samples 
 

Temperature  𝐷𝐻𝑖 (pure 

water) 

 𝐷𝐻𝑖 (Brine) 

50oC 30% 34% 

70oC 31% 37% 

90oC 33% 38% 

 

For the initial samples at time zero, it is clear that the initial degree of hydrolysis 

(𝐷𝐻𝑖) rises with temperature for both sets of samples. The initial degree of 

hydrolysis for the brine dataset is systematically higher than that for the samples 

prepared in pure water. 
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To convert the percentage absorbance change into the degree of hydrolysis, the 

percentage increase in amide groups and the initial degree of hydrolysis (DH) are 

combined and the final equation is expressed in equation 5.3. 

𝐷𝐻𝑡 =  
100 +%CONH2

100
 X 𝐷𝐻𝑖                                         5.3                                                       

Where DHt  is the degree of hydrolysis, at each designated time, DHi is the initial 

degree of hydrolysis at day zero from the 1H NMR analysis and %CONH2 is the 

percentage change in absorbance.  

Apparently, is a necessity to determine the initial degree of hydrolysis of each 

temperature reservoir so that the peak viscosity of PAM solution can quickly 

reached before the beginning point of degradation.  

5.2 Effect of temperature and brine on hydrolysis of PAM solution 
 

Temperature is behind the extensive amide group hydrolysis of PAM and brings 

about significant changes in solution properties, rheological and phase behaviour. 

According to Albonico and Lockhart [16] the degree of hydrolysis at which PAM 

separates from solution depend directly on the brine concentration and inversely 

proportional to the temperature. From figure 5.4a and 5.4b is an evidence that 

temperature and brine solution plotted as a function of ageing time is the 

determining factor on amide functional group hydrolysis. PAM in pure water 

demonstrated that, the higher the temperature, the faster the rate of hydrolysis. 
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Figure 5.4a: Degree of hydrolysis of PAM in pure water at temperature of 50, 70 

and 90oC. 
 

 

Figure 5.4b: Degree of hydrolysis of PAM in brine at temperature of 50, 70 and 

90oC. 
 

Figure 5.4 (a) provides evidence of the degree of hydrolysis against ageing time 

for PAM mixed in pure state. As seen in this figure, temperature and ageing time 
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are the main factors determining the increasing degree of hydrolysis. All samples 

demonstrate an increase in hydrolysis with temperature. 

Using a similar approach, the degrees of hydrolysis of PAM in the presence of salts 

or brine against ageing time for the temperatures studied are demonstrated in 

figure 5.4(b). The degree of hydrolysis in the brine solutions is systematically higher 

than that observed in the samples prepared in pure water. For instance, degrees of 

hydrolysis of about 39%, 46% and 56 % at 50⁰C, 70⁰C and 90⁰C for PAM solution 

in pure water increased after ageing up to 30 days to values of about 52%, 65%, 

and 74% respectively in brine solution. All records show two dissimilar phases of 

hydrolysis. In phase one (0 -1 day) the degree of hydrolysis rises very quickly. In 

phase two, the rate of change in degree of hydrolysis is reduced significantly and 

the trend takes a linear form.  

5.3 Rheological Behaviour of PAM Solution. 
 

The viscosity of the displacing fluid is a necessary criterion for screening an injection 

fluid during chemical flooding, because an optimal viscosity of the displacing fluid 

is required to ensure favourable mobility as to achieve better oil recovery with good 

injectivity at lower cost [11]. The viscous behaviour of PAM at different 

temperatures and salinities was measured in terms of its thermal stability, where 

the estimation detected two types of rheological behaviour: thixotropic (a change in 

polymer viscosity with time under constant shear rate) and pseudo-plastic (where 

viscosity decrease with increase in shear rate). 

5.3.1 Time–dependent effects on thermal stability of PAM viscosity.  
 

As discussed in section 5.4 a and b above, PAM solutions at high temperature 

experience a higher degree of hydrolysis, leading to an increase in the anionicity of 
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PAM solution that could result in instability in the behaviour of the gel. When the 

degree of hydrolysis is above 33%, polymer degradation or precipitation may occur 

at high temperature [13].  PAM exhibits thixotropic behaviour where solution 

viscosity tend to decrease at constant shear rate during some extended test period 

[89].This implies that if shear rate is maintained. The measured shear stress and 

hence the viscosity, can either increase or decrease with time of shearing and such 

changes can be reversible or irreversible. 

Figure 5.5 presents the measured viscosity levels of PAM solution at 50oC in the 

presence and absence of brine for constant low shear rates of 10 and 30 rpm and 

constant high shear rates of 600 rpm, the viscosity test for each weight temperature 

and shear rate was conducted three times and the mean of the three viscosity 

measurement presented as the final viscosity and error bars calculated based on 

test repeatability. The results show a steady decrease in viscosity for a constant 

lower shear rates while the decrease is sharper for constant higher shear rates. It 

is worth mentioning that, at constant higher shear rates, much decrease in viscosity 

occurred after 10 days of ageing and, after that, no significant change in viscosity 

was observed.  
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Figure 5.5: Thixotropic behavior of PAM at 50oC at low rotational speeds of (a) 10 

rpm and (b) 30 rpm, as well as at a high rotational speed of (c) 600 rpm. 
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shear thinning Behaviour and the collapse of the gel structure. The same approach 

was adopted for the higher temperatures and the data are reported in figures 5.6 

and 5.8 
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Figure 5.6: Thixotropic behavior of PAM at 70oC at low rotational speeds of (a) 10 

rpm and (b) 30 rpm as well as (c) at a high rotational speed of 600 rpm. 
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Figure 5.7: Thixotropic behavior of PAM at 90⁰C at low rotational speeds of (a) 10 

rpm and (b) 30 rpm as well as at (c) a high rotational speed of 600 rpm. 
 

Evidences from Figures 5.5 – 5.7, shows that the rate of fall in viscosity increased 
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collapse is accelerated at higher temperature and constant lower rotational speeds 

or shear rate. 

5.3.2 Percentage change in viscosity of PAM solution. 
 

In the application of polyacrylamide in oilfields, it is of primary importance to ensure 

that the polymer solutions remain effective over long periods at different 

temperatures. To determine loss of viscosity of the PAM solution, combined 

operational conditions of shear rate, time, brines and temperature (50⁰C, 70⁰C and 

90⁰C) were analysed using equation 5.4. 

  𝐿𝑜𝑠𝑠 𝑜𝑓 𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦 (%)𝑜𝑓 𝑃𝐴𝑀 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =
V0−Vn

V0
x 100.                        5.4 

where Vo  is  the initial polymer solution viscosity before ageing in oven,  and Vn  is  

viscosity at different ageing time.  

These results are shown in detail in Figure 5.8. At all temperatures and rotational 

speeds, it was observed that the longer the ageing time of PAM solution in either 

pure water or brine, the greater the loss of PAM viscosity. For instance, at higher 

temperature of 90oC   and 30 days of aging, the loss of viscosity was between 84-

78 % and 77-71 % for PAM mixed in brine and PAM mixed in pure water, 
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respectively. While, at lower temperature of 50oC, the loss of viscosity was 69-66% 

and 61-58%, respectively.  

 

 

  

Figure 5.8: Percentage loss of viscosity of PAM in pure water and in the presence 

of brine at temperatures of 50, 70 and 90⁰C at rotational speeds of (a) 10 rpm, and 

(b) 30 r.p.m. 
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5.3.3. Efficiency of PAM performance 
 

To investigate the efficiency of PAM performance at different operational conditions, 

the shear rate dependence of viscosity retention needed to be checked. Tests were 

conducted at shear rates of 17, 51 and 1021 s-1 for temperatures of 50, 70 and 90⁰C 

and analysed using equation 5.5.  

𝒗𝒊𝒔𝒄𝒐𝒔𝒊𝒕𝒚 𝒓𝒆𝒕𝒆𝒏𝒕𝒊𝒐𝒏 (%) =
𝑽𝒕

𝑽𝟎
∗ 𝟏𝟎𝟎                                    5.5   

  where V0 = initial viscosity, and Vt = viscosity at each time interval                                                                            

The viscosity retention of PAM under studied conditions are presented in Figure  

5.9 at 50 oC, 70oC, and 90oC for both PAM mixed with pure water  and PAM mixed 

with brine. The highest degree of viscosity retention is observed for 50oC followed 

by 70 oC and 90oC. The lower the shear rate of the PAM, the better the retention of 

the viscosity in the solution.  The polymer solution with brine affected retention, 

where adding brine to the solution decreased the retention of viscosity. The 

minimum retention arises in the case where PAM is mixed with brine and has 

experienced the highest shear rate of 600 rpm for the longest ageing time of 30 

days at higher temperature.    
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Figure 5.9: Evaluated viscosity retention of PAM solutions at 50⁰C (a), 70⁰C (b), and 

50⁰C (c).  
 

5.3.4 Shear degradation on PAM solution  
 

Viscosity of polymer solution depend strongly on shearing. Shearing process 

breakdown the molecules in the high flow rate region close to a well, as a result of 

high mechanical stresses on the macromolecule and it is describes as mechanical 

degradation. Mechanical degradation can lead to significant reductions in viscosity 

and most time could be describe as to a reversible decrease in viscosity with 

increasing shear rate generally called shear thinning [17, 90]. This imply that 

shearing process polymer flooding degrades the solution viscosity. This behaviour 

0

20

40

60

80

100

120

0 5 10 15 20 25 30 35

V
is

co
si

ty
 R

et
en

ti
o

n
 %

 

Ageing time (days) @ 70⁰C

PAM no brine (10 rpm) PAM + Brine (10 rpm)

PAM no brine (30 rpm) PAM + Brine (30 rpm)

 PAM No brine (600 rpm) PAM + Brine (600 rpm)

0

20

40

60

80

100

120

0 5 10 15 20 25 30 35

V
is

co
si

ty
 R

et
en

ti
o

n
 %

 

Ageing time (days) @ 90⁰C

PAM no brine (10 rpm) PAM + Brine (10 rpm)

 PAM no brine (30 rpm) PAM + Brine (30 rpm)

PAM no brine (600 rpm) PAM + brine (600 rpm)



111 
 

of polymer gel is known as pseudo-plastic behaviour and it can occur when PAM 

solutions are injected into a reservoir from the injection well [89]  The flow regime 

usually changes as the solution flows first through the wide wellbore and finally to 

the reservoir. Because fluid viscosity is a function of shear rate, the solution's 

viscosity will also change from near the wellbore to the in–depth of a reservoir. 

PAM’s pseudo-plastic behaviour may also occur in pipes and through chokes, 

valves or pumps. 

To determine the effect of shear on viscosity of PAM solution when the polymer is 

added to a water-flooding operation, tests were conducted at 50, 70 and 90oC and 

at shear rates of 5, 10, 17, 51, 170, 340, 510 and 1021 s-1. The results are shown 

in detail in Figures 5.10 - 5.12. At low shear rates, the viscosity of PAM solution is 

reduced less compared to a high shear. However, the reduction in viscosity at 

different shear rates proved to be affected by ageing time as well as temperature. 

Even at low temperatures and low shear, the rate of viscosity reduction was slower 

in contrast to at higher temperature and higher shear rate. Therefore from the 

rheological measurements of fluid flow described above, it is recommended that 

polymer flooding is performed under laminar flow conditions and at a lower 

operational temperature, since shearing forces and elevated temperature may 

degrade the polymer and hence suppress its performance.   
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Figure 5.10: shear degradation of PAM presented as viscosity versus shear rate at 

50oC: (a) in the absence of brine; and (b) with the presence of brine.  
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Figure 5.11: shear degradation of PAM presented as viscosity versus shear rate at 

70oC: (a) in the absence of brine; and (b) in the presence of brine.  
 

   

 

Figure 5.12: shear degradation of PAM presented as viscosity versus shear rate at 

90⁰C: (a) in the absence of brine; and (b) in the presence of brine. 
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The experiments conducted to investigate the polymer solution (PAM) performance 

under the influences of moderate and high temperature, shearing and brines. Shows 

that PAM rheological viscosity measurement experienced high degradation. 

Accordingly, temperature is behind the extensive amide group hydrolysis, at moderate 

and high temperature of 50, 70 and 90oC, It is deduced that PAM dissolved in 42380 

ppm TDS and in pure water. Showed an increasing degree of hydrolysis as the 

temperature increases and viscosity of PAM solution decreases. At high temperature 

90⁰C, high extensive thermal hydrolysis up to 74% were observed for brine solution 

with high decrease in polymer viscosity solution. To achieve allowable PAM solution 

during EOR operation, there is need to improve PAM performance by stabilizing the 

degree of hydrolysis of PAM within 30% to 40% for longer stability. The challenging 

effect of high degree of hydrolysis resulting from high temperature caused polymer 

solution viscosity instability. Improving the polymer performance, the primary 

approach is developing better polymers through integration and optimization of PAM 

performance in high temperature reservoirs discussed in Chapter 6.   
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CHAPTER 6: INTEGRATION AND OPTIMIZATION OF PAM PERFORMANCE IN 

HIGH TEMPERATURE RESERVOIRS 
 

The instability in PAM performance at reservoir conditions such as high temperature 

and brine happens as a results of hydrolysis of the amide functional groups as 

studied in chapter 5. A synthetic approach called the polymer integrated technique 

(PIT) was adopted and is defined as a process of combining high molecular weight 

polymer with others polymers to meet the stability limitations or degradation of high 

molecular weight polymer at reservoir conditions of high temperature and high 

brine. The synthetic approach followed has been to modify polyacrylamide (PAM) 

with Polyvinylpyrrolidone (PVP). PVP is non-toxic, eco-friendly water soluble 

polymer that is resistant to thermal degradation [126, 133]. The monomer (PVP) 

provides protection to hydrolysis at elevated temperatures [124, 127,133]. 

Although, Davison, Mentzer [124] and Doe et al., [127] reported that despise PVP’s 

thermal stability capacity, the polymer cannot be applied alone because is not a 

good viscosifier but capable development maybe needed to combine PVP with 

more viscosifying water soluble polymer like polyacrylamide as to have an 

optimized good enough viscosity and criteria acceptable for degree of hydrolysis. 

To accelerate this, detailed practical characterization ranges from degree of 

hydrolysis in high temperature of 90oC aged sample to the viscosity of the polymer 

solution as regards shearing time and shear rate, which form the rheological 

behavior.  

6.1 Hydrolysis of PAM and PVP mix polymer at 90oC aged samples  
 

One of the criteria in improving the performance of water-soluble polymers during 

EOR polymer flooding applications is to keep the degree of hydrolysis below 33% 

[13]. Above this level, degradation or precipitation may occur [21, 13]. This is due 
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to a consequences of interaction between the hydrolysed amide group and the 

salinity of formation water containing divalent cations. This chemical transformation 

in PAM could cause significant losses in solution viscosity and separation could 

eventually occur in extreme conditions of high degrees of hydrolysis or extreme 

concentrations of formation salinity [16]. The primary mechanism behind 

polyacrylamide degradation has been found to be the hydrolysis of amide groups. 

Moreover, the hydrolysis level is a function of temperature [4, 15]. A high degree of 

hydrolysis leads to the high adsorption of hydrolysed PAM in porous rock [86]. 

Therefore, the level of hydrolysis of amide groups in the structure of mixed water-

soluble polymers of PAM and PVP needs to be determined. However, FTIR and 

NMR spectroscopy were utilised to determine the degree of hydrolysis of the 

integrated PAM and PVP polymer solution 

6.1.1 FTIR analysis of PAM and PVP mix polymer 
 

FTIR determined the change in absorbance associated with the stretching of the 

amide (CONH2) C=O to finally give the absolute degree of hydrolysis of the amide 

functional group. Accordingly, the FTIR spectrum of pure PAM, PVP and PAM: PVP 

samples was analysed and the outcome indicates that the observed absorption 

peaks correspond to the characterised chemical bonds presented in Table 6.0. 

Table 6.0 shows FTIR spectra of pure PAM and pure PVP. For pure PAM spectrum, 

the peaks corresponding to primary amide NH2 asymmetric and symmetric 

stretching were assigned to 3347-3331 cm-1 and 3190-3170 cm-1 respectively. 

However, the peaks at 3300-3250 cm-1 correspond to secondary amide N-H 

stretching. A noticeable peaks at 1680-1630 cm-1 and 1629-1603 cm-1 correspond 

to primary amide and secondary amide C=O stretching respectively. The peaks at 
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1603-1330 cm-1 correspond to the COO- group asymmetric stretching, while the 

peaks at 1329-1300 cm-1 were assigned to C-N stretching, those at 1299-1000 cm-

1 to C-O-H bending, and those at 900 - 992 cm-1 to C-C symmetric-asymmetric 

stretching. Whereas for pure PVP spectrum, the peaks at 3380-3320 cm-1 and 

2186-2143 cm-1 were assigned to primary C-H asymmetric stretching and C-H 

symmetric stretching respectively, peaks at 2956 -2223 cm-1 were assigned to 

secondary C-H stretching. Apparently a noticeable Peak at 1644-1642 and 1634-

1630 cm-1 were assigned to primary amide and secondary amide C=O stretching 

respectively, and those at 1461-1422 cm-1 correspond to the C-N-C group 

asymmetric stretching, while peaks at 1320-1286 cm-1 were assigned to C-N 

stretching, those at 1127-1094 cm-1 to C-O-C bending and those at 994-871 cm-1 

to C-C symmetric-asymmetric stretching.  

Table 6.1 presents the variations in blend ratio for PAM: PVP and their 

correspondence peaks. The primary amide NH2 asymmetric and symmetric 

stretching showing peak at 3361 – 3298 cm-1 and 2984 – 2219 cm-1. Peaks at 

secondary amide N-H stretching were assigned to 2984 – 2219 cm-1. The primary 

amide and secondary amide C=O stretching show a prominent peak at 1680-1630 

cm-1 and 1629-1603 cm-1 respectively, this peak can be investigated to explore the 

interaction between PAM:PVP amide group hydrolysis. Furtherance is the peaks at 

1496 -1492 cm-1 correspond to the C-N-C group asymmetric stretching, whereas 

the peak at 1492 -1420 cm-1 is corresponding to the COO- group asymmetric 

stretching. Then the peaks at 1320-1293 cm-1 were assigned to N - C stretching 

while peak at 1108-1098 cm-1 assigned to C-O-C bending and those at 996-896 cm-

1 assigned to C-C symmetric-asymmetric stretching.  In line with Table 6 and 6.1, 

figures 6 (a and b) presents a plots evidence of FT-IR absorbance spectra for 
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PAM, PVP and AMPS and comparative plot of PAM, PVP and AMPS mix 

samples at time 0 and 30 days respectively. However, at time zero in day, 

absorbance  

Table 6.0: Assignment of FT-IR characterization bands ratio for pure PAM and 

pure PVP after ageing at 90oC  
 

  

 

Table 6.1: Assignment of FT-IR characterization bands ratio for PAM: PVP 
 

Peak Assignment  PAM (wavenumber cm-1) PVP (wavenumber cm-1) 

Primary amide NH2 asymmetric 
stretching 3347 - 3331 3380 - 3320 

Secondary amide N - H stretching 3300 - 3250 2956 -2954 
Primary amide NH2 symmetric 
stretching 3190 - 2298 2186 - 2143 

Primary Amide C=O Stretching 1680 - 1630 1644 - 1642 

Secondary amide C =O Stretching  1629 - 1603 1634 - 1630 
COO- Stretching  1603 - 1330 1461 - 1422 
C - O Stretching 1329 - 1300 1320 -1286 

C - O-H in plane bending 1299 - 1000 1127 - 1094 

C - O - H out plane bending 900 - 992 994 - 871 

Peak Assignment  Weight proportion of PAM:PVP (wavenumber cm-1) 

Primary amide NH2 asymmetric 
stretching 3361 - 3298 

Secondary amide N - H stretching 2984 - 2219 

C - H  Stretching 2159 - 2189 

Primary Amide C=O Stretching 1650 - 1642 

Secondary amide C =O Stretching  1639 - 1629 

C-N-C Stretching  1496 -1492 

COO- Stretching  1492 - 1420 

N - C Stretching 1320 -1293 

C - O-C Stretching 1108 -1098 

C - C symmetric - Asymmetric stretching 996 -896 
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Figure 6.0:  FT-IR absorbance spectra (6a) pure PAM, (6b) pure PVP and (6c) 

PAM and (6c) Comparative PAM and PVP mix samples at time 0 and 30 days after 

aging at 90oC 
 

To determine if the degree of hydrolysis is suppressed and gel stability is 

maintained by mixing the PAM with Polyvinylpyrrolidone (PVP). Figure 6.1 

indicates the percentage change in absorbance of the CONH2 amide group on 

integrated polymer solutions of PAM: PVP against ageing time at 90oC and a salinity 

of 43,280 ppm. The weight ratios with high proportions of PVP in the solution 

showed lower percentages of amide absorbance, which could result in less 

hydrolysis, whereas weight ratios with high PAM percentages exhibited high amide 

group absorbance, which could result in more hydrolysis. For instance, 63% 

absorbance was recorded for 80:20 PAM: PVP at 30 days of ageing, compared to 

30% absorbance for 20:80 PAM: PVP. 
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Figure 6.1: Percentage change in amide absorbance of PAM, PVP and integrated 

polymers at 90 oC and 43,280 ppm TDS  

 

6.1.3 NMR analysis of PAM and PVP mix polymer hydrolysis 
 

To finally determine the degree of hydrolysis of PAM and PVP integrated polymer 

solution. Figure 6.2 illustrate the 1H NMR spectra for integrated polymers of PAM 

and PVP at 90oC in moderate salinity of 43,280 ppm TDS, more structures are 

shown in figure 6.2b under appendix B.  
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  Figure 6.2: 1H NMR spectra for integrated polymers of PAM: PVP at 90oC and 

TDS 43,280 ppm. 
 

Evidence from figures 6.2 is the 1H NMR spectrum of the PAM and PVP mix 

Samples showing a prominent peak that is positioned at 4.8 ppm. The peak 

represents a water content in the deuterium oxide solvent. Accordingly, the amount 

of proton atom (H) within a peak area were further calibrated. The calibrated point 

at each area identify the amount of the proton atom (H) in the carbon skeleton that 

is bonded to methine (CH), methylene (CH2) and methyl (CH3) or equivalent H 

atoms corresponding to the sample chemical structure as seen in figure 3.3.  1H 
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NMR spectrum of the PAM: PVP shown in figure 4 has a peaks at 3.4-3.8 ppm 

representing the proton (H) atom in functioning group of methine (CH) that is 

bonded to amide group in PVP as represented in 𝑛𝑎 whereas the peak at 2.00-2.5 

ppm represent the methylene amide group (C=O) in PVP and the methine (CH) 

bonded to amide group (C=O) in PAM as represented in 𝑛𝑏. The peak at 1.50-1.90 

ppm represents the methylene (CH2) group in PAM and PVP as represented in 𝑛𝑐 

[125 – 126]. Accordingly, a three-step approach to the analysis of the initial degree 

of hydrolysis (𝐷𝐻𝑖) using proton NMR was adopted as shown in equations 5a, b 

and c: 

Average peaks shift (𝑵𝒂𝒗𝒈)= 
1

𝑛
∑ 𝑁𝑖 =

1

𝑛𝑖=1
 (𝑁𝑎 + 𝑁𝑏 + 𝑁𝑐 + ⋯ 𝑁𝑛)            (5a) 

Proton and Equivalent H atom total series =  𝑁𝑎 +
𝑁𝑏

𝑁𝑎𝑣𝑔
+  

𝑁𝐶

𝑁𝑎𝑣𝑔
                    (5b) 

 𝐷𝐻𝑖 (%) =  

𝑁𝑏
𝑁𝑎𝑣𝑔

𝑁𝑎+
𝑁𝑏

𝑁𝑎𝑣𝑔
+ 

𝑁𝐶
𝑁𝑎𝑣𝑔

 
 X 100                                                                  (5c)     

where, 𝑛𝑎 is the calibration point for methine (CH) proton in PVP, 𝑛𝑏 is methylene 

(CH2) proton bonded to amide group in PVP and the methine (CH) bonded to amide 

group (C=O) in PAM and 𝑛𝑐  is the equivalent H atoms in the peak integration of the 

methylene (CH2) proton in PAM: PVP solutions. The initial degree of hydrolysis of 

the integrated PAM: PVP polymers dissolved in brine are recorded in Table 6.2.  
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Table 6.2: Initial degree of hydrolysis (DHi) for time zero ageing and brine 

sample of 43,280 ppm salinity at 90oC.  
 

 

The results indicate that at the rate of initial degree of hydrolysis decreases with the 

weight ratio of PVP in the integrated polymer solutions. For the initial samples at 

time zero, it is clear that the degree of hydrolysis rises when the weight proportion 

of PAM is higher than that of PVP. For instance, at 90:10 PAM: PVP, the initial 

degree of hydrolysis is 27%, whereas for 10:90 PAM: PVP it is 23%. According to 

Uranta et al., [103], to convert the percentage absorbance change into degree of 

Sample 

No: 

PAM 

wt% 

PVP 

wt% 
DHi  

1 100 0 38 % 

2 90 10 27% 

3 80 20 26% 

4 70 30 25% 

5 60 40 25% 

6 50 50 25% 

7 40 60 24% 

8 30 70 24% 

9 20 80 24% 

10 15 85 24% 

11 10 90 24% 

12 5 95 23% 

13 0 100 23% 
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hydrolysis, the percentage increases in amide groups and the initial degree of 

hydrolysis (DH) are combined and the final equation is expressed in equation 6.3. 

 

Figure 6.3: Extent of degree of hydrolysis of PAM: PVP solutions at different PAM: 

PVP weight ratios with respect to ageing time at 90oC and salinity of 43,280 ppm. 
 

From figure 6.3 is the degree of hydrolysis of pure PAM and PAM and PVP mix 

together with their different weight ratios against ageing time up to 30 days in a 

moderate salinity of 43,280 ppm TDS. The results show that a high weight 

proportion of PVP in the mixed solution has experienced less hydrolysis compared 

to PAM. The stability of the integrated polymer is exhibited from 4 days of ageing 

and continues until 30 days. The extent of the degree of hydrolysis of pure aged 

PAM after 30 days was reduced significantly from 74 % by adding 10 wt% of PVP 
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and the reduction continued linearly down to 44.55 % at 90:10 wt % PAM: PVP. 

Further addition of PVP had no impact on PAM hydrolysis. This weight ratio is less 

susceptible to hydrolysis compared to 100% PAM.  

6.2 Stability of PAM and PVP integrated polymer  

Earlier stability test results on PAM solution in subsection 5.2.1 shows a steady 

decrease in viscosity at high temperature 90oC in each shearing. But incorporation 

of Polyvinylpyrrolidone (PVP) to PAM maintained high gel stability. From figures 

6.4 and 6.5 is a plot evidence of viscosity of PAM and PVP integrated polymer at 

rotational speeds of 10 and 30 rpm against ageing time s on various weight ratios 

in presence of 43,280 ppm TDS and temperature of 90oC. The figure shows that 

incorporation of PVP to PAM solution enhanced resistance to hydrolysis by 

maintaining stability. Irrespective of rotational speed of 10 and 30 rpm or shearing, 

the viscosity decreased at first day of ageing and started building up or increasing 

until 10 days. From 10 days stability began and continue till 30 days of ageing. That 

proved that PAM solution viscosity on addition of PVP showed high improvement in 

gel performance compare to 100 wt % PAM solution with high decrease as the 

ageing time increases. It is also noticed that weight ratio with more PAM and less 

PVP have high viscosity compare to more PVP less PAM. However, it is due to the 

fact that PAM is a better viscous polymer compare to PVP, but there is tendency 

that in a long run PAM may exhibit or suffer degradation because PAM is acrylamide 

based polymer. Optimizing to have weight ratio more PVP and less PAM could be 

a better option as to maximize performance. 
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Figure 6.4:  Viscosity of PAM and different weight ratios of integrated polymer at 

90oC and 43280 ppm TDS for a rotational speed of 10 r.p.m.  
 

 

Figure 6.5: Stability of PAM and different weight ratios of integrated polymer at 

90oC and 43280 ppm TDS for a rotational speed of 30 r.p.m. 
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6.3   Optimization of PAM and PVP mix solution at High temperature  

  

To optimize and maximize the efficiency of integrated polymers of PAM and PVP 

solution performance at elevated temperature in salinity of 43,280 ppm TDS 

solution. Three important factors was considered; polymer solution viscosity, 

degree of hydrolysis, ageing time and the PVP concentration. Figures 6.6 and 6.7 

plot integrated polymer solution viscosity and degree of hydrolysis against 

integrated polymer (PAM: PVP) concentration at rotational speeds of 10 and 30 rpm 

in 30 days. Both plots show similar trends. For viscosity measurements we see a 

rapid increase in viscosity from pure PAM to 10% PVP and then a linear drop on 

viscosity from 10% PVP to 80% PVP. Above 80% PVP the drop in viscosity 

increases with composition. The hydrolysis results mirror those seen for viscosity. 

A rapid decrease in degree of hydrolysis is seen between pure PAM and 10 % PVP 

followed by a much slower linear reduction for PVP concentrations greater than 

10%.  80 wt% PVP and 20 wt % PAM is considered to be the optimal point for 

effective application in reservoir temperature 90oC and formation water salinity of 

43280 ppm.  
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Figure 6.6: Determination of optimum concentration of PVP in integrated polymers 

of PAM: PVP at 90oC and a salinity of 43,280 ppm for a rotational speed of 10 rpm. 
 

 

Figure 6.7: Determination of optimum concentration of PVP in integrated polymers 

of PAM: PVP at 90oC and a salinity of 43,280 ppm for a rotational speed of 30 rpm. 
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6.4  Impact of Salinity on high temperature optimized PAM and PVP 

 integration 
 

The incorporation of Polyvinylpyrrolidone (PVP) effectively protects the 

polyacrylamide (PAM) against thermal hydrolysis in the presence of moderate 

salinity of 43280 ppm TDS and temperature of 90oC as discussed in section 5.2 

and 5.3. To further investigate the stability of the optimised mix of PAM and PVP in 

presence of increased salinity of 20000 ppm TDS. Figure 6.8 is a comparative plot 

evidence of viscosity and degree of hydrolysis of the optimised integrated polymer 

solution (20:80 wt % PAM: PVP) against total dissolved salts (TDS) at 30 days. The 

figure shows that at comparative total dissolved salts (TDS) of 43280 ppm and 

20000 ppm, the degree of hydrolysis increased considerably from 30 to 47%, while 

viscosity decreased sharply from 44 to 38.4 mPa.s respectively at 10 rpm.  At 30 

rpm, there exists same degree of hydrolysis with 10 rpm but the viscosity drop from 

38.6 to 28.6 mPa.s. It is clear that an extreme increase of total dissolved salts in 

the reservoir from 43280 to 200000 ppm affected the performance of the combined 

polymer by increasing the degree of hydrolysis and decreasing the viscosity.  

 

Figure 6.8: Effect of salinity concentration on optimized integration of 20 wt % PAM 

and 80 wt % PVP 
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In summary, a synthetic approach called the polymer integrated technique (PIT) 

adopted in facing the challenging reservoir conditions of high temperature 90oC and 

moderate salinity of 43,280 ppm. This work added polyvinyl Pyrrolidone (PVP) to 

modify the PAM performance against the behavior of high degree of hydrolysis and 

degraded viscosity at 30 days of ageing. Chemical modification of PAM solution shows 

that optimized polymer mixture of 80 wt% PVP and 20 wt % PAM reduced the degree 

of hydrolysis from 74% to 29.9% and the viscosity increased to 44.3 and 38.2 mPa.s 

on a corresponding 10 and 30 rpm respectively. 

Extending the optimized mixture of 20 wt % PAM and 80 wt % PVP found on 

operational conditions of 43,280 ppm salt concentration and temperature 90oC to 

extreme high salinity of 200,000 ppm TDS. The results shows increasing degree of 

hydrolysis of 46.9% as compare to 29.9% with decreasing viscosity of 38.6 to 28.6 

mPa.s on a corresponding 10 and 30 rpm respectively. It becomes clear that extending 

the optimized mixture to extreme high salinity of 200,000 ppm at temperature of 90oC, 

affected the performance of the optimized integrated polymer mixture. To improve and 

stabilise the polymer performance in presence of extreme high salinity of 200,000 ppm 

and temperature of 90oC, 2-acrylamido-2-methylpropanesulphonic acid (AMPS) was 

added to the optimized integrated polymer mixture as to remediate high salinity 

instability during EOR polymer flooding operations and are discussed in Chapter 7. 
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CHAPTER 7: APPLICATION OF PIT TO OPTIMIZE PAM PERFORMANCE AT 

HIGH TEMPERATURE AND HIGH SALINITY MEDIUM 
 

 The optimized point of 20 wt % PAM and 80 wt % PVP found on operational 

conditions of 43,280 ppm salt concentration and temperature 90oC, were extended 

to extreme high salt concentration of 200000 ppm TDS on same temperature to see 

if polymer solution could withstand stability. The result as discussed in section 6.4 

shows that the degree of hydrolysis increases with decreasing viscosity, which is 

contrary to standard specification of low degree of hydrolysis and relatively high 

viscosity stability during polymer flooding EOR applications [10].  

To improve the performance of the polymer solution and stabilize optimize fit at 

reservoir conditions of 200000 ppm TDS and temperature 90oC. 2-acrylamido-2-

methylpropanesulphonic acid (AMPS) were incorporated to optimized polymer 

solution mix of 20 wt % PAM and 80 wt % PVP [146]. Accordingly, In 2014 Gao, 

confirmed that technical gap still exist extending chemical EOR precisely polymer 

solution to reservoir conditions of 100000 to 200000 ppm TDS at 90oC [147]. 

Although Chinese researchers found KYPAM as a modified HPAM, the product 

indicated good stability in high salinity of 160000 ppm TDS on temperature of 180oF 

(82oC) at Shengli field [86]. This work AMPS addition were screened at weight 

percentages (wt %) of 90, 50, 10, 5 and 0. The three combination of PAM, PVP and 

AMPS is termed as the polymer integrated Technique (PIT). 

7.1 Hydrolysis of the PIT solution 
 

Apparently, the level of hydrolysis of amide groups in the structure of mixed water-

soluble polymers of PAM: PVP: AMPS needs to be determined. FTIR and NMR 

spectroscopy were utilised.   
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7.1.1 FTIR Analysis of PIT solution 
 

FTIR spectra identified the peak as assigned to the various weight ratios of PIT 

(PAM: PVP: AMPS) as shown in table 7.0. Though in tables 7.1 is also the peaks 

for 100 wt % AMPS. From table 6.0, the peak at 1638-1631 cm-1 could be assigned 

to the C=O stretching vibrations of CONH2. Apparently, peaks between 3356 to 

3349 cm-1 represents the primary amide NH2 and OH asymmetric stretching 

vibrations of CONH2, while the peaks at 1463-1553 cm-1 are assigned to CH3 and 

CH2 group stretching. Those peaks in the range of 1294-1296 cm-1 are assigned to 

C-N-C stretching, and those between 1115 -1188 cm-1 to C-N stretching. However, 

Tables 7.0 and 7.1 show the AMPS structure, with the bands for the sulfonate 

(SO3,) functional groups and their stretching appearing in the range 1043-1044 cm-

1 [88, 134] whereas those for C-C symmetric asymmetric stretching are at 995-996 

cm-1. In line with Table 7.0 and 7.1 figures 7 (a and b) presents a plots evidence 

of FT-IR absorbance spectra for PAM, PVP and AMPS and comparative plot of 

PAM, PVP and AMPS mix samples at time 0 and 30 days respectively. However, 

at time zero in day, absorbance shows less intensities compared to the absorbance 

at 30 days.  
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Figure 7.0: FT-IR absorbance spectra for (7a) PAM, PVP and AMPS (7b) 

Comparative PAM, PVP and AMPS mix samples at time 0 and 30 days  
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Table 7.0: FTIR Spectra or peak assignment for weight proportion of PAM: PVP: 

AMPS 
 

  Weight proportion of PAM:PVP:AMPS (wavenumber cm-1) 

Peak Assignment  19:76:5 18:72:10 10:40:50 02:08:19 

Primary amide NH2, and OH 

asymmetric stretching 3356 3333 - 3335 3349 3344 - 3354 

Secondary amide N - H 

stretching 2022 - 2185 2038 - 2067 

2039 - 

2169 2032 -2089 

Primary Amide C=O Stretching 1638 - 1645 1632 - 1638 

1637 - 

1638 1631 - 1644 

CH3 and CH2 stretching  1466 - 1467 1465 - 1466 

1551 - 

1553 1463 - 1467 

C-N-C Stretching  1296 1295 1296 1294 

C - N Stretching 1116 1115 - 1119 

1187 - 

1188 1118 - 1188 

SO3 Stretching 1044 - 1043 1044 - 1043 1044 -1043 1044 - 1043 

C - C symmetric - Asymmetric 

stretching 996 - 997 991 - 996 995 - 997 996 - 997 

 

Table 7.1: Peak assignment for 100 % AMPS at 200,000 ppm salinity. 
 

Peak Assignment  100 % AMPS 

Primary amide NH2, and OH asymmetric 

stretching 3358 - 3347 

Secondary amide N - H stretching 2162 

Primary Amide C=O Stretching 1636 - 1638 

CH3 and CH2 stretching  1551 - 1553 

C-N-C Stretching  1296 

C - N Stretching 1187 - 1189 

SO3 Stretching 1044 

C - C symmetric - Asymmetric stretching 995 - 997 
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From figure 7.1 is the pilot evidence that represent the percentages change in 

amide absorbance for both 20:80 PAM: PVP mix solution and the PIT (PAM: PVP 

with AMPS) mix solution at different weight percentages (wt %) and also pure AMPS 

dissolved in water with extremely high salinity at 200,000 ppm. High percentages 

of amide absorbance were observed of up to 58 and 56% respectively after the 

second and fourth days of ageing; however the levels declined gradually with 

ageing until 10 days and subsequently remained stable. The integration of PAM: 

PVP with 90% by weight of AMPS reduced amide absorbance significantly from 

30% down to 9 % after 30 days of ageing.  

 

Figure 7.1: Percentage change in amide absorbance of PAM and integrated (PAM: 

PVP polymers at 90 oC and 200,000 ppm TDS. 
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7.1.2 NMR Analysis of PIT solution 
 

Determining the degree of hydrolysis of PIT solution. Figure 7.2a presents the 1H 

NMR spectra for integrated polymers of PAM: PVP (20:80) and different weight 

ratios of PAM: PVP: AMPS at 90oC and salinity 200,000 ppm, more of different 

weight ratio of PAM: PVP: AMPS are shown in figure 7.2b. The peak at 4.8 ppm 

represents water content in the deuterium oxide (D2O) solvent. However, the peak 

observed between 3.4-3.2 ppm could be attributed to the equivalent hydrogen (H) 

atom of the CH group bonded to SO3 in AMPS and the amide group (C=O) in the 

PVP structure [88, 126, 134]. The peaks between 2.20-2.40 ppm and 1.60-1.90 

ppm are assigned to the equivalent hydrogen (H) atom of the CH group bonded to 

the amide group (CONH2). The peaks measured at 1.60-1.90 ppm represent the 

equivalent atom of the CH2 group in PAM, PVP and AMPS respectively. In these 

set of results  𝑛𝑎 , 𝑛𝑏 and 𝑛𝑐 are defined as equivalent H atom in peak integration 

for CH group for PVP and AMPS bonded to amide group (C=O), equivalent H atoms 

in peak integration for CH group bonded to amide group (C=O) combined PAM and 

equivalent H atoms in peak integration for of CH2 group for PAM and PVP, 

respectively.  
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Figure 7.2a: 1H NMR spectra for integrated polymers of PAM: PVP (20:80) and 

different weight ratios of PAM: PVP: AMPS at 90oC and salinity 200,000 ppm. 
 

The intial degrees of hydrolysis for integarted polymer solutions were evaluted  

using  Buker Topsin 3.5 software and results are presented in Table 7.3.  As can 

be seen from the table, the higher the weight proportion of AMPS, the lower the 

initial degree of hydrolysis (DHi). The weight proportion of AMPS at 5 % in the 

integrated polymer solution shows an initial degree of hydrolysis (DHi) of 20% 

compared to 18% for the 90 wt % AMPS mixture. 
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Table 7.3: Initial degree of hydrolysis (DHi) for brine samples of 200,000 ppm at 

90oC. 
 

Sample No: 

PAM 

wt% 

PVP 

wt% 

AMPS 

wt% DHi 

1 20 80 0 35 

2 19 76 5 20 

3 18 72 10 19 

4 10 40 50 18 

5 2 8 90 18 

 

In determining the degree of hydrolysis over the designated ageing times, the 

percentage absorbance needs to be converted into degree of hydrolysis. This is 

accomplished by combining the percentage increase in amide groups and the initial 

degree of hydrolysis (DHi) as given in equation 4.3 [103]. Figure 7.3 shows the 

degree of hydrolysis for integrated polymer solutions in high temperature and high 

salinity conditions. As can be deduced from this figure, the integrated 

PAM:PVP:AMPS polymers exhibit lower degrees of hydrolysis of about 22% 

compared to 46% for  PAM:PVP solutions when dissolved in extremely high salinity 

formation water of 200000 ppm, with a stabilised degree of hydrolysis of 46.2%. 
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Figure 7.3: Extent of degree of hydrolysis of 20:80 PAM: PVP and different weight 

ratios of PAM: PVP: AMPS at 90oC and 200,000 ppm salinity.  
 

7.2 Stability of integrated polymers extreme reservoir conditions 
 

High gel stability and high viscosity are the two main requirements in the selection 

of suitable polymer solutions under the influences of extremely high salinity 

formation water and high temperature. Figure 7.4 illustrates changes in viscosity 

against ageing time for three rotational speeds of 10, 30 and 600 rpm, accordingly, 

the viscosity test for each weight composition was conducted three times and the 

mean of the three viscosity measurements presented as final viscosity error bars 

calculated based on test repeatability. The figure shows stability in the polymer 

solution from 4 to 30 days of ageing. Although the weight proportion of 20:80 PAM: 

PVP copolymer shows greater viscosity, it exhibits a high degree of hydrolysis at 

54.6% before stabilising at 46.2%, and it seems obvious that this level of hydrolysis 
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might cause degradation. A comparison of the viscosity results obtained for different 

weight proportions of PAM: PVP: AMPS ter-polymers with those for the copolymer 

PAM: PVP shows that more solutions with more PAM: PVP and less AMPS have 

higher viscosity compared to those with less PAM: PVP and more AMPS.  
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Figure 7.4: The viscosity of PAM: PVP: AMPS at 90oC in salinity of 200,000 ppm 

TDS at (a) 10 rpm and (b) 30 rpm and (c) 600 rpm. 
 

7.3 Optimized integrated polymer solution at extreme reservoir conditions 

The ter-polymer of PAM, Polyvinylpyrrolidone and 2-Acrylamido-2-Methylpropane 

Sulfonic acid (AMPS) produced high stability and could be effective for mobility 

control in EOR applications. Optimization of the weight ratio composition of the 

PAM: PVP: AMPS (PIT) polymer mixture will provide more sweep in enhanced oil 

recovery process, especially in terms of the economic evaluation and feasibility of 

the process. Figure 7.5 demonstrates how the optimised concentration of AMPS in 

the integrated polymer for 30 days ageing time was selected. From the figure, an 

AMPS weight proportion of 10 wt % was found to be optimum, resulting in the overall 

optimum composition of the ter-polymer of PAM: PVP: AMPS at the weight 

percentages of 18:72:10 for use in a temperature of 90oC and a salinity of 200000 

ppm.  
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Figure 7.5: Optimized weight proportion of PAM: PVP: AMPS at 90oC and 200,000 

ppm TDS.  
 

In summary, Gao et al., [86] reported on the specifications used for the application 

of hydrolysed PAM based on experience at the Shengli Company. They stated that 

hydrolysed PAM product should go through screening tests before being deployed 

in the field and that two criteria should be met: (1) the degree of hydrolysis should 

be < 25%; and (2) the hydrolysed solution must maintain good stability and viscosity 

> 11.5 mPa.s against the influence of shearing, temperature and water salinity. 

However, the results in figure 7.5 show that the polymer mixture proposed in the 

present work has surpassed the criteria by achieving a degree of hydrolysis of 

22.04% with good stability and viscosity maintained at 30.6 mPa.s at the low 

shearing rate of 10 rpm (17 sec-1) in the presence of extremely high salinity at 

200,000 ppm and a temperature of 90oC. 
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7.4 PIT shear behaviour  

 

The Fann and Palmer viscometer studies in section 4.4 on polymer degradation 

shows that polyacrylamide solutions are pseudo plastic (shearing thinning solution). 

In pseudo plastic or shear thinning behaviour, the viscosity of the polymer solution 

decreases as the shear rate increases [102,135]. However, for polymer integration 

technique (PIT) shear test, the flow characterization were determined through 

studying the relationship between the effective viscosity and shear rate. The method 

utilised for effective viscosity and shear rate relationship are expressed from 

equation 3.0 to 3.2. The results in figure 7.6 demonstrated that effective viscosity 

of PIT solution increases as the weight proportion of PAM, PVP and AMPS in the 

overall solution composition increases. This imply that the pseudo plasticity 

behaviour of the solutions increases as each component solution increases. From 

the figure, it is also noticed that the degree of shear degradation was found to 

depend on the proportion of the polymer concentration in the PIT mix solution.  
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Figure 7.6: PIT Shearing at the salinity of 200000 ppm TDS and 90oC 
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Figure 7.7: Shearing and mechanical degradation at different PAM and salinity 

concentration. 
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29.9%. In rheology phase the viscosity increased to 44.3 and 38.2 mPa.s on a 

corresponding 10 and 30 rpm respectively at optimized polymer mixture of 80 wt% 

PVP and 20 wt % PAM.  

Extending the optimized mixture on operational conditions of 43,280 ppm salt 

concentration and temperature 90oC to extreme high salinity of 200,000 ppm TDS. 

The results shows increasing degree of hydrolysis of 46.9%, the polymer solution 

viscosity degraded from 44.3 and 38.2 mPa.s to 38.6 and 28.6 mPa.s on a 

corresponding 10 and 30 rpm respectively. The degradation occurs because of 

increases in salinity concentration from 43,280 ppm to 200,000 ppm in phase the 

temperature of 90oC. To remediate, stabilise and improve the polymer performance in 

presence of extreme high salinity of 200,000 ppm and temperature of 90oC, 2-

acrylamido-2-methylpropanesulphonic acid (AMPS) was added to the optimized 

integrated polymer mixture as to remediate the degradation and thermally stabilise the 

polymer solution for effective EOR polymer flooding operations.  

The AMPS addition as shown in figure 7.5 shows reduced degree of hydrolysis to 

22.04% and viscosity at 30.6 mPa.s at the low shearing rate of 10 rpm (17 sec-1) in 

the presence of extremely high salinity at 200,000 ppm and a temperature of 90oC.  
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CHAPTER 8: CONCLUSIONS AND RECOMMENDATIONS 
 

8.1 Conclusions 

The water-soluble polymer PAM (polyacrylamide) and it derivative HPAM is applied 

in enhanced oil recovery (EOR) operations when mobility ratio of a waterflood is 

unfavorable (M>1) causes viscous fingering and reservoir heterogeneity. To control 

these challenging situations and improve the sweep efficiency, polymer solution 

(PAM and HPAM) is pumped into water injection wells to increase the viscosity of 

the injected water and in turn push or divert more oil towards production wells. 

Accordingly, PAM and HPAM solution proven to be sensitive to reservoir conditions, 

such as high temperature and high salinity. These challenging effect drove this 

research in improving the polymers performance by developing better polymers and 

optimizing to fit reservoirs. Before the improvement and optimizing polymer 

solution, a correlation analysis was conducted to determine the safe maximum 

temperature point (SMTP) from previous published data. The correlation analysis 

proved that different saline solution like NaCl, CaCl2 and NaHCO3 contain different 

SMTP as in chapter 4.  Proceeding is synthetic experimental approach on studying 

the effectiveness of polyacrylamide (PAM) at different operational conditions in 

chapter 5. 

From the results obtained in chapter 5, temperature acted as the major causes of 

PAM and HPAM degradation by increasing the hydrolysis of the amide functional 

group when the polymer sample is being aged at temperature of 50, 70 and 90oC. 

The increasing effects of degree of hydrolysis took place from moderate to high 

temperature. At 30 days ageing, the increase in hydrolysis took place in two stages. 

In stage one, a quick rise in hydrolysis is seen over the first day. In stage two, the 

rate of hydrolysis is reduced and the increase is a linear function of time. Beside 
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the temperature, the brine favoured more increase in the degree of hydrolysis, with 

the addition of brine a similar pattern is seen, but the rate of hydrolysis in the first 

stage is increased.  

Accordingly, the dependence of degree of hydrolysis on temperature affected the 

performance of viscosity of the polymer solution and the viscosity retention. The 

lower temperature have higher viscosity and higher the viscosity retention 

compared to higher temperature having lower viscosity and lower viscosity 

retention. 

The effects of shearing on the viscosity of the polymer solution (polyacrylamide) 

caused high decrease in viscosity on high shear rates compared to low shear rate 

with low decrease in viscosity. This suggests that the nature of the gel changes 

after 10 days and the gel collapses. Even the shearing effect work concurrently with 

the temperature.  

Finally in chapter 5, at higher temperature of 90oC, the onset of the collapse of the 

gel occurs at lower shear rates. The degree of hydrolysis occurs faster than the 

reduction in viscosity. 

To make the polymer solution maintain a relatively high viscosity under the 

influences of high temperature of 90oC and moderate and high salinity. The 

synthetic approach followed has been to modify polyacrylamide (PAM) with 

Polyvinylpyrrolidone (PVP) as seen in chapter 6. In chapter 6 after various polymers 

mix screening, a non-extant Polyvinylpyrrolidone (PVP) weight proportion of 80 wt 

% was found to be the optimum concentration of the composition resulting to overall 

optimum composition of copolymer PAM: PVP (20:80) wt % with low degree of 



150 
 

hydrolysis of 29.9% for use in temperature of 90oC and high salinity of 43,280 ppm. 

Hydrolysis herein were suppressed and viscosity maintained stability.  

To further investigate the stability of the optimised mix of PAM and PVP in presence 

of increased salinity of 200,000 ppm. Comparatively at total dissolved salts (TDS) 

of 43280 ppm and 200,000 ppm, the degree of hydrolysis increased from 30 to 47%, 

while viscosity decreased sharply from 44 to 38.4 mPa.s respectively at 10 rpm. 

Same experience were duplicated at 30 rpm the viscosity drop from 38.6 to 28.6 

mPa.s. Increasing the salinity from 43280 to 200,000 ppm TDS affected the 

performance of the optimised mix of PAM and PVP polymer solution by increasing 

the degree of hydrolysis and decreasing the viscosity.  

To face the challenge of extreme high salinity of 200,000 ppm at 90oC, 2-

Acrylamido-2-MethylpropaneSulfonic acid (AMPS) were incorporated to the 

optimised mix of PAM and PVP. The results at chapter 6 indicated a reduction of 

initial degree of hydrolysis (DHi) to 22.2%, of the system. A novel AMPS weight 

proportion of 10 wt % was found to be the optimum concentration to overall optimum 

composition of 18:72:10 ter polymers of PAM: PVP: AMPS to enhance the 

performance of polymer application at temperature of 90oC and salinity of 200000 

ppm.  

Finally, substantial effort has been made on this research in improving the 

performance of polyacrylamide and the new synthetic polymers known as polymer 

integrated technique (PIT) shown to improve stability and maintain viscosity of the 

solution. This research novel synthetic approach met the criteria of inactivity or 

insensitivity to salt concentration at high temperature and resistance to hydrolysis.  

These chemical modifications named polymer integrated technique (PIT) constitute 
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an important technique for polymer flooding during EOR applications in improving 

the polyacrylamide and HPAM performance for reservoirs with hostile conditions. 

      8.2 Recommendations  
  

On completion of this study, there are some areas that the author could like to 

recommend as focuses for future research work or for further investigation. 

 The properties or data from laboratory experiments of the optimised polymer 

integration technique (PIT) should be use for rheology characterization through 

laboratory core flooding experiment in a porous media. For the sole aim of 

measuring the permeability (mD) by flowing a fluid known viscosity of core sample 

using Berea sandstone or carbonate in porous media on characterization in 

extremely high permeability water cut above 65% of known dimensions at a set fluid 

flowrate and measuring the pressure drop across the core or setting the fluid to flow 

at a set pressure difference, and measuring the flow rate produced.  

 Simulation model based on simple rig and modify model to use new properties 

Speculative of real data from well (s): (a) using real data for well and (b) then 

stimulate with new properties. 

 The economical evaluation to demonstrate that the polymer flooding increased oil 

production and increased ultimate recovery by certain percentage level. The cash 

flow determined by generating the revenues by combining the oil production profile 

with the oil price profile. The revenues and cost are combined to yield a net cash 

flow, or net present value of the project. Accordingly, as regarding the verification 

of laboratory results for comparative simulation and modelling on polymer flooding 

brief information highlighted in the appendix supported with main figures as 

preliminary analysis. 
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APPENDICES  

Appendix A: NMR Techniques 

 

Figure 3.5b Chemical shift assignment for protons (1H) (https://www2.onu.edu/~b-

myers/organic/2511_Files/NMR_structure_assignments.pdf) 

 

Appendix B: Integration and Optimization of PAM Performance in High 

Temperature Reservoirs 

 

                                                 

https://www2.onu.edu/~b-myers/organic/2511_Files/NMR_structure_assignments.pdf
https://www2.onu.edu/~b-myers/organic/2511_Files/NMR_structure_assignments.pdf
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Figure 6.2b: 1H NMR spectra for integrated polymers of PAM: PVP at 90oC and TDS 

43,280 ppm. 

 

Appendix B: Application of PIT to Optimize PAM Performance at High 

Temperature and High Salinity Medium 
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Figure 7.2b: 1H NMR spectra for integrated polymers of PAM: PVP (20:80) and 

different weight ratios of PAM: PVP: AMPS at 90oC and salinity 200,000 ppm. 
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Appendix C: Verification of Lab results for Comparative Simulation and 

Modelling on Polymer Flooding 
 

 

 

Figure 8.2a:  The normalised endpoint permeabilities of the oil and water against 

water saturation.  

8.3 Corey equation for estimating the endpoint modified Relative 

permeabilities. 

𝑘𝑟𝑜 = 𝑘𝑟𝑜(𝑆𝑤 min )
(

𝑠𝑤𝑚𝑎𝑥−𝑠𝑤− 𝑠𝑜𝑟𝑤

𝑠𝑤𝑚𝑎𝑥−𝑠𝑤𝑖−𝑠𝑜𝑟𝑤
)^𝑐𝑜𝑒                                8.2a 

                   

𝑘𝑟𝑤 = 𝑘𝑟𝑤(𝑆𝑜𝑟𝑤 )(
𝑠𝑤− 𝑠𝑤𝑐𝑟

𝑠𝑤𝑚𝑎𝑥−𝑠𝑤𝑐𝑟−𝑠𝑜𝑟𝑤
)^𝑐𝑤𝑒                            8.2b 

Where 𝑆𝑤 min  is the minimum salt saturation, 𝑠𝑤𝑐𝑟 is the critical saturation, 𝑠𝑤𝑖 initial 

water saturation, 𝑠𝑜𝑟𝑤 is the residual oil saturation to water, 𝑘𝑟𝑤(𝑆𝑜𝑟𝑤 ) water relative 

permeability at residual oil, 𝑘𝑟𝑜(𝑆𝑤 min )
 is the water relative permeability at maximum 

water saturation, 𝑐𝑜𝑒  Corey oil exponent, 𝑐𝑤𝑒 Corey water exponent.  
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8.4 Equation for estimating the endpoint correlated Relative permeabilities. 

Developing a relative permeability model based on the rheological (viscosity) 

experiment results, the Minitab II statistical computation system was used. 

𝑘𝑟𝑜(𝑑𝑟) = 𝐴𝑆 ∗𝐵+𝐶 𝐼𝑛 𝑦  (
𝜇𝑤

𝜇𝑜
)𝐷                                 8.2c 

 

𝑘𝑟𝑤 𝐴𝑆 ∗
[𝐵+𝐷 𝐼𝑛(𝜇𝑤

𝜇
/𝑦) ]

                                         8.2d 

 

Table 8.2 Reservoir properties used for Simulation and model 

 

8.5 Sensitivity Analysis of the Experimental  

In sensitivity analysis, waterflooding injection improved the process by increasing 

the simulation run to 4% oil recovery efficiency on injecting time of 600 days (280 

TSTEP). Continous improvement yielded 3% addition on PAM injection and further 

improvement on PAM injection 3%. Field oil Efficiencies (FOE) = field OIP (initial) – 

OIP (original) / OIP (initial). On PAM: PVP injection 25% incremental was achieved. 

Below are figures 8.2 (b – f), showing incremental recovery polymer flooding and 

increasing water cut for water flooding and PAM. 

 

Reservoir properties utilised in model and simulation 

Recovery Technique Viscosity (mPa.s) Water Salinity (ppm) Temperature 

Water flooding 1.5 43280 90oC 

Polymer Flooding   

(a) PAM 11 43280 90oC 

(b) PAM:PVP 38.2 43280 90oC 

(c) PAM:PVP 28.6 200000 90oC 

(d) PAM:PVP:AMPS 22.8 200000 90oC 
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Figure 8.2a: Recovery vs time graphs for incremental recovery estimate.  

 

  

Figure 8.2b:  Grid section of the PAM/PVP mix @ 90oC 
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Figure 8.2c: Field oil production rate vs time  

 

Figure 8.2d: Field oil production total Vs time 
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Figure 8.3e: Field water cut Vs time  

 

 

Figure 8.3f: Field water production total Vs time  
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Modified Model data used for the Simulation (extracted from Schlumberger model 

data 1997) 

RUNSPEC 

TITLE 

 A MULTI-LATERAL PRODUCER AND INJECTOR - MULTI-SEGMENT BRANCHES WITH POLYMER 

DIMENS 

 9  1  10  / 

OIL 

WATER 

GAS 

DISGAS 

POLYMER 

BRINE 

TEMP 

FIELD 

TABDIMS 

 1  1  15  15  2  15  / 

EQLDIMS 

 2  / 

WELLDIMS 

 3  20  1  3  / 

VFPPDIMS 

 6  3  3  3  1  1  / 

VFPIDIMS 

 6  3  2  / 

WSEGDIMS 

 2  30  4  / 

START 

 1 'JAN' 1997 / 

GRID        ========================================================= 

 EQUALS 

 'DX'     100  / 

 'DY'     500  / 

 'PERMX'  25   / 
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 'PERMZ'  5   / 

 'DZ'     20   / 

 'PORO'   0.4  / 

 'TOPS'   7000   1 9  1 1  1 1  / 

 'DZ'     100    1 9  1 1  3 3  / 

 'PORO'   0.0    1 9  1 1  3 3  / 

 / 

 RPTGRID 

-- Report Levels for Grid Section Data 

--  24*0  

'PORO'  

'PORV'  

 / 

 PROPS       ========================================================== 

SWFN 

-- Sw     Krw          Pcow 

  0.293    0.000      0.544 

  0.357    0.0834     0.456 

  0.408    0.1825     0.365 

  0.453    0.2830     0.298 

  0.502    0.4007     0.245 

  0.529    0.4711     0.200 

  0.562    0.5606     0.100 

  0.595    0.6539     0.090 

  0.622    0.7327     0.050 

  0.650    0.8132     0.030 

  1.0      1.0        0.000   / 

 SGFN 

-- Sg   Krg       Pcgo 

  0.0   0.000      0.000 

  0.08  0.0004     0.200 

  0.11  0.00204    0.500 

  0.14  0.00559    1* 

  0.17  0.01159    2.250 
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  0.23  0.02023    3.200 

  0.26  0.04700    4.100 

  0.29  0.06531    5.050 

  0.32  0.08702    6.020 

  0.35  0.11035    7.010 

  0.40  1.0        8.000    / 

SOF3 

-- So    Krow     Krog 

  0.000  0.0000    0.0     

  0.290  0.0045    0.0 

  0.314  0.0191    0.0 

  0.351  0.0548    1* 

  0.378  0.0905    0.02 

  0.404  0.1336    1* 

  0.438  0.1952    0.3 

  0.471  0.2659    1* 

  0.499  0.3305    0.8 

  0.547  0.4588    1* 

  1.000  1.000     1.00   / 

PVTW 

3000  1.00341  3.0D-6  1  0  / 

  ROCK 

3000    4.0D-6   / 

 DENSITY 

45   63.02   0.0702  / 

 PVDG 

 400  5.9   0.013 

 800  2.95  0.0135 

1200  1.96  0.014 

1600  1.47  0.0145 

2000  1.18  0.015 

2400  0.98  0.0155 

2800  0.84  0.016 

3200  0.74  0.0165 
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3600  0.65  0.017 

4000  0.59  0.0175 

4400  0.54  0.018 

4800  0.49  0.0185 

5200  0.45  0.019 

5600  0.42  0.0195 / 

 PMAX 

 10000 / 

  PVCO 

400  0.165   1.012    1.17   5.0E-5  1* 

800  0.335   1.0255   1.14     2* 

1200 0.500   1.038    1.11     2* 

1600 0.665   1.051    1.08     2* 

2000 0.828   1.063    1.06     2* 

2400 0.985   1.075    1.03     2* 

2800 1.130   1.087    1.00     2* 

3200 1.270   1.0985   0.98     2* 

3600 1.390   1.11     0.95     2* 

4000 1.500   1.12     0.94     2* 

4400 1.600   1.13     0.92     2* 

4800 1.676   1.14     0.91     2* 

5200 1.750   1.148    0.9      2* 

5600 1.810   1.155    0.89     2* 

  / 

 

PLYVISCS 

 0.0000      1.0 

             1.0 

                  /            

  

 10.0       38.2 

            1.0 

                  / 

/ 
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SALTNODE 

0.0 

43.280 / 

PLYROCK 

   0.16  1.5  1000.0  1  0.005 / 

 

PLYADS 

  0.0  0.000 

 20.0  0.010 

 70.0  0.010 / 

PLYMAX 

10         43.280 / 

PLMIXPAR 

1.0 / 

RTEMP 

194 / 

SPECHEAT 

0.00  0.5 1 0.5 

363.0 0.5 1 0.5 

/   

SPECROCK 

0.00   30 

363.0  30 / 

0.00   30 

363.0  30 / 

RPTPROPS    / 

 REGIONS    =========================================================== 

 FIPNUM 

   18*1  72*2  / 

 EQLNUM 

   18*1  72*2  / 

 RPTREGS 

    0   0   0   0   0  / 

SOLUTION    ============================================================ 
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 EQUIL       

 7020.00 2700.00 7990.00  .00000 7020.00  .00000     0      0       5 / 

 7200.00 3700.00 7300.00  .00000 7000.00  .00000     1      0       5 / 

 RSVD       2 TABLES    3 NODES IN EACH           FIELD   12:00 17 AUG 83 

   7000.0  1.0000 

   7990.0  1.0000 

/ 

   7000.0  1.0000 

   7400.0  1.0000 

/ 

 

SALTVD 

7000.0  43.280  

10000.0 43.280 / 

7000.0  43.280 

10000.0 43.280 / 

RPTSOL 

  0 / 

 SUMMARY      =========================================================== 

FOPR 

FGPR 

FWPR 

FWIR 

FOE 

SOFR 

 'PROD' 1 / 

 'PROD' 4 / 

 'PROD' 5 / 

 'PROD' 6 / 

 / 

SWCT 

 'PROD' 1 / 

 'PROD' 4 / 

 'PROD' 5 / 
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 'PROD' 6 / 

 / 

SGOR 

 'PROD' 1 / 

 'PROD' 4 / 

 'PROD' 5 / 

 'PROD' 6 / 

 / 

SPR 

 'PROD' / 

 / 

SPRDH 

 'PROD' 2 / 

 'PROD' 3 / 

 / 

SPRDF 

 'PROD' / 

/ 

SWFR 

 'WINJ' 1 / 

 'WINJ' 4 / 

 'WINJ' 5 / 

 'PROD' 9 / 

 'PROD' 18 / 

 'PROD' 10 / 

 / 

SCFR 

 'PROD' 9 / 

/ 

SCCN 

 'PROD' 9 / 

/ 

SSFR 

 'PROD' 9 / 
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/ 

SSCN 

 'PROD' 9 / 

/ 

SWCT 

 'WINJ' 4 / 

 / 

SGOR 

 'WINJ' 4 / 

 / 

SPR 

 'WINJ' / 

 / 

SOVIS 

 'WINJ' / 

 / 

SWVIS 

 'WINJ' / 

 / 

SEMVIS 

 'WINJ' / 

 / 

SGVIS 

 'WINJ' / 

 / 

SPRDH 

 'WINJ' 2 / 

 'WINJ' 3 / 

 / 

SPRDF 

 'WINJ' / 

 / 

WCPC 

PROD / 
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WSPC 

PROD / 

WSIC 

WINJ / 

WCIC 

WINJ / 

RUNSUM 

ALL 

SEPARATE 

MSUMLINS 

MSUMNEWT 

SCHEDULE     =========================================================== 

RPTRST 

Basic=2 / 

/ 

DRSDT 

   1.0E20  / 

 RPTSCHED 

  'PRES'  'SWAT'  'SGAS'  'RS'  'WELLS=2'  'SUMMARY=2'  

  'CPU=2' 'WELSPECS'   'NEWTON=2' / 

NOECHO 

 --PRODUCTION WELL VFP TABLE   1 

 

VFPPROD 

   1     7.0000E+03   'LIQ'    'WCT'    'GOR'  'thp'  'iglr' 'field' / 

   2.00000E+00  6.00000E+02  1.40000E+03  2.00000E+03 

   4.00000E+03  6.00000E+03 

 / 

   2.00000E+02  5.00000E+02  1.00000E+03 

 / 

    .00000E+00  4.00000E-01  8.00000E-01 

 / 

   1.00000E+00  2.00000E+00  4.00000E+00 

 / 
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    .00000E+00 

 / 

    1   1   1   1   1.97594E+03  1.37517E+03  7.75232E+02  7.31301E+02 

                   8.63600E+02  1.07507E+03 

                 / 

   2   1   1   1   2.24076E+03  2.05768E+03  2.00844E+03  1.95077E+03 

                   1.91803E+03  1.99808E+03 

                 / 

   3   1   1   1   2.71295E+03  2.70532E+03  2.71278E+03  2.72263E+03 

                   2.78084E+03  2.87541E+03 

                 / 

  

   1   2   1   1   2.34711E+03  1.96200E+03  1.80998E+03  1.63946E+03 

                   1.53864E+03  1.65905E+03 

                 / 

   2   2   1   1   2.61779E+03  2.49181E+03  2.45750E+03  2.45608E+03 

                   2.49589E+03  2.53344E+03 

                 / 

   3   2   1   1   3.09452E+03  3.09009E+03  3.09663E+03  3.10603E+03 

                   3.15875E+03  3.24354E+03 

                 / 

  

   1   3   1   1   2.85373E+03  2.68696E+03  2.63428E+03  2.62542E+03 

                   2.66829E+03  2.70294E+03 

                 / 

   2   3   1   1   3.14219E+03  3.09125E+03  3.08104E+03  3.08301E+03 

                   3.12402E+03  3.20092E+03 

                 / 

   3   3   1   1   3.63367E+03  3.63377E+03  3.64044E+03  3.64886E+03 

                   3.69552E+03  3.76936E+03 

                 / 

  

   1   1   2   1   1.90703E+03  4.23900E+02  4.91041E+02  5.61854E+02 

                   8.41860E+02  1.14254E+03 
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                 / 

   2   1   2   1   2.13732E+03  1.51748E+03  1.10210E+03  1.13989E+03 

                   1.31168E+03  1.53169E+03 

                 / 

   3   1   2   1   2.52712E+03  2.36101E+03  2.32094E+03  2.26533E+03 

                   2.32880E+03  2.47300E+03 

                 / 

  

   1   2   2   1   2.24180E+03  1.37824E+03  7.45545E+02  7.21454E+02 

                   9.51216E+02  1.21802E+03 

                 / 

   2   2   2   1   2.47044E+03  2.06424E+03  1.91696E+03  1.78107E+03 

                   1.76738E+03  1.92943E+03 

                 / 

   3   2   2   1   2.87369E+03  2.74718E+03  2.72192E+03  2.72627E+03 

                   2.78577E+03  2.89035E+03 

                 / 

  

   1   3   2   1   2.75731E+03  2.35384E+03  2.23030E+03  2.18779E+03 

                   2.01332E+03  2.05525E+03 

                 / 

   2   3   2   1   3.02294E+03  2.83361E+03  2.77281E+03  2.76184E+03 

                   2.80340E+03  2.86235E+03 

                 / 

   3   3   2   1   3.47670E+03  3.41854E+03  3.40882E+03  3.41186E+03 

                   3.45913E+03  3.54604E+03 

                 / 

  

   1   1   3   1   1.87259E+03  3.91529E+02  5.70235E+02  7.19731E+02 

                   1.21992E+03  1.71171E+03 

                 / 

   2   1   3   1   2.11457E+03  8.41615E+02  9.39654E+02  1.03956E+03 

                   1.43521E+03  1.86682E+03 

                 / 
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   3   1   3   1   2.50409E+03  1.83217E+03  1.79926E+03  1.85238E+03 

                   2.09347E+03  2.40294E+03 

                 / 

    1   2   3   1   2.22684E+03  5.02107E+02  5.73039E+02  6.81812E+02 

                   1.06856E+03  1.47815E+03 

                 / 

   2   2   3   1   2.45705E+03  1.54829E+03  1.10263E+03  1.17176E+03 

                   1.46382E+03  1.80211E+03 

                 / 

   3   2   3   1   2.83378E+03  2.42600E+03  2.30007E+03  2.22995E+03 

                   2.38437E+03  2.65017E+03 

                 / 

    1   3   3   1   2.73870E+03  1.91960E+03  1.48679E+03  1.24203E+03 

                   1.23967E+03  1.44955E+03 

                 / 

   2   3   3   1   2.98935E+03  2.50931E+03  2.37089E+03  2.32059E+03 

                   2.18865E+03  2.28214E+03 

                 / 

   3   3   3   1   3.40018E+03  3.17167E+03  3.10777E+03  3.09743E+03 

                   3.14591E+03  3.22270E+03 

                 / 

 --INJECTION WELL VFP TABLE   1 

 VFPINJ 

   1     7.0000E+03   'WAT'   / 

   2.00000E+00  6.00000E+02  1.40000E+03  2.00000E+03 

  4.00000E+03  6.00000E+03 

/ 

   5.00000E+02 

/ 

    1  3.49209E+03  3.48640E+03  3.46590E+03  3.44178E+03 

      3.30981E+03  3.10032E+03 

    / 

 

--INJECTION WELL VFP TABLE   2 
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 VFPINJ 

   2     6.90000E+03   'GAS'   / 

   1.00000E+00  3.00000E+02  7.00000E+02  1.00000E+03 

  2.00000E+03  3.00000E+03 

/ 

   1.00000E+03  2.00000E+03  3.00000E+03 

/ 

    1  1.31963E+03  1.31781E+03  1.31049E+03  1.30133E+03 

      1.24694E+03  1.15029E+03 

    / 

   2  2.73750E+03  2.73671E+03  2.73365E+03  2.72991E+03 

      2.70847E+03  2.67303E+03 

    / 

   3  3.92693E+03  3.92631E+03  3.92396E+03  3.92110E+03 

      3.90493E+03  3.87853E+03 

    / 

 ECHO 

 WELSPECS 

'PROD' 'G' 1 1 7030  'OIL'      / 

'WINJ' 'G' 9 1 7030  'WATER'   / 

/ 

COMPDAT 

 'PROD' 1 1 2 2  3*  0.2   3*  'X' /   

 'PROD' 2 1 2 2  3*  0.2   3*  'X' /   

 'PROD' 3 1 2 2  3*  0.2   3*  'X' /   

 'PROD' 4 1 2 2  3*  0.2   3*  'X' /   

 'PROD' 5 1 2 2  3*  0.2   3*  'X' /   

 

 'PROD' 1 1 5 5  3*  0.2   3*  'X' /   

 'PROD' 2 1 5 5  3*  0.2   3*  'X' /   

 'PROD' 3 1 5 5  3*  0.2   3*  'X' /   

 'PROD' 4 1 5 5  3*  0.2   3*  'X' /   

 'PROD' 5 1 5 5  3*  0.2   3*  'X' /   
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 'PROD' 1 1 8 8  3*  0.2   3*  'X' /   

 'PROD' 2 1 8 8  3*  0.2   3*  'X' /   

 'PROD' 3 1 8 8  3*  0.2   3*  'X' /   

 'PROD' 4 1 8 8  3*  0.2   3*  'X' /   

 'PROD' 5 1 8 8  3*  0.2   3*  'X' / 

  

 'WINJ' 9 1 2 2  3*  0.2   3*  'X' /   

 'WINJ' 8 1 2 2  3*  0.2   3*  'X' /   

  

 'WINJ' 9 1 10 10  3*  0.2   3*  'X' /   

 'WINJ' 8 1 10 10  3*  0.2   3*  'X' /   

 'WINJ' 7 1 10 10  3*  0.2   3*  'X' /   

 'WINJ' 6 1 10 10  3*  0.2   3*  'X' /   

 'WINJ' 5 1 10 10  3*  0.2   3*  'X' /   

 'WINJ' 4 1 10 10  3*  0.2   3*  'X' /   

/ 

 

WELSEGS 

 

-- Name    Dep 1   Tlen 1  Vol 1 

  'PROD'   7010      10    0.31   'INC' HFA / 

 

-- First   Last   Branch   Outlet  Length   Depth  Diam  Ruff  Area  Vol 

-- Seg     Seg    Num      Seg              Chang  

-- Main Stem 

    2       12     1        1         20     20    0.2   1.E-3  1*   1* / 

-- Top Branch 

    13      13     2        2         50      0    0.2   1.E-3  1*   1* / 

    14      17     2        13       100      0    0.2   1.E-3  1*   1* / 

-- Middle Branch 

    18      18     3        9         50      0    0.2   1.E-3  1*   1* / 

    19      22     3        18       100      0    0.2   1.E-3  1*   1* / 

-- Bottom Branch 

    23      23     4        12        50      0    0.2   1.E-3  1*   1* / 
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    24      27     4        23       100      0    0.2   1.E-3  1*   1* / 

 /  

COMPSEGS 

-- Name 

  'PROD' / 

-- I  J  K  Brn  Start   End     Dirn   End 

--          No   Length  Length  Penet  Range 

-- Top Branch 

   1  1  2  2      30      1*     'X'    5  / 

-- Middle Branch 

   1  1  5  3      170     1*     'X'    5  / 

-- Bottom Branch 

   1  1  8  4      230     1*     'X'    5  / 

 / 

WELSEGS 

-- Name    Dep 1   Tlen 1  Vol 1 

  'WINJ'   7010      10    0.31   'INC' / 

 

-- First   Last   Branch   Outlet  Length   Depth  Diam  Ruff  Area  Vol 

-- Seg     Seg    Num      Seg              Chang  

-- Main Stem 

    2       14     1        1         20     20    0.2   1.E-3  1*   1* / 

-- Top Branch 

    15      15     2        2         50      0    0.2   1.E-3  1*   1* / 

    16      16     2        15       100      0    0.2   1.E-3  1*   1* / 

-- Bottom Branch 

    17      17     3        14        50      0    0.2   1.E-3  1*   1* / 

    18      22     3        17       100      0    0.2   1.E-3  1*   1* / 

 /  

COMPSEGS 

-- Name 

  'WINJ' / 

-- I  J  K  Brn  Start   End     Dirn   End 

--          No   Length  Length  Penet  Range 



189 
 

-- Top Branch 

   9  1  2  2      30      1*     'X'    8  / 

-- Bottom Branch 

   9  1 10  3      270     1*     'X'    4  / 

 / 

WEFAC 

 '*'  0.68  / 

 / 

WCONPROD 

 'PROD' 'OPEN' 'LRAT'  3*  6000  1*  1000  0.0  1 / 

 / 

 WCONINJE 

 'WINJ' 'WAT' 'OPEN' 'RESV'  1*  2000  3500  1*  1 / 

 / 

WPIMULT 

PROD 8/ 

PROD 3 1* 1* 5 / 

PROD 1.5 1* 1* 1* 7 7 /  

/ 

WVFPEXP 

 '*' 'EXP' / 

 / 

 

WPOLYMER 

WINJ  10.0  43.280 / 

/ 

WTEMP 

WINJ  194 / 

/ 

WRFTPLT 

PROD REPT REPT REPT / 

WINJ REPT REPT REPT / 

/ 

TUNING 
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 / 

 / 

 4*  16 /   

TSTEP    

 2  18  220  

/ 

WELTARG 

 'PROD' 'THP'  600 / 

 'PROD' 'LRAT' 10000 / 

 'WINJ' 'RESV' 5000 / 

 'WINJ' 'THP'  500 / 

 'WINJ' 'BHP'  4000 / 

 / 

WPOLYMER 

WINJ  10.0  43.280 / 

/ 

TSTEP 

 280 / 

END 

 

 

 

 

 

 

 

 


