
Option Pricing Driven by Lévy Processes
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Abstract

The methodology of pricing financial derivatives, particularly stock options, was first intro-
duced by Bachelier and developed by Black, Scholes and Merton, who gave the explicit for-
mula for option pricing. Recent developed models such as jump-diffusion, Heston and Variance
Gamma are also widely studied within the quantitative finance field and are proven to be appli-
cable to a certain degree in real markets.

A brief understanding of option pricing with stochastic processes is given in this thesis.
Risk neutral valuation and notion of finding an equivalent martingale measure provide a frame-
work under which derivatives are priced. Basic procedures of constructing a Brownian motion
and stochastic integral from fundamental blocks are introduced. Infinitely divisible distribu-
tions and Lévy processes are detailedly discussed, including Lévy-Itô decomposition and the
notion of subordination. Exponential-Lévy model and Fourier transform methods are presented
to illustrate different approaches to option pricing. Simulation of AAPL stock prices based on
estimated parameters from historical data under jump diffusion model is compared with em-
pirical data to test the fitness of the model. Stock prices by minimal measure and Esscher
transform measure are computed under geometric Lévy processes. Finally, univariate Variance
Gamma process model is extended to Sato’s two factor model for multivariate option pricing.

The focus of this thesis is to give a detailed analysis of different option pricing models
using mathematical and statistical concepts and theories, accompanied with simulations and
empirical data to test the fitness of models. Extensions to numerous popular models are also
discussed.
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Chapter 1

Discrete time models for asset pricing

The main focus of this chapter is the discrete time models in pricing of financial assets. Price
formation in financial markets may be explained in terms of fundamentals, so-called rational
expectation model or in a relative manner explaining the prices of some assets in terms of other
given and observable asset prices.

A derivative security, or contingent claim, is a financial contract whose value at expiration
date T is determined by the price of underlying financial instruments at time T . A natural ques-
tion hereby exists: What are appropriate mathematical objects that would allow us to model as-
set price dynamics? Since asset prices evolve randomly over time period, in the early financial
theory, probability distributions were often used to describe price movements.

Today, the stochastic process provides a general mathematical framework that allows us to
build and evaluate models that involve Brownian motion and other various complicated families
of random variables. It is useful to distinguish between various classes of stochastic process
according to their specific properties. This is important for application in finance since we need
to find classes of stochastic processes that we can use as basis for realistic market model. Hence,
it allows us to establish fast and efficient methods to calculate important characteristics as stock
price, option price or other financial instruments. In this chapter, we start with introducing
notion of filtration and end up with multinomial asset pricing model as an extension to CRR
binomial model.
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1.1 Discrete time processes

One of the fundamental concepts in modern finance is the notion of a martingale. This is a
stochastic process that, with its last observed value, provides the best forecast for its future
values. Intuitively, the financial quantities, such as asset prices are driven by information. Ac-
cess to full, accurate, up-to-date information is clearly essential to people engaged in financial
service or trading. As time passes, new information becomes available to all participants, who
continually update their information. What we need is a mathematical language to model the
information flow with respect to time. Therefore the idea of filtration will be introduced in this
section.

Definition 1.1.1 A (discrete time) filtration on the probability space (Ω,F ,P) is a sequence
of σ-algebras on Ω, (Fn)n∈N, with property that

F0 ⊆ F1 ⊆ · · · ⊆ F

We use symbol F := (Fn)n∈N to denote filtration.

Definition 1.1.2 Let (Ω,F ,P) be a probability space with filtration F := (Fn)n∈N. Then
(Ω,F ,F,P) is called a filtered probability space. A sequence of random variables (Xn)n∈N is
said to be adapted to the filtration (Fn)n∈N if for each n ∈ N, Xn is Fn-measurable.

Definition 1.1.3 Let (Ω,F ,P) be a probability space with filtration (Fn)n∈N. Let (Mn)n∈N be
an adapted stochastic process with Mn ∈ L2(Ω,Fn,P) for each n ∈ N.

(i) (Mn)n∈N is called a martingale with respect to the filtration (Fn)n∈N ifMn = E[Mn+1|Fn]

for all n ∈ N.

(ii) (Mn)n∈N is called a submartingale with respect to (Fn)n∈N if Mn ≤ E[Mn+1|Fn] for all
n ∈ N.

(iii) (Mn)n∈N is called a supermartingale with respect to (Fn)n∈N if Mn ≥ E[Mn+1|Fn] for
all n ∈ N.

Remark 1.1.1 Let (Mn)n∈N be an adapted stochastic process with Mn ∈ L(Ω,Fn,P) for each
n ∈ N. Then for any n ∈ N,

E[Mn+1 −Mn|Fn] = E[Mn+1|Fn]− E[Mn|Fn] = E[Mn+1|Fn]−Mn

This shows that (Mn)n∈N will be a martingale if and only if E[Mn+1 −Mn|Fn] = 0 for all
n ∈ N.

Martingales were studied by Paul Lévy from 1934 on and Joseph L. Doob from 1940 on.
The first systematic exposition was Doob 1953 [17]. Martingales have a useful interpretation
in terms of dynamic games: a martingale is ‘constant on average’, and models a fair game.
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1.2 Mathematical finance in discrete time

In this section we consider mathematical finance model in discrete time based on Bingham’s
book [5], particularly which will lead to the Cox-Ross-Rubinstein binomial model (CRR-
model). Firstly, we will introduce basic concepts of arbitrage, equivalent martingale and risk
neutral pricing formula in order to build the CRR-model. Following the approach of Harrison
and Pliska (1981) [30], it suffices to proceed to work with a finite probability space.

We will assume the market contains d+1 financial assets with one risk-free asset denoted
0, and d risky assets denoted 1 to d.

Definition 1.2.1 A numéraire is a price process (Xt)
T
t=0, which is strictly positive for all t =

0, 1, ..., T .

For the standard approach the risk-free asset price process (bond) is used as numéraire. In
this case, we just use S0 without further specification as a numéraire. We take S0,0 = 1 (the

initial value as numéraire), and define β :=
1

S0,t

as a discount factor.

Definition 1.2.2 A trading strategy ϕ is a Nd+1 vector stochastic process ϕ = (ϕt)
T
t=1 =

((ϕ0,t, ϕ1,t, ..., ϕd,t)
′)Tt=1 which is predictable: each ϕi,t is Ft−1-measurable for t ≥ 1.

Remark: ϕi,t denotes the number of shares of asset i held in the portfolio at time t-to be
determined on the basis of information available before time t. The investor selects his time t
portfolio after observing the prices at t−1.

One thing needs to highlight that the portfolio ϕt must be established before and held until
after, announcement of the prices St.

Definition 1.2.3 The value of the portfolio at time t is the scalar product

Vϕ,t = ϕt · St :=
d∑
i=0

ϕi,tSi,t, for t = 1, 2, ..., T and Vϕ,0 = ϕ1 · S0

The process Vϕ,t is called the wealth process of the trading strategy.

Definition 1.2.4 The gains process Gϕ of a trading strategy ϕ is given by

Gϕ,t :=
t∑

τ=1

ϕτ (Sτ − Sτ−1) =
t∑

τ=1

ϕτ∆Sτ , (t = 1, 2, ..., T )

Define S̃t = (1, βtS1,t, ..., βtSd,t)
′, the vector of discounted stock prices, and consider the dis-

counted value process

Ṽϕ,t = βt(ϕt · St) = ϕt · S̃t, (t = 1, 2, ..., T )

and the discounted gains process

G̃ϕ,t :=
t∑

τ=1

ϕτ · (S̃τ − S̃τ−1) =
t∑

τ=1

ϕτ ·∆S̃τ , (t = 1, 2, ..., T )

3



The discounted gains process reflects gains from trading with assets 1 to d only, which in
the case of standard model are d risky assets.

Definition 1.2.5 The strategy ϕ is self-financing if

ϕt · St = ϕt+1 · St, for t = 1, 2, ..., T−1

This formula explains that when new prices St are observed at time t, the investor adjusts
the portfolio from ϕt to ϕt+1, without consuming any wealth, i.e. the new portfolio allocation
does not change the overall value from what it was at time t−1.

We then start modelling of derivative instruments under the current framework and we can
look into concepts of equivalent martingale measure.

Proposition 1.2.1 (Numeraire Invariance). Let Xt be a numeraire. A trading strategy ϕ is
self-financing with respect to St if and only if ϕ is self-financing with respect to X−1

t St.

Proof: Since Xt is strictly positive for all t = 0, 1, 2..., T , we have the following equiva-
lence:

ϕt · St = ϕt+1 · St ⇔ ϕt ·X−1
t St = ϕt+1 ·X−1

t St, t = 0, 1, 2..., T − 1. �

Corollary 1.2.1 A trading strategy ϕ is self-financing with respect to St if and only if ϕ is
self-financing with respect to S̃t.

Definition 1.2.6 A contingent claim X with maturity date T is an arbitrary FT− measurable
random variable, which is by the finiteness of the probability space bounded. We denote the
class of all contingent claims by L0 = L0(Ω,F ,P).

A typical example of a contingent claim X is an option on some underlying asset S; we
then have a functional relation X = f(S) with some function f (e.g. X = (ST −K)+).

4



1.3 Equivalent martingale measure

The central condition in single period case is the absence of arbitrage opportunities. We now
define the mathematical counter part of this economic principle in our current setting.

Existence of equivalent martingale measures provide a basic condition for the CRR-model
(non-arbitrage condition). To further illustrate this concept, we first look at the non-arbitrage
condition.

Definition 1.3.1 Let φ be a set of self-financing strategies. A strategy φ is called an arbitrage
opportunity with respect to φ if P{Vϕ(0) = 0} = 1, and the terminal wealth of φ satisfies

P{Vϕ(T ) ≥ 0} = 1 and P{Vϕ(T ) ≥ 0} > 0.

Therefore, an arbitrage is a self-financing strategy with zero initial value. This produces a
non-negative final value with probability one and a positive probability of a positive final value.

Definition 1.3.2 We say that a financial marketM is arbitrage-free if there are no arbitrage
opportunities in the class φ of trading strategies.

One of the basic assumptions in finance is that markets are free of arbitrage possibilities.
Since arbitrage implies the creation of wealth out of nothing, it seems obvious that such pos-
sibilities should be rare in financial markets. Thus in the most of financial pricing models, we
assume that markets are arbitrage-free.

Definition 1.3.3 A probability measure P∗ on (Ω,FT ) equivalent to P is called a martingale
measure for discounted price process S̃ if the process S̃ follows a P∗-martingale with respect
to the filtration F. We denote by P(S̃) the class of equivalent martingale measures.

From a finance perspective, equivalent martingale measures is a probability distribution that
shows possible expected payouts from an investment adjusted for an investor’s degree of risk
aversion. In an efficient market, this present value calculation should be equal to the price
at which the security is currently trading. EMMs are most commonly used in the pricing of
financial derivative, since this is the most common case of security type which has numerous
discrete, contingent payouts.

Proposition 1.3.1 Let P∗ ∈ P(S̃) be an equivalent martingale measure and ϕ ∈ φ any self-
financing strategy. Then the wealth process Ṽϕ(t) is a P∗-martingale with respect to the filtra-
tion F.

Proof: By the self-financing property of ϕ, we have

Ṽϕ,t = Vϕ,0 + G̃ϕ,t, (t = 0, 1, ..., T )

5



Hence,

Ṽϕ,t+1 − Ṽϕ,t = G̃ϕ,t+1 − G̃ϕ,t = ϕt+1 · (S̃t+1 − S̃t).

Ṽϕ,t is the martingale transform of the P∗ martingale S̃ by ϕ and a P∗ martingale itself. �

Proposition 1.3.2 If an equivalent martingale measure exists-that is, if P(S̃) 6= ∅−then the
marketM is arbitrage-free.

Proof: Assume such a P∗ exists. ∀ self-financing strategy ϕ, we have

Ṽϕ,t = Vϕ,0 +
t∑

τ=1

ϕτ ·∆S̃τ .

By Proposition (1.3.1), S̃t a P∗-martingale implies Ṽϕ,t is a P∗-martingale. Therefore the
initial and final P∗-martingale are the same,

E∗[Ṽϕ,T ] = E∗[Ṽϕ,0].

If the strategy is an arbitrage opportunity its initial value, RHS of the above equation, is
zero. Therefore the LHS of the equation is zero, but Ṽϕ,T ≥ 0 by definition. Therefore no
arbitrage is possible. �

Theorem 1.3.1 (No-arbitrage Theorem). The marketM is arbitrage free if and only if there
exists a probability measure P∗ equivalent to P under which the discounted d-dimensional asset
price process S̃ is a P∗-martingale.

Summary
These definitions and theorems are known as the Fundamental Theorem of Finance and

lead to discovery of risk-neutral pricing. The earlier option pricing results of Black, Scholes
and Merton 1973 [6,52] were the catalyst for much of the work. The central part of the Funda-
mental Theorem, that the absence of arbitrage is equivalent to the existence of a positive linear
pricing operator, first appeared in Ross (1973), and the first statement of risk neutral pricing
appeared in Cox and Ross (1976). The Fundamental Theorem was extended in Harrison and
Kreps (1979) [31], who described risk-neutral pricing as a martingale expectation. Dybvig
and Ross (1987) coined the terms Fundamental Theorem to describe these basic results and
Representation Theorem to describe the principal equivalent forms for the pricing operator.
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1.4 Risk neutral pricing

We now focus on building the main pricing theorem of the financial derivatives on the ground
of the introduced concepts. As in Section 1.2, we have already reproduced the cash flow of a
contingent claim in terms of a portfolio of the underlying assets. On the other hand, Section 1.3
gives the equivalence of the no-arbitrage condition and the existence of risk-neutral probability
measures imply that risk-neutral pricing may exist. We will explore the risk neutral pricing
theorem in further details in this section.

Definition 1.4.1 A contingent claim is attainable if there exists a replicating strategy ϕ ∈ Φ

such that

Vϕ,T = X(payoff of the claim).

Working with discounted values, we find

βTX = Ṽϕ,T = V0 + G̃ϕ,T ,

where β is the discount factor.
In an efficient financial market, we expect that the law of one price holds true, i.e. identical

securities should sell for identical prices. Otherwise, arbitrageurs would make riskless profit.
Therefore, the no-arbitrage condition implies that for an attainable contingent claim its price at
time t must be the same as the value of any replicating strategy.

Proposition 1.4.1 Suppose the market M is arbitrage-free. Then any attainable contingent
claim X is uniquely replicated inM.

Proof: See [5] Proposition 4.2.4.

Definition 1.4.2 Suppose the market is arbitrage-free. Let X be any attainable contingent
claim with time T maturity. Then the arbitrage price process πX(t), 0 ≤ t ≤ T is given by the
value process of any replicating strategy ϕ for X .

The hedging strategy that replicates the outcome of a contingent claim is fundamental of
financial derivatives pricing. The famous arbitrage valuation models, Black-Scholes, depend
on the idea that a financial instrument, such as option, can be perfectly hedging using the un-
derlying asset, which makes possible to create a portfolio that replicates the instrument exactly.

Next, we will introduce an important proposition from the definitions above that is the
risk-neutral pricing formula, which is the central idea used in CRR binomial model.

Proposition 1.4.2 The arbitrage price process of any attainable contingent claim X is given
by the risk-neutral valuation formula

fX(t) = β(t)−1E∗[Xβ(T )|Ft], ∀t = 0, 1, ..., T,

7



where E∗ is the expectation with respect to an equivalent martingale P∗.

Proof: Given the market is arbitrage-free, there exists an equivalent martingale measure
P∗. By Proposition (1.3.1), the discounted value process Ṽϕ of any self-financing strategy ϕ is
a P∗-martingale. Therefore, ∀ contingent claim X with maturity T and ∀ replicating trading
strategy ϕ we have for each t = 0, 1, ..., T ,

fX,t = Vϕ,t = β−1
t Ṽϕ,t

= β−1
t E∗(βTVϕ,T | Ft)

= β−1
t E∗(βTX | Ft)

as required.
Until now, we have shown that attainable contingent claim can be priced with respect to an

equivalent martingale measure. In this part, we will examine the question that if we assume
all contingent claims are attainable. Then we are able to solve the pricing question completely.
We will start with the definition of complete market.

Definition 1.4.3 A marketM is complete if every contingent claim is attainable,i.e. for every
Ft-measurable random variable X ∈ L0 there exists a replicating self-financing strategy ϕ ∈
Φ such that Vϕ(T ) = X.

Theorem 1.4.1 (Completeness Theorem) An arbitrage-free marketM is complete if and only
if there exists a unique probability measure P∗ equivalent to P under which the discounted asset
prices are martingales.

Proof: See [5] Theorem 4.3.1.
To summarise, combing no-arbitrage theorem and completeness theorem, we obtain one of

the most important results in asset pricing- Fundamental Theorem of Asset Pricing.

Theorem 1.4.2 (Fundamental Theorem of Asset Pricing). In an arbitrage-free complete mar-
ketM, there exists a unique equivalent martingale measure P∗.

Assume now that M is an arbitrage-free complete market and let ϕ is a self-financing
strategy replicating contingent claim X . Then Vϕ,T = X.

As Ṽϕ,t is the martingale transform of the P∗-martingale S̃t, Ṽϕ,t is a P∗-martingale. There-
fore,

Vϕ,0 = E∗(Ṽϕ,T ) = E∗(βTX),

giving us the risk-neutral pricing formula

Vϕ,0 = E∗(βTX).

Theorem 1.4.3 (Risk-neutral Pricing Formula). In an arbitrage-free complete marketM, ar-
bitrage prices of contingent claims are the discounted expected values under the risk-neutral
or equivalent martingale measure P∗.

8



1.5 Cox-Ross-Rubinstein binomial model

We construct the model following [15]. Take d = 1, that is, the model consists of one risky
asset and one risk-free asset. Set time horizon T and the set of time period is t = 0, 1, ..., T .
Assume that the first asset is a risk-free bond B, which yields a risk-free rate of return r > 0 in
each time interval [t, t+ 1].Therefore,

Bt+1 = Bt(1 + r), B0 = 1.

So the price process is Bt = (1 + r)t, t = 0, 1, ..., T . More, we have a risky asset-stock S
with price process

St+1 =

{
St(1 + u) with probability p,

St(1 + q) with probability 1− p,

See Figure below:

St+1 = St(1 + u)

St

St+1 = St(1 + q)

p

(1− p)

with −1 < q < u, t = 0, 1, ..., T − 1, S0 ∈ R+. u is the factor by which the price rises and q is
the factor by which the price falls.

To make the model more straightforward, we consider return process Zt := St
St−1
− 1, t =

0, 1, ..., T as random variables defined on probability spaces, where we define:

Zt,u = u, Zt,q = q, t = 0, 1, ..., T.

Therefore we can write the stock price as

St = S0

t∏
τ=1

(1 + Zτ ), t = 0, 1, ..., T.
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If we define the Ct, t = 1, ..., T as random variables on (Ω,F ,P) as

Ct,ω = Ct,ωt .

where we use a different symbol Ct to represent a return process which is different from Zt.
C1, C2, ..., CT are i.i.d with

P(Ct = u) = p

P(Ct = d) = 1− p

We model the flow of information in the market we use filtration:

F0 = {∅,Ω},
Ft = σ(C1, ..., Ct) = σ(S1, ..., St),

FT = P(Ω)

Proposition 1.5.1 (i) A martingale measure Q for the discounted stock price S̃ =
St
Bt

exists

if and only if

q < r < u.

(ii) If above condition holds true, then there is a unique such measure in P characterised by

p̂ =
r − q
u− q

Corollary 1.5.1 The Cox-Ross-Rubinstein model is arbitrage free and complete.

Proposition 1.5.2 The arbitrage price process of a contingent claim X in the CRR model is
given by

fX,t = BtE∗[X/BT |Ft], ∀t = 0, 1, ..., T,

where E is the expectation with respect to unique equivalent martingale measure P∗ charac-

terised by p̂ =
r − q
u− q

.

According to this formula, suppose the contingent claim is stock itself, which has a price
process St, t = 0, 1, ..., T , hence we obtain:

E∗(ST ) = S0B(T ) = S0e
rT

That is, stocks grow at risk-free rate under risk-neutral distribution.
Based above model and concepts, if a market is complete then for a contingent claim, there

is a unique price is equal to the expectation of the discounted payoff at maturity under the new
measure. This is called the fair price of claim. For the CRR-model and Black-Scholes model,
the market is complete. later, the market is incomplete. We can still price contingent claim by
taking the expectation of the discounted payoff at maturity under the EMM, but we cannot guar-
antee that this price is unique fair. For details in pricing over-the-counter derivative securities
under incomplete markets, please refer to Jeremy Staum’s notes on incomplete markets.
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1.6 Multinomial models

The CRR binomial model is generalized to the multinomial case. This is discussed in Madan,
Milne and Shefrin 1990 [55]. Limits are investigated and shown to yield the Black-Scholes
formula in the case of continuous sample paths for a wide variety of complete market structures.
The main idea behind their model is to derive a multinomial option pricing formula consistent
with an Arrow-Debreu complete markets equilibrium. Economic uncertainty is modelled as
evolving on an (d + 1)-ary tree with branching occurring during a short period of time where
there is no trading. In this section, we will introduce the intuition and simplified version of
multinomial model.

We now construct an arbitrage-free, complete market model with d > 2 assets following
the information rule of allowing as many different states of the world as we have assets to trade
in. We start with the single-period model with d = 2 case as the case d > 2 follows by the
same procedure. B represents the risk-free bank account, with risk-free rate of return r and two
risky assets S1, S2.

Let

S1,1 = S1,0Z1 and S2,1 = S2,0Z2,

where Si,t means the stock price of asset i at time t, i ∈ {1, 2, ..., d} and t ∈ {0, 1, ..., T}. In
this case d = 2 and T = 1.

Set

P(Z1 = u11, Z2 = u21) = p1;P(Z1 = u12, Z2 = u22) = p2;P(Z1 = u13, Z2 = u23) = p3.

where uij are chosen so that Z1 and Z2 are not independent. The discounted stock price pro-
cesses S̃i,t are martingales under risk neutral probabilities p̂1, p̂2, p̂3. The martingales conditions
yield two equations:

E[S̃1,1] = S̃1,0 ⇒ u11p̂1 + u12p̂2 + u13p̂3 = 1 + r,

E[S̃2,1] = S̃2,0 ⇒ u21p̂1 + u22p̂2 + u23p̂3 = 1 + r.

plus the sum of risk neutral probabilities is 1: p̂1 + p̂2 + p̂3 = 1.

Solve for the system of equations, we get solutions:

p̂1 =
(1 + r − u13)(u22 − u23)− (1 + r − u23)(u12 − u13)

(u11 − u13)(u22 − u23)− (u12 − u13)(u21 − u23)
,

p̂2 =
1 + r − u13

u12 − u13

− u11 − u13

u12 − u13

p̂1,

p̂3 = 1− p̂1 − p̂2.

Hence, we get a unique solution of the system of the equations above, and hence an
arbitrage-free, complete model.
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In the multi-period setting with time horizon T and the set of trading dates given by 0 =

t0 < t1 < ... < tn = T of equally time interval ∆t. The stock price process is modelled by

Si,tm = Si,0

k∏
j=1

Zij, m = 0, 1, ..., n, i = 1, 2.

with a sequence of independent random vectors (Zj)1≤j≤n such thatZj
1 , Z

j
2 are uncorrelated

and

P(Zj
1 = uj1q, Z

j
2 = uj2q) = pjq, q = 1, 2, 3.

For each j the random vector Zj can be in three possible states and this model applies for
the multi-period market that is arbitrage-free and complete.

The paper generalises CRR model to the multinomial case. Limits were investigated and
shown to yield the Black-Scholes formula in the case of continuous sample paths for a wide va-
riety of complete market structures. In the discontinuous a Merton-type formula was shown to
result, provided jump probabilities were replaced by their corresponding Arrow-Debreu prices.
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Chapter 2

Brownian motion and stochastic integral

Up to now, we have only introduced the discrete time processes. Now lets turn to the continuous
case. The well known Brownian motion named after the botanist Robert Brown, who first
described the phenomenon in 1827, while looking through a microscope at pollen of the plant
immersed in water when he observed minute particles, ejected by pollen grains, executing a
jittery motion. The first person to describe the mathematics behind Brownian motion was
Thorvald N. Thiele in a paper on method of least squares published in 1880 [70]. This was
followed by Louis Bachelier in 1900 proposed a model of Brownian motion while deriving the
dynamic behaviour of the Pairs stock market [1].

The theory of stochastic processes, at least in terms of its application to physics, started
with Albert Einstein’s work on the theory of Brownian motion in 1905 [19] and in a series of
additional papers published in the period 1905-1906. In 1923, Norbert Wiener used the ideas
of measure theory to construct a measure on the path space of continuous functions, giving the
canonical path projection process the distribution of Brownian motion [71]. Wiener and others
proved many properties of the paths of Brownian motion, which still continues to today.

The next step in the groundwork for stochastic integration lay with A.N. Kolmogorov. The
beginnings of the theory of stochastic integration, from the non-finance perspective, were mo-
tivated and intertwined with the theory of Markov processes. Then we turn to Kiyosi Itô, the
father of stochastic integration. In Itô’s paper [35], he had a powerful analytic method to study
the transition probabilities of the process, namely Kolmogorov’s parabolic equation and its ex-
tension by Feller. Itô’s first paper on stochastic integration was published in 1944 [37], the
same year that Kakutani published two brief notes connecting Brownian motion and harmonic
functions. The much later insights of Black-Scholes formula derived by Black, Scholes, and
Merton, relating prices of options to perfect hedging strategies, is not our concern for this the-
sis. The final precursor to the Black, Scholes and Merton option pricing formulas can be found
in the paper of Samuelson and Merton [60].

14



2.1 Brownian motion

Definition 2.1.1 A stochastic process on the probability space (Ω,F ,P) is a collection of ran-
dom variables, {Xt}t∈[0,T ], where the indexing set is continuous.

Definition 2.1.2 A family of σ-algebras (Ft)t≥0 is called a (continuous time) filtration for the
probability space (Ω,F ,P) if for any t, s ≥ 0 with t ≥ s we have

Fs ⊆ Ft ⊆ F

Definition 2.1.3 A process (Xt)t≥0 is adapted if Xt is Ft-measurable for each t ≥ 0.

Definition 2.1.4 A continuous stochastic process (Wt)t∈[0,∞) is called a standard Brownian
motion on [0,∞) if it has the following properties:

(i) W0 = 0, a.s.

(ii) For any set of finite times, 0 ≤ t1 < t2 < · · · < tn < T, the increments of the process
(Wt)t∈[0,T ),

Wt2 −Wt1 ,Wt3 −Wt2 , · · · ,Wtn −Wtn−1

are all independent;

(iii) Wt −Ws ∼ N (0, σ2
t−s) for any s, t ∈ [0, T ) with s ≤ t.

(iv) The paths of Wt are almost surely continuous,

∃Ω̃ ∈ F ,P(Ω̃) = 1, t 7→ Wt(ω) is continuous for ω ∈ Ω̃.

Definition 2.1.5 Let (Ws)s≥0 be a standard Brownian motion on [0,∞). Define, for each t ≥
0,

FWt := σ(Ws : s ∈ [0, t])

and

Nt := {A ∈ F : A ⊂ B for some B ∈ Ft with P (B) = 0}.

The standard Brownian filtration, (GWt )t≥0, is defined through

(GWt ) := σ(Ft ∪Nt),∀t ≥ 0.

In our construction of Brownian motion, we will use two sequences of functions that have
been studied for years. Both sequences are examples of wavelets. To define these functions,
we will first consider a function that can serve as a “mother wavelet” and we call this function
Haar function proposed by Alfréd Haar in 1910 [28].
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Definition 2.1.6 (Haar functions). Let H : R→ R be the function

H(t) =


1 if t ∈ [0, 1/2)

−1 if t ∈ [1/2, 1)

0 otherwise

The Haar functions are defined through

H0(t) := 1, ∀t ∈ [0, 1],

and for any k ∈ N and i = 0, · · · , 2k − 1

H2k+i(t) := 2k/2H(2kt− i), ∀t ∈ [0, 1].

The next step of the plan is to obtain a good representation for the integrals of theHn, which
is the key elements of representation for Brownian motion. These integrals turn out to have an
expression in terms of another wavelet sequence that is generated by another mother wavelet,
which this time is given by the triangle function:

∆(t) =


2t if t ∈ [0, 1/2)

2(1− t) if t ∈ [1/2, 1)

0 otherwise

Next, for n ≥ 1, we use internal scaling and translating of the mother wavelet to define the
sequence

∆n(t) = ∆(2kt− i) for n = 2k + i, where k ≥ 0 and 0 ≤ i < 2k

and for n = 0 we simply take ∆0(t) = t. The function ∆n, 0 ≤ n < ∞ will serve as the
fundamental building blocks in our representation of Brownian motion.

Since the mother wavelet ∆(t) is the integral of the mother wavelet H(t), there is a close
connection between the integrals of the Hn and the ∆n,∫ t

0

Hn(u)du = λn∆n(t),

where λ0 = 1 and for n ≥ 1 we have

λn = 1
2
· 2−j/2 where n ≥ 1 and n = 2k + i with 0 ≤ i < 2k.

The following lemma will aid in the proof of the existence of such a process.

Lemma 2.1.1 Let (Zn)n∈N be a sequence of independent Gaussian variables withZn ∼ N (0, 1).

For almost every ω ∈ Ω, ∃ a constant C(ω) > 0, for which |Zn(ω)| ≤ C(ω)
√

ln(n), ∀n ≥
2.
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Proof: As variables Zn are normally distributed, ∀x ≥ 1,

P(|Zn| ≥ x) =

√
2

π

∫ ∞
x

e−
y2

2 dy ≤
√

2

π

∫ ∞
x

ye−
y2

2 dy =

√
2

π
e−

x2

2

for any n ∈ N. This implies ∀α > 1 and n ≥ 2,

P(|Zn| ≥
√

2α ln(n)) ≤
√

2

π
e−α ln(n) =

√
2

π
n−α,

and therefore
∞∑
n=2

P(|Zn| ≥
√

2α ln(n)) <∞.

The Borel-Cantelli lemma can then be applied to obtain

P(|Zn| ≥
√

2α ln(n) for infinitely many n ∈ N) = 0.

Equivalently, for almost every ω ∈ Ω, the bound

|Zn(ω)|√
ln(n)

≤
√

2α

for finitely many n ∈ N. This implies that for almost every ω ∈ Ω,

C(ω) := sup
n≥2

|Zn(ω)|√
ln(n)

is finite. �

The following theorem asserts the existence of the Brownian motion process.

Theorem 2.1.1 (Wavelet Representation of Brownian Motion). If Zn : 0 ≤ n <∞ is a se-
quence of independent Gaussian random variables with mean 0 and variance 1, then the series
defined by

Xt =
∞∑
n=0

λnZn∆n(t)

converges uniformly on [0, 1] with probability one. Moreover, the process Xt defined by the
limit is a standard Brownian motion for 0 ≤ t ≤ 1.

Proof: See [65].
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2.2 Stochastic integral

2.2.1 Gains from trade as stochastic integral

One of the most fundamental notions in finance is that of gains from trade. In stochastic cal-
culus this corresponds exactly to the notion of a stochastic integral, the Itô’s integral, which is
highly relevant in finance. In this section, we will follow Platen and Heath [58], to briefly cover
the concepts of stochastic integral.

Consider an investor who holds during the time period [0, T ] a constant number ξ(0) of
units of an asset with price process X = Xt, t ∈ [0, T ]. The investor’s allocation strategy ξ =

{ξt ≡ ξ0, 0 ≤ t ≤ T}, characterised by the number of units of the asset held, is assumed to be
constant in this case. Then the investor’s gains from trade over the period [0, t] equals

Iξ,X(t) = ξ0{Xt −X0},

for t ∈ [0, T ]. This provides the first step towards an appropriate definition of a stochastic
integral, which we shall call later Itô integral. Formally, we interpret the above gains from
trade Iξ,X(t) as an Itô integral of the integrand ξ with respect to the integrator X over the
time interval [0,t], and use the following notation:

Iξ,X(t) =

∫ t

0

ξsdXs.

In this section, it is sufficient in many applications to use a Brownian motion as integrator.
The Itô integral exhibits a number of important properties and characteristics that are essential
in stochastic calculus and hence for many applications in quantitative finance, especially pricing
financial derivatives. But first, let’s have a look at the formal definition of Itô integral.

2.2.2 Itô integral

Fix T > 0 and let (Wt)t∈[0,T ] be a standard Brownian motion on [0, T ]. Let (Ft)t≥0 := (GWt )t≥0

be the standard Brownian filtration as defined in (2.1.5). Let B([0, T ]) denote the Borel σ-
algebra on [0, T ].

Definition 2.2.1 Consider the product σ-algebra

B([0, T ])×Ft := σ(W × At : W ∈ B([0, T ]) and At ∈ Ft).

A process f : [0, T ]×Ω→ R is called measurable if it is B([0, T ])×Ft measurable. It is said
to be adapted if for each t ∈ [0, T ], f(t, ·) is Ft-measurable.

To give a complete definition of Itô integral, we need to introduce the concept of Hilbert
space and Harr basis.
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Theorem 2.2.1 (Hn)n∈N is an orthonormal basis for the Hilbert space L2([0, 1)). It is called
the Harr basis.

Proof: See [69].
Let H2 denote the collection of all f ∈ L2([0, T ]× Ω)) that are adapted and H2

0 the subset
of H2 that are consists of f of the form

f(t, ω) =
n−1∑
i=0

ai(ω)1(ti,ti+1](t)

where 0 = t0 < t1 < · · · < tn = T and ai ∈ L2(Ω,Fti ,P) for i = 0, · · · , n− 1.
The Itô integral will be constructed on the set of processes H2. This will be done by first

defining the integral on the simple processes of H2
0 . In analogy to the Lebesgue integral, the Itô

integral can then be extended to H2 through a suitable limiting process. In this manner, define
I : H2

0 → L2(Ω) by

I(f) :=
n−1∑
i=0

ai(Wti+1
−Wti)

for any f of the form defined above.
We would now like to show that we can extend the domain of I from H2

0 to all of H2, and
to complete this extension we need to know that I : H2

0 → L2(dP ) is a continuous mapping.
This is indeed the case based on the following fundamental lemma.

Lemma 2.2.1 (Itô’s Isometry on H2
0 ). For f ∈ H2

0 we have

||I(f)||L2(Ω) = ||f ||L2([0,T ]×Ω)

Proof:

||I(f)||2L2(Ω) =
n−1∑
i=0

n−1∑
j=0

∫
Ω

aiaj(Wti+1
−Wti)(Wtj+1

−Wtj)

=
n−1∑
i=0

n−1∑
j=0

E[aiaj(Wti+1
−Wti)(Wtj+1

−Wtj)].

For i < j, since ai, aj and Wti+1
−Wti are Ftj -measurable,

E[aiaj(Wti+1
−Wti)(Wtj+1

−Wtj)] = E[E[aiaj(Wti+1
−Wti)(Wtj+1

−Wtj) | Ftj ]]
= E[aiaj(Wti+1

−Wti)E[Wtj+1
−Wtj | Ftj ]

= E[aiaj(Wti+1
−Wti)E[Wtj+1

−Wtj ]]

= 0. (Given Wtj+1
−Wtj is independent of Ftj )
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Identical argument follows for j < i. This implies:

||I(f)||L2(Ω) =
n−1∑
i=1

E[a2
i (Wti+1

−Wti)
2]

=
n−1∑
i=1

E[a2
i ](ti+1 − ti).

We also have that

||f ||L2([0,T ]×Ω) =
n−1∑
i=0

E[a2
i ]

∫ T

0

1
2
(ti,ti+1]dt

=
n−1∑
i=1

E[a2
i ](ti+1 − ti).

as required. �

Theorem 2.2.2 H2
0 is dense in H2 in the L2([0, T ]× Ω)-norm. That is, for any f ∈ H2, there

exists a sequence (fn)n∈N ∈ (H2
0 )N such that ||f − fn||2 → 0 as n→∞.

A few preliminary results will be required in the proof of this theorem. In this case, we will
skip the proof and use the result directly. This theorem together with the Itô isometry, allows
us to extend the definition of Itô integral to H2.

Definition 2.2.2 The Itô integral on H2 is the map I : H2 → L2(Ω) defined by

I(f) :=
L2

lim
n→∞

I(fn)

for f ∈ H2, where (fn)n∈N is a sequence in H2
0 that converges to f in L2.

Remark 2.2.1 The Itô integral is well-defined on H2 since I sends Cauchy sequence. This
directly from the Itô isometry.

As it is currently defined, the Itô integral maps stochastic processes in H2 to random vari-
able in L2(Ω). An important question to ask whether we can define the Itô integral as a map
from processes and processes. That is, can we define Ĩ(f) as a stochastic process f ∈ H2. This
is analogous to constructing the indefinite integral for functions out of the definite one.

Theorem 2.2.3 Let f ∈ H2. There exists a continuous martingale with respect to the standard
Brownian filtration, (Xt)t∈[0,T ], such that

P(Xt = I(1[0,t] · f)) = 1, ∀t ∈ [0, T ].
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2.3 Quadratic variation

The notion of quadratic variation of a stochastic processX plays a fundamental role in stochas-
tic calculus and as well as in finance. It is a characteristic of the fluctuating part of a stochastic
process and can be easily observed. Hence it is useful for measuring locally in time the risk of
an asset price.

To introduce this notion in a simple way, we consider an equidistant time discretization

{tk = kh : k ∈ {0, 1, ...}},

with small time steps of lengths h > 0, such that 0 = t0 < t1 < t2 < ...

Definition 2.3.1 For a given stochastic process X the quadratic variation process [X] =

{[X]t, t ∈ [0,∞)} is defined as the limit in probability as h → 0 of the sums of squared
increments of the process X , provided this limit exists and is unique. At time t the quadratic
variation

[X]t
P
= lim

h→0
[X]h,t, (2.1)

where the approximate quadratic variation [X]h,t is given by the sum

[X]h,t =
it∑
k=1

(Xtk −Xtk−1
)2. (2.2)

Here it denotes the integer

it = max{k ∈ N : tk ≤ t}

of last discretization point before or including t ∈ [0,∞).

For more details we refer to Jacod & Shiryaev (2003) [39] and Protter (2004) [58].
We can use program R to find approximate quadratic variation for a standard Wiener pro-

cess. For example, by using R, quadratic variation of approximation of Wiener process paths
with 1000 scaled random steps with 200 partition intervals is 0.904.

Theoretically, it can be shown, refer to Karatzas & Shreve (1991) [40], that the value of the
quadratic variation process [W ] = {[W ]t, t ∈ [0,∞)} at time t for a standard Wiener process
W is given by the relation

[W ]t = t

for t ∈ [0,∞). Thus, for finer time discretizations, the approximate quadratiic variation be-
comes almost a perfect straight line.
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2.3.1 Application of quadratic variation

The quadratic variation turns out to be one of the most important characteristics of a martin-
gale. The standard asset pricing model is given by Black-Scholes model, given by a geometric
Brownian motion, which we write in the form

Xt = X0 exp{Lt}

where Lt = gt+ σWt, t ∈ [0,∞).

Note that the quadratic variation is not linear. However, if we take the quadratic variation of
the logarithm ln(Xt) of Xt, then we can obtain that the quadratic variation is an almost perfect
straight line. This can be seen from the following identity:

[ln(X)]t = [L]t = σ2[W ]t = σ2t (2.3)

for t ∈ [0,∞). These relations hold because Lt = ln(Xt) forms a linearly transformed Wiener
process and we can use the fact that [W ]t = t.

2.3.2 Volatility

The key parameter used in Black-Scholes model is the volatility. We noticed that in (2.3) under
the BS model the variance is the time derivative of the quadratic variation of the logarithm of
the asset price:

σ2 =
d

dt
[ln(X)]t.

To be more precise, we define the historical volatility VolX(t) at a given time t ∈ [0,∞) of
a given continuous asset price process X as:

VolX(t) =

√
d

dt
[ln(X)]t.

2.3.3 Quadratic covariation

Definition 2.3.2 Given two semimartingales X, Y , the quadratic covariation process [X, Y ] is
the semimartingale defined by

[X, Y ]t = XtYt −X0Y0 −
∫ t

0

Xs−dYs −
∫ t

0

Ys−dXs

.

Example 2.3.1 (Quadratic covariation of correlated Brownian motions) If Z1
t = σ1W 1

t and
Z2
t = σ2W 2

t , whereW 1,W 2 are standard Brownian motions with correlation ρ then [Z1, Z2]t =

ρσ1σ2t.
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Chapter 3

Lévy processes

Lévy processes have become increasingly common for modelling market fluctuations, for pric-
ing and risk management purposes. In particular, the literature associated with Lévy processes
are quite technical and difficult for people not specialised in stochastic analysis. Majority of
the applications of Lévy processes in financial modelling use sophisticated probabilistic and
analytical tools.

In this chapter, we briefly prepare the basic concepts and mathematical tools which are
necessary for stochastic calculus with jumps throughout the thesis. We consider Lévy processes
and Itô calculus, as these concepts are extremely important such that will be later used in option
pricing model.

Similarly to random walks, sum of independent identically distributed random variables,
provide basic examples of stochastic processes in discrete time. In continuous cases, processes
with independent stationary increments are called Lévy processes. The Brownian motion we
discussed in Chapter 2 is a simple example of Lévy process.

We will begin with Lévy processes and discuss some of the properties. Then we introduce
two important theoretical tools: the Lévy-Khinchin formula, which allows us to study distribu-
tional properties of Lévy processes and Lévy-Itô decomposition, that describes the structure of
their sample paths.

First, we begin with introducing a fundamental process that leads us to building more com-
plex stochastic processes.
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3.1 Poisson process

The Poisson process is a fundamental example of a stochastic process with discontinuous tra-
jectories and will be used as a building block for constructing complex jump processes.

Definition 3.1.1 Let (τi)i≥1 be a sequence of independent exponential random variables with

parameter λ and Tn =
n∑
i=1

τi. The process (Nt)t≥0 defined by

Nt =
∑
n≥1

1t≥Tn

is called a Poisson process with intensity λ.

The Poisson process is therefore defined as a counting process: it counts the number of
random times (Tn) which occur between time 0 and t, where (Tn − Tn−1)n≥1 is an i.i.d. se-
quence of exponential variables. If T1, T2, ... is the sequence of jump times of N , then Nt is
simply the number of jumps between 0 and t:

Nt = #{i ≥ 1, Ti ∈ [0, t]}.

If t > s then

Nt −Ns = #{i ≥ 1, Ti ∈ (s, t]}.

The jump times T1, T2, ... form a random configuration of points on [0,∞) and the Poisson
process Nt counts the number of such points in the interval [0, t]. # denotes the number of
something.

Definition 3.1.2 The counting procedure defines a measure M on [0,∞): for any measurable
set A ⊆ R+, let

M(ω,A) = #{i ≥ 1, Ti(ω) ∈ A}. (3.1)

Then M(ω, .) is a positive integer valued measure and M(A) is finite with probability 1 for any
bounded set A. The measure M(ω, .) depends on ω, it is thus a random measure.

There is one more definition that is related to random measures, the so-called Poisson ran-
dom measures, which will be introduced in the next section.
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3.2 Lévy process

The term “Lévy process” honours the work of the French mathematician Paul Lévy who, al-
though not alone in his contribution, played a ground-breaking role in bringing together an
understanding and characterisation of processes with stationary and independent increments.

Definition 3.2.1 (Lévy process) A cadlag stochastic process (Xt)t≥0 on (Ω,F ,P) with values
in Rd such that X0 = 0 is called Lévy process if it possesses the following properties:

(i) Xt has independent increments: for every increasing sequence of times t0, ..., tn, the
random variables Xt0 , Xt1 −Xt0 , ..., Xtn −Xtn−1 are independent.

(ii) Xt has stationary increments: the law of Xt+h −Xt does not depend on t.

(iii) Xt has stochastic continuity: ∀ε > 0, lim
h→0

P(|Xt+h −Xt| ≥ ε) = 0.

(iv) Xt has cadlag (right-continuity and left limits) paths.

Denote: ∆Xt = Xt − Xt−. We can associate the counting measure N to Xt in the following
way: for A ∈ B(Rd\{0}), we put

N(t, A) =
∑

0<s≤t 1A(∆Xs), for t > 0.

Note this is a counting measure of jumps of X in A up to the time t. As the path is cadlag, for
A ∈ B(Rd\{0}) such that A ⊆ Rd\{0}, we have N(t, A) <∞ a.s.

Definition 3.2.2 A random measure on T × (Rd\{0}) is determined by

N((a, b]× A) = N(b, A)−N(a,A),

where a ≤ b and T = [0, T ], is called a Poisson random measure if it follows the Possion
distribution with mean measure E[N((a, b]×A)], and it for disjoint (a1, b1]×A1, ..., (ar, br]×
Ar ∈ B(Rd\{0}), N((a1, b1]× A1), ..., N((ar, br]× Ar) are independent.

Definition 3.2.3 (Infinite divisibility) A probability distribution F on Rd is said to be infinitely
divisible if for any integer n ≥ 2, there exist n i.i.d. random variables X1, X2, ..., Xn such that
X1 + ...+Xn has distribution F .

Since the distribution of i.i.d. sums is given by convolution of the distribution of the sum-
mands, denote by µ the distribution of theXk-s above, then F = µ∗µ∗µ is the n-th convolution
of µ.

Therefore, for any t > 0 the distribution of a Lévy process (Xt)t≥0 is infinitely divisible.
This puts a constraint on the possible choices of distributions for (Xt): the distribution of
increments of a Lévy process has to be infinitely divisible.
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Proposition 3.2.1 (Infinite divisibility and Lévy process)
Let (Xt)t≥0 be a Lévy process. Then for every t,Xt has an infinitely divisible distribution.
Conversely, if F is an infinitely divisible distribution then there exists a Lévy process (Xt) such
that the distribution of Xt is given by F .

Proof: The direct implication was shown above. For the proof of the converse statement,
we can refer to [61, Corollary 11.6].

Define the characteristic function of Xt,

Definition 3.2.4 (Characteristic function) The characteristic function of Lévy process Xt:

Φt(z) ≡ ΦXt(z) ≡ E[ei〈z,Xt〉], z ∈ Rd

For t ≥ 0, s ∈ R, by writing Xt+s = Xs + (Xt+s −Xs) and using the fact that Xt+s −Xs is
independent of Xs, we obtain that t 7→ Φt(z) is a multiplicative function:

Φt+s(z) = ΦXt+s(z) = ΦXs(z)ΦXt+s−Xs(z)

= ΦXs(z)ΦXt(z) = ΦsΦt

The stochastic continuity of t 7→ Xt implies in particular thatXt 7→ Xs in distribution when
s 7→ t. Therefore, ΦXs(z) 7→ ΦXt(z) when s 7→ t so t 7→ Φt(z) is a continuous function of t.
Together with the multiplicative property Φt+s(z) = Φs(z)Φt(z) this implies that t 7→ Φt(z) is
an exponential function:

Proposition 3.2.2 (Characteristic function of a Lévy process) Let Xt be a Lévy process on Rd.
There exists a continuous function ψ : Rd 7→ R called the characteristic exponent of X , such
that,

E[ei〈z,Xt〉] = etψ(z), z ∈ Rd.

Recall the definition of the cumulant generating function of a random variable, we can see
that ψ is the cumulant generating function of X1 : ψ = ΨX1 and that the cumulant generating
function of X1 varies linear in t : ΨXt = tΨX1 = tψ. The law of Xt is therefore determined by
the law of X1.
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3.3 Lévy-Itô decomposition

The Lévy-Itô decomposition entails that for every Lévy process there exists a vector c, a posi-
tive definite matrix σ and a positive measure ν that uniquely determine its distribution.

Theorem 3.3.1 (Lévy-Itô decomposition theorem, [58] Theorem I.42). Let Xt be a Lévy pro-
cess. Then, Xt admits the following formula:

Xt = tc+ σWt +

∫ t

0

∫
|x|<1

xÑ(ds dx) +

∫ t

0

∫
|x|≥1

xN(ds dx)

for a.e.w for all t ∈ T . Here, c ∈ Rd, σ is an d × d matrix Wt is a d-dimensional standard
Brownian motion, N(dt dx) is a Poisson random measure with the mean E[N(dt dx)], and

Ñ(dt dx) = N(dt dx) − E[N(dt dx)]. The process Wt and t 7→ (

∫ t

0

∫
|x|<1

xÑ(ds dx) +∫ t

0

∫
|x|≥1

xN(ds dx)) are independent. Also the this decomposition presentation is unique.

Proof: See [13] Proposition 3.7.
By this theorem, N(. .) derived from Xt defines a Poisson random measure on T ×

(Rd\{0}).Here we use the notation of stochastic integrals
∫ t

0

∫
xN(ds dx) and

∫ t

0

∫
xÑ(ds dx).

We take the mean measure

ν(A) = E[N(1 A)], A ∈ B(Rd\{0}).

This (deterministic) measure is called the Lévy measure associated to z or to N . Note that
ν enjoys ∫

Rd\{0}
(1 ∧ |x|2)ν(dx) <∞. (3.2)

The compensated Poisson random measure associated to N is defined by

Ñ(dt dx) = N(dt dx)− dtν(dx).

In particular, if Xt has a finite mean that is if ν(dx) satisfies∫
|x|≥1

|x|ν(dx) <∞⇔ E[Xt] <∞,

then Xt can be written in the compact form

Xt = t(c+

∫
|x|≥1

|x|ν(dx)) + σWt +

∫ t

0

∫
Rd\{0}

xÑ(ds dx).

A measure ν on Rd\{0} is a Lévy measure associated to some Lévy process if and only if
it enjoys property (3.2). Indeed, we have the following Lévy-Khintchine representation.
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Proposition 3.3.1 (Lévy-Khintchine representation)

(i) Let X be a Lévy process on Rd\{0}. Then,

E[ei〈z,Xt〉] = etψ(z), z ∈ Rd, (3.3)

where

ψ(z) = i〈c, z〉 − 1

2
〈z, σσT z〉+

∫
(ei〈z,X〉 − 1− i〈z,X〉1{|x|≤1})ν(dx). (3.4)

Here, c ∈ Rd, σσT is a nonnegative definite matrix and ν is a measure which satisfies
(3.2).

(ii) Given c ∈ Rd, a matrix σσT ≥ 0 and a σ-finite measure ν on B(Rd\{0}) satisfying (3.2),
there exists a processX for which (3.3) and (3.4) hold. This processX is a Lévy process.

Proof: We use formula

E[ei〈z,Wt〉] = exp{−1

2
t〈z, σσT z〉},

E[ei〈z,
∫ t
0

∫
|x|<1 xÑ(ds dx)〉] = exp t

[∫
|z|<1

(ei〈z,X〉 − 1− i〈z,X〉)ν(dx)

]
,

E[ei〈z,
∫ t
0

∫
|z|≥1 xN(ds dx)〉] = exp t

[∫
|z|≥1

(ei〈z,X〉 − 1)ν(dx)

]
.

and we refer to Theorem 8.1 in [61], and Section 0 in [38].
Let Dp = {t ∈ T ; ∆Xt 6= 0}. Then, it is a countable subset of T a.s. Let A ⊂ Rm\{0}.

In case ν(A) < ∞, the process Dp 3 t 7→
∑

s≤t,∆Xs∈A δ(s,∆Xs) is called a Poisson counting
measure associated to the Lévy process Xt taking values in A. The function Dp 3 t 7→ pt =

∆Xt is called a Poisson point process associated to the Lévy process Xt.
The notion of Poisson point process is defined in a general setting using point functions. A

point function p is a mapping from Dp to Rm\{0}, where Dp is a countable subset of T . The
function p defines a counting measure Np on T × (Rm\{0}) by

Np((0, t]× A) = #{s ∈ Dp; s ≤ t, ps ∈ A}, t > 0, A ∈ B(Rm\{0}).

Now we proceed by presenting Itô’s formula.

Proposition 3.3.2 (Itô’s formula)

(i) Let Xt be a real-valued process given by

Xt = x+ tc+ σWt +

∫ t

0

∫
R\{0}

γ(x)Ñ(ds dx), t ≥ 0,
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where γ(x) is such that
∫
R\{0}

γ(x)2ν(dx) <∞. Let f : R→ R be a function in C2(R)

and Yt = f(Xt). Then, the process Yt, t ≥ 0 is a real-valued stochastic process which
satisfies

dYt =
df

dx
(Xt)cdt+

df

dx
(Xt)σdWt +

1

2

d2f

dx2
(Xt)σ

2dt

+

∫
R\{0}

[
f(Xt + γ(x))− f(Xt)−

df

dx
(Xt)γ(x)

]
ν(dx)dt

+

∫
R\{0}

[f(Xt− + γ(x))− f(Xt−)] Ñ(dt dx).

(ii) Let Xt = (X1
t , ..., X

d
t ) be a d-dimensional process given by

Xt = x+ tc+ σWt +

∫ t

0

∫
γ(x)Ñ(ds dx), t ≥ 0.

where c ∈ Rd, σ is a d ×m-matrix, γ(x) = [γij(x)] is a d ×m-matrix-valued function
such that the integral exists, Wt = (W 1

t ,W
2
t , ...,W

d
t )T is an m-dimensional standard

Brownian motion, and

Ñ(dt dx) = (N1(dt dx1)− 1|x1|<1ν(dx1)dt, ..., Nm(dt dxm)− 1|xm|<1ν(dxm)dt,

whereNj’s are independent Poisson random measures with Lévy measures νj, j = 1, ...,m.

That is, X i
t is given by

X i
t = xi + tci +

m∑
j=1

σijWj,t +
m∑
j=1

∫ t

0

∫
R\{0}

γij(x)Ñj(ds dxj), i = 1, ..., d.

Let f : Rd → R be a function in C2(Rd), and let Yt = f(Xt). Then, the process Yt, t ≥ 0

is real-valued stochastic process which satisfies

dYt =
d∑
i=1

∂f

∂xi
Xtcidt+

d∑
i=1

m∑
j=1

∂f

∂xi
XtσijdWj,t

+
1

2

d∑
i,j=1

∂2f

∂xi∂xj
Xt(σσ

T )ijdt+
m∑
j=1

∫
R\{0}

[f(Xt + γj(xj))− f(Xt)−
d∑
i=1

∂f

∂xi
Xtγij(x)]νj(dxj)dt

+
m∑
j=1

∫
R\{0}

[f(Xt− + γj(x))− f(Xt−)]Ñj(dt dxj).

Here, γj denotes the j-th column of the matrix γ = [γij].

Example 3.3.1 Let b = 0, γ(x) = 0, σ = 1 and f(x) = x2. Then Itô’s formula leads to∫ T

0

WtdWt =
1

2
(W 2

T − T ).
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3.4 Example of Lévy process

Compound Poisson process

Definition 3.4.1 (Compound Poisson processes) A compound Poisson process is defined as

Yt =
Nt∑
k=1

Yk,

where jumps sizes Yk, k = 1, 2, ... are i.i.d. random variables with a common finite distribution
ν on Rd\{0} and Nt denotes a Poisson process with the intensity λ > 0, independent of Yk.
Then, Yt has a representation

Yt =

∫ t

0

∫
Rd\{0}

xN(ds dx),

where N(ds dx) denotes a Poisson random measure on T × Rd\{0} with mean measure
λdsν(dx).

The following properties of a compound Poisson process can be implied from the definition:

(i) The sample paths of X are cadlag piecewise constant functions.

(ii) The jump sizes (Yk)k≥1 are independent and identically distributed with law f .

Proposition 3.4.1 Yt is a compound Possion process if and only if it is a Lévy process and its
sample paths are piecewise constant functions.

Figure 3.1: A simulated compound Poisson process path with intensity 5 and a normal jump
height distribution N (0.005, 0.0025)
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3.5 Subordinators and Subordination

An important class of Lévy processes are subordinators. These are a subclass of Lévy processes
with finite variation and paths that are almost surely non-decreasing. A subordinator is itself a
stochastic process of the evolution of time within another stochastic process, the subordinated
stochastic process. A subordinator will determine the random number of time steps occurring
within subordinated process for a given unit of chronological time.

3.5.1 Subordinators

Definition 3.5.1 (Total variation) The total variation of a function f : [a, b] → Rd is defined
by

TV (f) = sup
n∑
i=1

|f(ti)− f(ti−1)|,

where the supremum is taken over all finite partitions a = t0 < t1 < · · · < tn−1 < tn = b of
the interval [a, b]. In particular, in one dimension every increasing or decreasing function is of
finite variation and every function of finite variation is a difference of two increasing functions.

A Lévy process is said to be of finite variation if its trajectories are functions of finite
variation with probability 1.

Notation: In Lévy-Khintchine representation Proposition (3.3.1), we denote A = σσT as the
symmetric positive matrix. We call the representation as a Lévy process with its characteristic
triplet (A, ν, γ).

Proposition 3.5.1 (Finite variation Lévy process) A Lévy process is of finite variation if and
only if its characteristic triplet (A, ν, γ) satisfies:

A = 0 and
∫
|x|≤1

|x|ν(dx) <∞ (3.5)

Proof: See [13] Proposition 3.9.

Remark 3.5.1 Subordinators can be regarded as increasing Lévy processes since they can be
used as time changes for other Lévy processes. They serve as important blocks for constructing
Lévy-based models.

Proposition 3.5.2 Let (Xt)t≥0 be a Lévy process on R. Then the following conditions are
equivalent:

(i) Xt ≥ 0 a.s. for some t > 0.

(ii) Xt ≥ 0 a.s. for every t > 0.
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(iii) Sample paths of (Xt) are almost surely non decreasing: t ≥ s⇒ Xt ≥ Xs a.s.

(iv) The characteristic triplet of (Xt) satisfiesA = 0, ν((−∞, 0]) = 0,

∫ ∞
0

(x∧1)ν(dx) <∞

and b ≥ 0 (positive drift), that is, (Xt) has no diffusion component, only positive jumps
of finite variation and positive drift.

Proof: See [13] Proposition 3.10.

Proposition 3.5.3 Let (Xt)t≥0 be a Lévy process on Rd and let f : Rd → [0,∞) be a positive
function such that f(x) = O(|x|2) as x→ 0. Then the process (St)t≥0 defined by

St =
∑
s≤t

∆Xs 6=0

f(∆Xs) (3.6)

is a subordinator.

Proof: See [13] Proposition 3.11.

3.5.2 Subordination

Let (St)t≥0 be a subordinator, a Lévy process satisfying any one of the equivalent conditions in
Proposition 3.5.2, which means in particular that its paths are almost surely increasing. Since
St is a positive random variable for all t, we describe it using Laplace transform. Let the
characteristic triplet of S be (0, ρ, b). Then the moment generating function of St is

E[euSt ] = etl(u), ∀u ≤ 0, where l(u) = bu+

∫ ∞
0

(eux − 1)ρ(dx). (3.7)

We call l(u) the Laplace exponent of S. The following theorem shows that the process S
can be used to “ time change” other Lévy processes and is interpreted as a time deformation.

Theorem 3.5.1 Under a probability space (Ω,F ,P), let (Xt)t≥0 be a Lévy process on Rd

with characteristic exponent ψ(u) and triplet (A, ν, γ) and let (St)t≥0 be a subordinator with
Laplace exponent l(u) and triplet (0, ρ, b). Then the process (Yt)t≥0 defined for each ω ∈ Ω by
Y (t, ω) = X(S(t, ω), ω) is a Lévy process. Its characteristic function is

E[ei〈u,Yt〉] = etl(ψ(u)), (3.8)

the characteristic exponent of Y is obtained by composition of the Laplace exponent of S with
the characteristic exponent of X . The triplet (AY , νY , cY ) of Y is given by

AY = bA, (3.9)

νY (B) = bν(B) +

∫ ∞
0

pXs (B)ρ(ds), ∀B ∈ B(Rd) (3.10)

γY = bγ +

∫ ∞
0

ρ(ds)

∫
|x|≤1

xpXs (dx), (3.11)
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where pXt is the probability distribution of Xt.
(Yt)t≥0 is said to be subordinate to the process (Xt)t≥0.

Proof: See [13] Theorem 4.2.
The purpose of introducing the concepts of subordinator and subordination is to construct

a Lévy process by Brownian subordination.

3.5.3 Constructing Lévy processes by Brownian subordination

In this subsection, we consider subordinating a Brownian motion to get a new Lévy process. Let
(Zt)t≥0 be a subordinator with Laplace exponent l(u) and let (Wt)t≥0 be a standard Brownian
motion independent of (Zt). Subordinating Brownian motion with drift µ by the process Z, we
get a new Lévy process

Xt = µZt + σW (Zt).

Presentation (3.8) implies that X has characteristic exponent ψ(u) = l(−u
2σ2

2
+ iµu). The

following theorem characterizes Lévy measures of processes that can be represented as subor-
dinated Brownian motion with drift.

Theorem 3.5.2 Let ν be a Lévy measure on R and µ ∈ R. There exists a Lévy process (Xt)t≥0

with Lévy measure ν such thatXt = W (Zt)+µZt for some subordinator (Zt)t≥0 and Brownian
motion (Wt)t≥0 independent from Z if and only if the following conditions are satisfied:

(i) ν is absolutely continuous with density ν(x).

(ii) ν(x)e−µx = ν(−x)eµx for all x.

(iii) ν(
√
u)e−µ

√
u is completely monotonic function on (0,∞).

This theorem allows to describe the jump structure of a process, that can be represented as
time changed Brownian motion with drift.

Let ν be a Lévy measure on Rd. It can be the Lévy measure of a subordinated Brownian
motion (without drift) if and only if it is symmetric and ν(

√
u) is a completely monotonic

function on (0,∞). Consider a subordinator with zero drift and Lévy measure ρ. Formula
(3.10) gives its Lévy density ν(x):

ν(x) =

∫ ∞
0

e−
(x−µt)2

2t
ρ(dt)√

2πt

Then the formula allows us to write:

BS−1
µ (ν) = eµ

2t/2BS−1
0 (νe−µx).

BS−1 denotes inverse transform of Brownian subordination. Hence we can deduce the
time changed Brownian motion representation for an exponentially tilted Lévy measure from
its representation for its symmetric modification.

34





Chapter 4

Option pricing with Lévy processes

The most important motivation for departing traditional Gaussian models in financial modelling
has been to take into account a few of the empirical properties of asset returns which show some
degree of discrepancy with these models. Lévy processes came into financial modelling when
Mandelbrot (1963) [50] proposed α−stable Lévy processes as models for cotton prices. Since
then a variety of models based on Lévy processes have been developed as models for stock
prices and tested on empirical data.

Market prices are observed in the form of time series of prices at a discrete set of dates.
In this section we will look into exp-Lévy model, which plays one of the most used roles in
pricing options,

St = S0 exp(Xt),

where X is a Lévy process.
But first we start with the very beginning model of pricing options with Lévy process.

French mathematician L. Bachelier was the first to analyse Brownian motion mathematically,
and that he did so in order to develop a theory of option pricing [1]. The Bachelier model is
a mathematical pricing model considered to be particularly useful in pricing options when the
value of the underlying becomes or may become negative. It is an alternative to the Black-
Merton-Scholes and other option pricing models and is attractive because it does not rely on
logarithms which cannot represent negative values. To derive the Bachelier model, we follow
the procedure from S.Terakado (2019) [69].
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4.1 Bachelier model

We assume that , under the risk-neutral measure, the stock process {St, t ≥ 0} satisfies an SDE
of the form

dSt = rStdt+ σdWt,

where r is the constant interest rate, σ is the constant volatility, and Wt is standard Brownian
motion. For 0 ≤ t ≤ T ,

ST = Ste
r(T−t) + σ

∫ T

t

er(T−s)dWs.

That is,

ST | St ∼ N

(
Ste

r(T−t),
σ2

2r

(
e2r(T−t) − 1

))
∼ Ste

r(T−t) +

√
σ2

2r
(e2r(T−t) − 1) ξ,

where ξ is standard normal random variable. The following Bachelier formula can be derived
from the above Bachelier model based on the same argument of Black-Scholes and Merton.

Formula 4.1.1 (The Bachelier formula) The price of a European call option at time t is given
by

(i) r 6= 0,

Ct = (St −Ke−r(T−t)Φ(z) + σ

√
1− e−2r(T−t)

2r
φ(z),

z =
St −Ke−r(T−t)

σ
√

1−e−2r(T−t)

2r

.

(ii) r = 0,

Ct = (St −K)Φ(z) + σ
√
T − tφ(z),

z =
St −K
σ
√
T − t

.
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Derivation of Bachelier formula

Ct = e−r(T−t)E
(
(ST −K)+ | Ft

)
= e−r(T−t)E

((
Ste

r(T−t) +

√
σ2

2r
(e2r(T−t) − 1) ξ −K

)+

| Ft

)

= e−r(T−t)
√
σ2

2r
(e2r(T−t) − 1)E

ξ − K − Ster(T−t)√
σ2

2r
(e2r(T−t) − 1)

+

| Ft


= e−r(T−t)

(
Ste

r(T−t) −K
)

Φ

 Ste
r(T−t) −K√

σ2

2r
(e2r(T−t) − 1)


+ e−r(T−t)

√
σ2

2r
(e2r(T−t) − 1)φ

 Ste
r(T−t) −K√

σ2

2r
(e2r(T−t) − 1)

 ,

where Φ is the cumulative distribution function of a standard normal random variable, and φ is
the corresponding density function.

Let K∗ = e−r(T−t)K, and

v2(t, T ) =
σ2

2r

(
1− e−2r(T−t)) .

Then, we can re-express the price as

Ct = (St −K∗) Φ

(
St −K∗

v(t, T )

)
+ v(t, T )φ

(
St −K∗

v(t, T )

)
.

The model gives nice closed-formulas for pricing interest rate plain vanilla options and
it is suitable especially in the today negative yield environment, since the forward rate can
assume all the possible values, positive or negative on the whole real line. In some scenarios, it
allows the underlying of IR derivatives, namely the forward rate, to be negative. This has really
important application in real market.

On the day of 8th of April, 2020, CME Group posted the note CME Clearing Plan to
Address the Potential of a Negative Underlying in Certain Energy Options Contracts, saying
that after a threshold on price, it would change energy options model from Geometric Brownian
Motion model and Black–Scholes model to Bachelier model. On that day, oil prices reached
for first time in history negative values, where Bachelier model took an important role in option
pricing and risk management.
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4.2 Exponential of a Lévy process

Let (Xt)t≥0 be a Lévy process with jump measure JX . Applying the Itô’s formula to Yt =

expXt yields:

Yt = 1 +

∫ t

0

Ys−dXs +
σ2

2

∫ t

0

Ys−ds+
∑

0≤s≤t;∆Xs 6=0

(eXs−+∆Xs − eXs− −∆Xse
Xs−)

= 1 +

∫ t

0

Ys−dXs +
σ2

2

∫ t

0

Ys−ds+

∫
[0,t]×R

Ys−(ez − 1− z)JX(ds dz)

or, in other expression:

dYt
Yt−

= dXt +
σ2

2
dt+ (e∆Xt − 1−∆Xt) (4.1)

Making an additional assumption that E[|Yt|] = E[exp(Xt)] < ∞, which is equivalent to

saying that
∫
|y|≥1

eyν(dy) < ∞, we can decompose Yt into a martingale part and a drift part,

where the martingale part is the sum of an integral with respect to the Brownian component of
X and a compensated sum of jump terms:

Mt = 1 +

∫ t

0

Ys−σdWs +

∫
[0,t]×R

Ys−(ez − 1)J̃X(ds dz), (4.2)

while the drift term is given by:∫ t

0

Ys−

[
γ +

σ2

2
+

∫ ∞
−∞

(ez − 1− z1|z|≤1)ν(dz)

]
ds. (4.3)

Therefore, Yt = exp(Xt) is a martingale of and only if the drift term vanishes, which is,

γ +
σ2

2
+

∫ ∞
−∞

(ez − 1− z1|z|≤1)ν(dz) = 0.

These properties are summarized in the following proposition:

Proposition 4.2.1 (Exponential of a Lévy process)

Let (Xt)t≥0 be a Lévy process with Lévy triplet (σ2, ν, γ) verifying∫
|y|≥1

eyν(dy) <∞.

Then Yt = expXt is a semimartingale with decomposition Yt = Mt + At where the mar-
tingale part is given by

Mt = 1 +

∫ t

0

Ys−σdWs +

∫
[0,t]×R

Ys−(ez − 1)J̃X(ds dz),
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and the continuous finite variation drift part is given by

At =

∫ t

0

Ys−

[
γ +

σ2

2
+

∫ ∞
−∞

(ez − 1− z1|z|≤1)ν(dz)

]
ds.

(Yt) is a martingale if and only if

γ +
σ2

2
+

∫ ∞
−∞

(ez − 1− z1|z|≤1)ν(dz) = 0.

4.2.1 European options in exp-Lévy models

Consider an European call option on an asset S with maturity date T and strike price K, where
the payoff of the option is given by fT = (ST −K)+ at date T .

The price of a call option may be expressed as the risk-neutral conditional expectation of
the payoff:

Ct(T,K) = e−r(T−t)Ê[(ST −K)+|Ft] (4.4)

In an exponential-Lévy model, the expression (4.4) can be simplified further. By stationary
and independence of increments, the conditional expectation in (4.4) may be written as an
expectation of the process at time τ = T − t :

C(t, S, T = t+ τ,K) = e−rτE[(ST −K)+|St = S] = e−rτE[(Serτ+Xτ −K)+]

= Ke−rτE(ex+Xτ − 1)+,

where x is defined by x = ln(S/K) + rτ . We see that similar to the Black-Scholes model, in
all exp-Lévy models call option price depends on the time remaining until maturity but not on
the actual date and the maturity date and is a homogeneous function of order 1 of S and K.

Defining the relative forward option price in terms of the relative variables (x, τ):

v(τ, x) =
erτC(t, S;T = t+ τ,K)

K
(4.5)

we conclude that the entire structure of option prices in exponential-Lévy models is parametrised
by two variables:

v(τ, x) = E[(ex+Xτ − 1)+]

This is a consequence of temporal and spatial homogeneity of Lévy processes. u(τ, .) can
also be written as a convolution product :u(τ, .) = ρτ ∗ h, where ρτ is the transition density
of the Lévy process. Therefore if the process has smooth transition densities, u(τ, .) will be
smooth, even if the payoff function h is not.
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4.3 Integro-differential equations

In option pricing under Black-Scholes model, the value C(t, St) of a European option can be
derived by solving a partial differential equation:

∂C

∂t
(t, S) + rS

∂C

∂S
+
σ2S2

2

∂2C

∂S2
− rC(t, s) = 0.

with boundary conditions depending on the type of option considered. In reality, there
are a few numerical methods for solving such equations. We will introduce partial integro-
differential equation for C(t, s) for exp-Lévy model.

4.3.1 Partial integro-differential equations for option prices

Consider an asset whose price process under risk neutral measure is given by an exp-Lévy
model: St = S0e

rt+Xt . X is a Lévy process with characteristic triplet (σ2, ν, γ) under risk-
neutral measure Q such that the discounted price process Ŝt = e−rtSt = eXt is a martingale.

Given assumptions that satisfy all regular conditions, we have the risk-neutral dynamics of
St:

St = S0 +

∫ t

0

rSs−ds+

∫ t

0

Ss−σdWs +

∫ t

0

∫ ∞
−∞

(ex − 1)Ss−J̃X(ds dx),

where J̃X denotes the compensated jump measure of the Lévy process X and Ŝt is a square-
integrable martingale satisfies:

dŜt

Ŝt−
= σdWt +

∫ ∞
−∞

(ex − 1)J̃X(dt dx), supE[Ŝ2
t ] <∞.

The value of a European option is given by

Ct = E[e−r(T−t)H(ST ) | Ft]

where H is the payoff of European option as a function of underlying asset. Let ε = T − t, x =

ln
S

K
+rε and define h(x) =

H(Kex)

K
and ϑ(ε, x) = erε

C(t, S)

K
, we can then rewrite the above

expression as

ϑ(ε, x) = E[f(x+Xε)]

Differentiate with respect to ε to get the following integro-differential equation:

∂ϑ

∂ε
= ηXϑ on [0, T ]× R, ϑ(0, x) = h(x).

η is the infinitesimal generator of X:

ηXf(x) = γ
∂f

∂x
+
σ2

2

∂2f

∂x2
+

∫
ν(dy)[f(x+ y)− f(x)− 1|y|<1

∂f

∂x
]. (4.6)
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Then if we replace f(x) by C(t, s) we obtain:

∂C

∂t
(t, S) + rS

∂C

∂S
+
σ2S2

2

∂2C

∂S2
− rC(t, s) +

∫
ν(dy)[C(t, Sey)− C(t, s)− S(ey − 1)

∂C

∂S
(t, S)] = 0

We have used the concept of infinitesimal generator in the above derivation. Now, let us
review the definition of infinitesimal generator.

Remark 4.3.1 (Infinitesimal generator of a Lévy process ) Let (Xt)t≥0 be Lévy process on
Rd with characteristic triplet (A, ν, γ). Then the infinitesimal generator of X is defined for any
f ∈ C2

0(R) as

ηXf(x) =
1

2

d∑
j,k=1

Ajk
∂2f

∂xj∂xk
(x) +

d∑
j=1

γj
∂f

∂xj
(x) +

∫
Rd

(
f(x+ y)− f(x)−

d∑
j=1

yj
∂f

∂xj
(x)1|y|≤1

)
ν(dy).

4.3.2 Feynman-Kac representation

The classical Feynman-Kac formula states the connection between linear parabolic partial dif-
ferential equations (PDE) and expectation of stochastic processes driven by Brownian motion.
It gives a method for solving linear PDEs by Monte Carlo simulations of random processes.
The extension to (fully) nonlinear PDEs led to important developments in stochastic analysis
and the emergence of the theory of backward stochastic differential equations (BSDE), which
can be viewed as nonlinear Feynman-Kac formulas.

Consider a bounded function h ∈ η∞(R). If

∃a, b > 0,∀t ∈ [0, T ], a ≤ σt ≤ b

then the Cauchy problem ∀x ∈ R, f(T, x) = h(x),

∂f

∂t
(t, x) +

σ2
t

2

∂2f

∂x2
(t, x) + γt

∂f

∂x
(t, x) +

∫
ν(dy)[f(t, x+ y)− f(t, x)− y1|y|≤1

∂f

∂x
(t, x)] = 0,

has a unique solution given by

f(t, x) = E[h(X t,x
T )],

where X t,x is given by

Xs,x
t = x+

∫ t

s

γϑdϑ+

∫ t

s

σϑdWϑ +

∫ t

s

∫
|y|≥1

yJX(dϑ dy) +

∫ t

s

∫
|y|≤1

yJ̃X(dϑ dy).

for all t > s. JX denotes a Poisson random measure on [0, T ] × R with intensity µ(dy dt) =

ν(dy)dt and J̃X is compensated Poisson measure.
Xs,x
t is the position at time t of a jump process starting at xwith drift γ and a time dependent

volatility σ and a jump component described by a Lévy process.
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4.4 Fourier transform methods for option pricing

Unlike the classical Black-Scholes case, in exponential-Lévy models there are no explicit ex-
pression for call option prices, since the probability density of a Lévy process is not known in
closed form. This has intrigued the development of Fourier-based option pricing models for
exponential-Lévy models.

We will describe one Fourier-based method for option pricing in exponential-Lévy models.
The method developed by Carr and Madan [11] is easy to implement but has relatively lower
convergence rates.

Definition 4.4.1 The Fourier transform of a function f is defined by:

Ff(v) =

∫ ∞
−∞

eixvf(x)dx.

The inverse Fourier transform is given by:

F−1f(x) =
1

2π

∫ ∞
−∞

e−ixvf(v)dx.

For f ∈ L2(R),F−1Ff = f . In what we follows, we denote k = lnK the log of strike
price and assume without loss of generality that t = 0.

4.4.1 Method of Carr and Madan

In this section we set S0 = 1, i.e., at time 0 all prices are expressed in units of the underlying.
Let k be the log value of strike price K. An assumption necessary in this method is that the
stock price have a moment of order 1 + α for some α > 0:

∃α > 0 :

∫ ∞
−∞

ρT (s)e(1+α)sds <∞, (4.7)

where ρT is the risk-neutral density of XT . In terms of the Lévy density it is equivalent to the
condition:

∃α > 0

∫
|y|≥1

ν(dy)e(1+α)y <∞.

We want to calculate the price of a call option:

C(k) = e−rTE[(erT+XT − ek)+].

We express the Fourier transform in strike in terms of the characteristic function ΦT (v) of
XT and then find the prices range of strikes by Fourier inversion. However, due to C(k) is not
integrable (it tends to a positive constant as k → −∞), we cannot proceed with characteristic
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function. The core step of this method is to compute the Fourier transform of the time value of
the option:

fT (k) = e−rTE[(erT+XT − ek)+]− (1− ek−rT )+. (4.8)

Let ζT (v) denote the Fourier transform of the time value:

ζT (v) = FfT (v) =

∫ +∞

−∞
eivkfT (k)dk. (4.9)

Since the discounted price process is a martingale, we write

fT (k) = e−rT
∫ +∞

−∞
ρT (x)dx(erT+x − ek)(1k≤x+rT − 1k≤rT ).

Assumption (4.7) allows us to compute ζT (v) by interchanging integrals, and conclude that

ζT (v) = eivrT
ΦT (v − i)− 1

iv(1 + iv)
. (4.10)

By assumption (4.7), we can observe that the numerator becomes an analytic function and
the fraction has a finite limit for v → 0. Option prices can then be computed by inverting the
Fourier transform,

fT (k) =
1

2π

∫ ∞
−∞

e−ivkζT (v)dv.

In this method we need assumption (4.7) to derive the formulae but it is not necessary to
know the exact value of α to compute, which makes this method easier to implement. However,
a drawback of this approach, is the slower convergence rate of the algorithm. We can replace
the time value with a smooth function of strike to improve the convergence rate. That is, instead
of subtracting the intrinsic value of the option from its price, we can subtract the Black-Scholes
call price with a fixed volatility. Denote

f̃T (k) = e−rTE[(erT+XT − ek)+]− Cσ
BS(k),

where Cσ
BS(k) is the Black-Scholes of a call option with volatility σ and log-strike k. It can be

shown that the Fourier transform of f̃T (k), denoted by ζ̃T (v) has form

ζ̃T (v) = eivrT
ΦT (v − i)− Φσ

T (v − i)
iv(1 + iv)

,

where Φσ
T (v) = exp(−σ2T

2
(v2 + iv)).
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4.4.2 Computing Fourier transforms using FFT

To implement the algorithms using Fourier transforms, we need to numerically compute Fourier
transforms using the fast Fourier transform (FFT) [14].

The FFT is an efficient algorithm for computing the sum,

Fn =
N−1∑
j=0

fke
− 2πinj

N , n = 0, ..., N − 1.

To compute F0, ..., FN−1, where N is typically a power of 2. The algorithm reduces
the number of multiplications in the required N summations from an order of N2 to that of
N ln2(N). Suppose we want to approximate the inverse Fourier transform of a function f(x)

with a discrete Fourier transform. The integral must be truncated as,∫ ∞
−∞

e−iuxf(x)dx ≈
∫ η

2

− η
2

e−iuxf(x)dx ≈ η

N

N−1∑
j=0

wjf(xj)e
−iuxj , (4.11)

where xj = −η
2

+ kη
N−1

is the discretisation step and wj are weights corresponding to the chosen
integration rule (e.g. w0 = wN−1 = 1

2
and other weights are equal to 1).

Set un = 2πn(N−1)
Nη

, sum in the last term of (4.11) becomes a discrete Fourier transform,

Ff(un) ≈ η

N
eiu

η
2

N−1∑
j=0

wjf(xj)e
−2π inj

N .

Hence, the FFT algorithm allows to compute Ff(un) at points un = 2πn(N−1)
Nη

. It is useful
to notice that the grid step d in the Fourier space is related to the initial grid step ∆:

dη

N − 1
=

2π

N
.

This implies if we want to compute option prices on a finite grid of strikes and at the same
time keep the discretisation error low. One of the limitation of the FFT method is that the grid
must always be uniform and the grid size of power of 2. If we want to price a single option,
please see [9], there they transform the contour of integration in the complex plane to achieve a
better convergence. Below we have generated a diagram of an option surface by Heston model
using FFT [Appendix B1].
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Figure 4.1: The figure shows an option price surface by Heston model using FFT using r =

0.05, S0 = 100, V0 = 0.04, κ = 2, V = 0.04, σ = 0.2 and ρ = −0.8.

4.5 Equivalence of measures for Lévy processes

We have introduced equivalent changes of measure in defining arbitrage-free pricing models,
we now will focus on changes of measure in the case where a Lévy process is the source of
randomness.

If the P and Q are equivalent probability measures then there exists a positive random
variable, the density of Q with respect to P and denoted dQ

dP such that for any random variable
Z we have

EQ[Z] = EP[Z
dQ
dP

]

In this section we present a general result of equivalence of measures for Lévy processes.
An significant finding of this result is that in presence of jumps, if we restrict our attention to
structure preserving measures, the class of probabilities equivalent to a given one is surprisingly
large.

Proposition 4.5.1 (See [61] Theorems 33.1 and 33.2) Let (Xt,P) and (Xt,P′) be two Lévy
processes on R with characteristic triplets (σ2, ν, γ) and (σ′2, ν ′, γ′). Then P|Ft and P′|Ft are
equivalent for all t if and only if the following conditions are satisfied:

(i) σ = σ′
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(ii) The Lévy measures are equivalent with∫ ∞
−∞

(eφ(x)/2 − 1)2ν(dx) <∞, (4.12)

where φ(x) = ln(dv
′

dv
).

(iii) If σ = 0 then we must in addition have

γ′ − γ =

∫ 1

−1

x(ν ′ − ν)(dx). (4.13)

When P and Q are equivalent, the Radon-Nikodym derivative is

dP′|Ft
dP|Ft

= eUt (4.14)

with

Ut = ηXc
t −

η2σ2t

2
− nηt

+ lim
ε↓0

 ∑
s≤t,|∆Xs|>ε

φ(∆Xs)− t
∫
|x|>ε

(eφ(x) − 1)ν(dx)

 .

Here (Xc
t ) is the continuous part of (Xt) and η is such that

γ′ − γ −
∫ 1

−1

x(ν ′ − ν)(dx) = σ2η

if σ > 0 and 0 if σ = 0.
Ut is a Lévy process with characteristic triplet (aU , νU , γU) given by:

aU = σ2η2 (4.15)

νU = νφ−1 (4.16)

γU = −1

2
aη2 −

∫ ∞
−∞

(ey − 1− y1|y|≤1)(νφ−1)(dy). (4.17)

The proposition shows a feature of models with jumps compared to diffusion models: we
have considerable freedom in changing the Lévy measure, while retaining the equivalence of
measures, unless a diffusion component is present, we cannot freely change the drift.
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4.6 The Esscher transform

Let X be a Lévy process with characteristic triplet (σ2, ν, γ), θ a real number and assume that

the Lévy measure ν is such that
∫
|x|≥1

eθxν(dx) <∞.

Applying a measure transformation with the function φ(x) in Proposition (4.5.1) given by
φ(x) = θx we obtain an equivalent probability under which X is a Lévy process with zero

Gaussian component, Lévy measure ν̃(dx) = eθxν(dx) and drift γ̃ = γ+

∫ 1

−1

x(eθx−1)ν(dx).

This transformation is known as the Esscher transform. By Proposition (4.5.1), the Radon-
Nikodym derivaive [Appendix A1] corresponding to this measure change is:

dQ|Ft
dP|Ft

=
eθXt

E[eθXt ]
= exp(θXt + γ(θ)t),

where γ(θ) = − lnE[exp(θX1)] is the log of the moment generating function of X1 which, up
to the change of variable θ ↔ −iθ is given by the characteristic exponent of the Lévy process
X.

The Esscher transform can be used to construct equivalent martingale measures in exponential-
Lévy models.

Proposition 4.6.1 (Absence of arbitrage in exp-Lévy models) Let (X,P) be a Lévy process. If
the trajectories of X are neither almost surely increasing nor almost surely decreasing, then
exp-Lévy model given by St = ert+Xt is arbitrage-free: there exists a probability measure Q
equivalent to P such that (e−rtSt)t∈[0,T ] is a Q-martingale, where r is the risk-free interest rate.

The exponential-Lévy model is arbitrage-free in the following cases:

(i) X has a nonzero Gaussian component: σ > 0.

(ii) X has infinite variation
∫ 1

−1

|x|ν(dx) =∞.

(iii) X has both positive and negative jumps.

Proof: See [13] Proposition 9.9.
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Figure 4.2: The Esscher Transform of the Densities of a Symmetric exp-Lévy Process

4.7 Relative entropy for Lévy processes

The notion of relative entropy or Kullback-Leibler distance is often used as measure of prox-
imity of two equivalent probability measures. In this section, we will discuss relative entropy
of the measures generated by two risk-neutral exp-Lévy processes.

Define P and Q to be two equivalent probability measures on space (Ω,F). The relative
entropy of Q with respect to P is defined as

ξ(Q,P) = EQ
[
ln
dQ
dP

]
= EP

[
dQ
dP

ln
dQ
dP

]
.

Introduce the strictly convex function f(x) = x lnx, we can write the relative entropy as

ξ(Q,P) = EP
[
f

(
dQ
dP

)]
.

It is observed that the relative entropy is a convex functional of Q. Jensen’s inequality

shows that ξ(Q,P) ≥ 0, with ξ(Q,P) = 0 if and only if
dQ
dP

= 1 almost surely. The following
proposition shows that relative entropy can be expressed in terms of the Lévy measures if the
measures are generated under exp-Lévy models.

Proposition 4.7.1 (Relative entropy of Lévy processes) Let P and Q be equivalent measures on
(Ω,F) generated by exponential-Lévy models with Lévy triplets (σ2, νP, γP) and (σ2, νQ, γQ).
Assume σ > 0. The relative entropy ξ(Q,P) is given by:

ξ(Q|P) =
T

2σ2

{
γQ − γP −

∫ 1

−1

x(νQ − νP)(dx)
}2

+

T

∫ ∞
−∞

(
dνQ

dνP
ln
dνQ

dνP
+ 1− dνQ

dνP

)
νP(dx).
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If P and Q correspond to risk-neutral exponential-Lévy models, the relative entropy reduces
to:

ξ(Q|P) =
T

2σ2

{∫ ∞
−∞

(ex − 1)(νQ − νP)(dx)
}2

+T

∫ ∞
−∞

(
dνQ

dνP
ln
dνQ

dνP
+ 1− dνQ

dνP

)
νP(dx).

Proof:
Let (Xt) be a Lévy process and St = exp(Xt). It is straightforward to see that histories

generated by (Xt) and (St) are the same. Then we can equivalently compute the relative entropy
if the log-price processes. We use formula (4.14) for Radon-Nikodym derivative to compute
relative entropy of the two processes:

ξ =

∫
dQ
dP

ln
dQ
dP

dP = EP[UT e
UT ].

where (Ut) is a Lévy process with characteristic triplet (aU , νU , γU) given by presentations
(4.15-4.17). Let φt(z) denote its characteristic function and ψ(z) its characteristic exponent:

φt(z) = EP[ei(z,Ut)] = etψ(z).

Then we have,

EP[UT e
UT ] = −i d

dz
φT (−i) = −iTeTψ(−i)ψ′(−i)

= −iTψ′(−i)EP[eUT ] = −iTψ′(−i).

From the Lévy-Khinchin representation in proposition (3.3.1),

ψ′(z) = −aUz + iγU +

∫ ∞
−∞

(ixei(z,x) − ix1|x|≤1)νU(dx).

The relative entropy can be computed as:

ξ = aUT + γUT + T

∫ ∞
−∞

(xex − x1|x|≤1)νU(dx)

=
σ2T

2
η2 + T

∫ (
dνQ

dνP
ln
dνQ

dνP
+ 1− dνQ

dνP

)
νP(dx),

where σ2η = γQ − γP −
∫ 1

−1
x(νQ − νP)(dx).

As σ > 0, we have

1

2
σ2η2 =

1

2σ2

{
γQ − γP −

∫ 1

−1

x(νQ − νP)(dx)
}2

.

This gives the proof of the first formula.
If P and Q correspond to risk-neutral exponential-Lévy model, then Q and P are martingale

measures, where we can express the drift γ using σ and ν:
1

2
σ2η2 =

1

2σ2

{∫ ∞
−∞

(ex − 1)(νQ − νP)(dx)
}2

.

Substitute this in the first formula gives the proof of the second formula as required. �
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4.8 Pricing in incomplete markets

The value of an option is defined as the cost of replicating strategy in risk neutral measure
under arbitrage free setting in complete markets. In real markets, perfect hedges do not exist
and options are not redundant: the method of pricing by replicating portfolio does not work
because there are risks that one cannot hedge by continuous trading.

4.8.1 Merton’s approach

The first application of jump processes in option pricing was introduced by Robert Merton [53].
He considered the jump diffusion model:

under P : St = S0 exp[µt+ σWt +
Nt∑
i=1

Yi], (4.18)

where Wt is a standard Brownian motion, Nt is a Poisson process with intensity λ and Yi ∼
N(m, δ2) are i.i.d. random variables, where W,N and Y are independent from each other. We
can see that such a model is incomplete: there are many possible choices for a risk-neutral
measure. Merton proposed the following choice, obtained as in the Black-Scholes model by
changing the drift of the standard Brownian motion but leaving others unchanged:

QM : St = S0 exp[µM t+ σWM
t +

Nt∑
i=1

Yi], (4.19)

µM is chosen such that Ŝt = Ste
−rt is a martingale under QM :

µM = r − σ2

2
− λE[eYi − 1] = r − σ2

2
− λ[exp(m+

δ2

2
)− 1].

QM is the equivalent martingale measure obtained by shifting drift of the Brownian motion
but leaving the jump part unchanged. A European option with payoff f(ST ) can then be priced
according to:

CM
t = e−r(T−t)EQM [f(ST )|Ft]

= e−r(T−t)EQM [(ST −K)+|St = S]

= e−r(T−t)E[f(Seµ
M (T−t)+σWM

T−t+
∑NT−t
i=1 Yi ]

By conditioning on the number of jumps Nt, we can express C(t, St) as a weighted sum of
Black-Scholes prices: denoting the time to maturity by τ = T − t we can obtain:

Cm(t, S) = e−rτ
∑
n≥0

e−λτ (λτ)n

n!
CBS(τ, Sn;σn),
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where σ2
n = σ2 + nδ2/τ ,

Sn = S exp[nm+
nδ2

2
− λ exp(m+

δ2

2
) + λτ ]

and

CBS(τ, S;σ) = e−rτE[f(Ser−
δ2

2
)τ+σWτ )]

is the value of a European option with time to maturity τ and payoff f in a Black-Scholes
model with volatility σ.

Figure 4.3: The diagram shows a simulation of call option’s price paths related to its strike
price under two different models, namely Merton and Black-Scholes

4.8.2 Simulations for the Merton jump-diffusion models

In general, from expression (4.18), we can easily derive the log return of stock price of MJD
stock price as

R∆t = ln(
St+∆t

St
) = (µ− σ2

2
)∆t+ σ(Wt+∆t −Wt) +

Nt+∆t∑
i=Nt

Yi (4.20)

where ∆Wt = Wt+∆t −Wt is a standard Brownian motion increments and compound Poisson

process increments
Nt+∆t∑
i=Nt

Yi, which can be easily estimated. Then according to formula (4.20),

log-return can be easily estimated, as well as stock prices.
For the given parameters µ = 0.16, σ = 0.3, λ = 5,m = 0.005, and δ = 0.05. Five paths

of simulated stock prices [Appendix B2] are displayed where the initial share price S0 = 10.
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Figure 4.4: Five paths of JMD stock simulation with parameters µ = 0.16, σ = 0.3, λ =

5,m = 0.005, and δ = 0.05.

4.8.3 Estimate of the jump-diffusion parameters

The expectation and variance of log-return R∆t of JD modelled stock price are given [67],

E(R∆t) = (µ− σ2

2
)∆t+mλ∆t,

V ar(R∆t) = σ2∆t+ (m2 + δ2)λ∆t.

To estimate the five parameters, we can use the maximum likelihood estimation method.
We can use the MATLAB code fminsearch to estimate optimal parameters. Firstly, we will find
an initial estimate of the parameters based on empirical data. The empirical log-returns R∆t of
Apple (AAPL) are displayed in the next figure.

If the absolute value of the log-return is larger than some fixed positive value ε, then we can
say there is a jump occurring. The parameter λ is estimated as

λ̂ = the number of jumps per year

=
total number of jumps
total length in years

For the value ε, dividing the empirical log-return data into two groups D andM, the group
D includes log-returns with absolutely value of log-returns less than ε, where there is no jump.
Oppositely, the groupM includes log-returns with absolute value larger than ε, where jumps
have occurred.
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Figure 4.5: log-return of AAPL from 28/10/2015 to 29/10/2020

The parameters m and δ can estimated from equations:

m̂ = Ê(RM
∆t)− (µ̂− σ2

2
)∆t

δ̂2 = V̂ ar(RM
∆t)− σ2∆t,

where Ê(RM
∆t) and V̂ ar(RM

∆t) are the sample mean and the sample variance of the empirical
log-returns in groupM.

The parameters µ and σ can be estimated from the above formulas of E(RD
∆t) and V ar(RD

∆t),

µ̂ =
2Ê(RD

∆t) + V̂ ar(RD
∆t)∆t

2∆t

σ̂2 =
V̂ ar(RD

∆t)

∆t

where Ê(RD
∆t) and V̂ ar(RD

∆t) are the sample mean and the sample variance of the empirical
log-returns in group D.

By reading off from figure 4.4, we can choose ε=0.03, we obtain the initial estimator of the
parameters [Appendix B3] µ̂ = 0.3264, λ̂ = 21.2168, σ̂ = 0.1871, δ̂ = 0.051, m̂ = −0.0014.

Finally, we want to use our estimates of parameters from historical data to get stock price
model for AAPL, and compare with realised stock prices [Appendix B4].
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Figure 4.6: Simulated of AAPL prices from 11/2015 to 10/2020 compared with empirical
prices within same period.

Comment: From our results graph, we can clearly see that our simulation prices follow
very close trend as empirical price except a few volatile movements during a short period of
time, which indicates that the jump diffusion model could be a good fit model under regular
conditions (except extreme events). However, even though we get a reasonable result, there are
still limitations behind this model. This model does not include any firm-specific factors such
as dividends, merger & acquisitions, and quarterly financial reports nor any macroeconomic
factors including adjust interest rates and macroeconomic indicators.

4.8.4 Monte Carlo method for exotic option in a jump-diffusion model

In this subsection, we will discuss the pricing of an up-and-out call option in a jump-diffusion
model. A up-and-out call option is a type of knock-out barrier option that ceases to exist when
the price of the underlying security rises above a specific price level, called the barrier price. If
the price of the underlying does not rise above the barrier level, the option acts like any other
option giving the holder the right but not the obligation to exercise their call option at the strike
price on or before the expiration date specified in the contract.

55



The option pricing problem reduces to computing the following expectation if we suppose
the zero interest rates:

C = E[(eXT −K)+
1MT<b], (4.21)

where (Xt)t≥0 is a jump-diffusion process: Xt = γt+σWt+Nt, such that (eXt) is a martingale
andMt = max0≤s≤tXs is the maximum process associated to X. Now, we can use Monte Carlo
method to compute this expectation.

(i) Simulate the jump times τi of compound Poisson part, the jump sizes Xτi −Xτi−
and the

values of X at the jump times τi and at T . If any of these values is beyond the barrier
price, the payoff for this trajectory is zero. Otherwise, we can analytically compute
the probability that this trajectory has exceeded the barrier and come back between two
consecutive jump times. The payoff of this trajectory will then be (eXT −K)+ multiplied
by this probability.

(ii) Let F∗ = σ{NT , 0 ≤ t ≤ T ;Wτi , 0 ≤ i ≤ N} where τi, 0 ≤ i ≤ N − 1 are the jump
times of the compound Poisson part and τN = T. Then (4.21) can be rewritten as

C = E[(eXT −K)+E[1MT<b|F∗]] (4.22)

since XT is F∗-measurable.

(iii) The outer expectation in (4.22) will be computed by the Monte Carlo method, and the
inner conditional expectation will be computed analytically. Using the Markov property
of Brownian motion, we can find the analytic solution of inner expectation and substitute
in expression (4.22) to get final formula:

C = E

[
(eXT −K)+

N∏
i=1

1Xτi<b

{
1− exp

(
−

2(Xτi−
− b)(Xτi−1

− b)
(τi − τi−1)σ2

)}]
(4.23)

(4.23) will be evaluated using the Monte Carlo method illustrated as following:

Remark 4.8.1 (Numerical method)

(i) Simulate jump times {τi} and values {Nτi} of the compound Poisson part.

(ii) Simulate the values Wτi of the Brownian part at the points {τi}.

(iii) Evaluate the functional under the expectation in 4.23.

(iv) Repeat the first three steps a sufficient number of times to compute the average value of
the functional with the desired precision.
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4.8.5 Utility indifference price

After addressing Merton’s approach towards incomplete markets, we now turn to another ap-
proach on pricing the non-attainable contingent claims. We assume the market is free of
arbitrage, in the sense that there exists equivalent martingale measures, but it contains non-
attainable contingent claims, i.e. there are cash flows that cannot be replicated by self-financing
trading strategies. This means we do not have a unique equivalent martingale measure.

For further approach to the problems of pricing and hedging contingent claims in incom-
plete markets, e.g.construction and use of super-replicating strategies, embedding in complete
markets, use of the numeraire portfolio etc., are treated in e.g. Duffie and Skiadas (1994) [18].
The general theory of incomplete markets is developed in Magill and Quinzii (1996) [49].

Here we will follow the approach by Davis (1997) [16]. If the market is incomplete, we
have several choices of equivalent martingale measures to price contingent claims. Now, we
introduce a function that is widely used by economists-the utility function.

Definition 4.8.1 A continuous function U : (0,∞) → R that is strictly increasing , strictly
concave and continuously differentiable with lim

x→∞
U ′(x) = 0 and lim

x→0
U ′(x) = ∞ is called a

utility function.

Definition 4.8.2 (Certainty equivalent) Consider now an investor with a utility function U and
an initial wealth x. The certainty equivalent c(x, f) of an uncertain payoff f is defined as the
amount of wealth added to the initial wealth, results in the same level of expected utility:

U(x+ c(x, f)) = E[U(x+ f)]⇒ c(x, f) = U−1(E[U(x+ f)])− x

An investor with such a utility function U and initial endowment x trading only in underly-
ing assets S0, ..., Sd forms a dynamic portfolio φ, whose value at time t is Vφ,x(t) (keep tracking
of the initial endowment). The investor’s objective is to maximise expected utility under the
original probability measure of his final wealth at time T given that he is allowed to choose his
trading strategy φ from a suitable subset Φ. We write

Ũ(x) = sup
φ∈Φ

E[U(Vφ,x(T ))]

for the maximal utility. Now suppose the contingent claim X (a sufficiently integrable random
variable) is made available for trading with current purchase price p. To find a fair price p̂ for a
contingent claim we follow a marginal rate of substitution argument commonly used in pricing.

p̂ is a fair price for the contingent claim if diverting a little of his funds into it at time zero
has a neutral effect on the investor’s achievable utility. More precisely,

W (δ, x, p) = sup
φ∈Φ

E[U(Vφ,x−δ(T ) +
δ

p
X)],
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then we can state:
Suppose that for each fixed (x, p),W (δ, x, p) is differentiable as a function of δ for δ = 0,

and that there is a unique solution p̂(x) of the equation

∂W

∂δ
(0, p, x) = 0.

Then p̂(x) is the fair option price at time t = 0.

Theorem 4.8.1 (Davis). Suppose that Û is differentiable at each x ∈ R+ and that Û ′(x) > 0.
Then the fair price of the definition is given by

p̂ =
E[U ′(Vφ∗,x(T ))X]

Û ′(x)

Proof: See [5] Theorem 7.1.1.
The utility indifference price of an option depends on the initial wealth x of the investor.

This implies that investors with same utility function but different initial wealths do not agree
on the value of option. There is special category of utility function-exponential utility, where
the initial wealth cancels out and obtains an indifference price independent of initial wealth.

Proposition 4.8.1 Let pα(f) be the utility indifference price for an exponential utility function
Uα(x) = 1− exp(−αx). Then:

(i) limα→∞ pα(f) = supQ∈Me(S) EQ[f ], where Ma(S) is the set of martingale measures ab-
solutely continuous w.r.t P.

(ii) As α→ 0 the utility indifference price defines a linear pricing rule given by
limα→0 pα(f) = EQ∗ [f ],

where Q∗ is a martingale measure equivalent to P which minimizes the relative entropy
with respect to P:

ξ(Q∗ | P) = inf
Q∈Ma(S)

ξ(Q | P).

The results shows that in the case of exponential utility, we have obtained a linear pricing
rule based on a martingale measure Q∗ which minimizes the relative entropy with respect to
P. These results shows that the indifference price is not robust to changes in the risk aversion
parameter α, since the parameter is unobservable and raise some uncertainty of this method of
pricing.
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Chapter 5

Pricing options with geometric Lévy
processes

In this chapter, we consider the problem of pricing contingent claims on a stock whose price
process is modelled by a geometric Lévy process, with exact analogy with the geometric Brow-
nian motion model. Consider a market that is incomplete and there is not a unique equivalent
martingale. Therefore, it is not possible simply to use the martingale measure to price a con-
tingent claim in the manner as in Black-Scholes model. We will follow Chan (1999) procedure
[12] to derive solution for option prices under geometric Lévy processes.

5.1 Geometric Lévy processes

Consider the problem of pricing contingent claims on a stock whose price at t, St, is modelled
by a geometric Lévy process, which has SDE:

dSt = µtSt−dt+ σtSt−dXt, (5.1)

where Xt is a Lévy process. As we have introduced in the first chapter, the classical option
pricing theory of Black and Scholes relies on the fact that the payoff of every contingent claim
can be duplicated by a self-financing strategy. In such a complete market, there is a unique
measure which makes the discounted price process a martingale. For the stock prices mod-
elled above, there are many equivalent measures under which the discounted price process is a
martingale, in contrast to Black-Scholes formula.

Additional criteria must be used to select an appropriate martingale measure from many
measures with which to price a contingent claim. In the particular model, we will concentrate
on various approaches to pricing options which the main ones being the Föllmer-Schweizer
minimal measure and the martingale measure which has minimum relative entropy with respect
to the canonical measure. We shall introduce some details in minimal measure in the later
sections.
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5.2 Decomposition of Lévy processes

From the Lévy-Khintchine representation (Proposition 3.3.1), we can deduce that X must be
a linear combination of a Brownian motion and a quadratic pure jump process Y which is
independent of the Brownian motion.

Definition 5.2.1 A process Y is said to be quadratic pure jump if the continuous part of its
quadratic variation 〈Y 〉 ≡ 0, in which its quadratic variation becomes simply:

〈Y 〉t =
∑

0<s≤t

(∆Ys)
2,

where ∆Ys = Ys − Ys− is the jump size at time s.

It is straightforward if we separate out the Brownian component from the quadratic pure
jump component Y and write

Xt = cWt + Yt. (5.2)

From Section 3.3 Lévy-Itô decomposition, let N(dt dx) be a Poisson measure on R+ ×
R\{0} with expectation measure dt× ν, where ν is the Lévy measure. Then the Lévy decom-
position of Y says that

Yt =

∫
|y|≤1

y(N((0, t] dy)− tν(dy)) +

∫
|y|≥1

yN((0, t] dy) + tE
[
Y1 −

∫
|y|≥1

yν(dy)

]
=

∫
|y|≤1

y(N((0, t] dy)− tν(dy)) +

∫
|y|≥1

yN((0, t] dy) + αt, (5.3)

where α = E
[
Y1 −

∫
|y|≥1

yν(dy)
]
, the drift of the Lévy process.

In this model, it is required that the process X to satisfy numerous conditions. We require
X:

E[exp(−hX1)] <∞ for h ∈ (−h1, h2), (5.4)

where 0 < h1, h2 < ∞. And Y1 has the finite expectation, E[Y1] < ∞. In terms of Lévy
measure ν of Y , we have [61] ∫

|y|≥1

e−hyν(dy) <∞, (5.5)

∀γ > 0,

∫
|y|≥1

yγe−hyν(dy) <∞, (5.6)∫
|y|≥1

yν(dy) <∞, (5.7)

for h ∈ (−h1, h2).
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Under these assumptions, (5.3) can be rewritten as

Yt =

∫
R
y(N((0, t] dy)− tν(dy)) + tE[Y1]

= Mt + βt, (5.8)

where Mt =

∫
R
y(N((0, t] dy)− tν(dy)) is a martingale and let β = E[Y1].

Notice that (5.7) gives the Doob decomposition of X as the sum of a martingale and a
predictable process of finite variation.

Define a probability space (Ω, {Ft},P), substitute (5.8) in (5.2) we obtain:

Xt = cWt +Mt + βt, (5.9)

where Xt is a Lévy process satisfying the condition (5.4). Suppose that the filtration {Ft} is
the minimal generated by X . Then the stock price St is the solution of the SDE, obtained by
substituting (5.9) back into (5.1) :

dSt = (βσt + µt)St−dt+ σtSt−(cdWt + dMt), (5.10)

where the coefficients σt and µt are deterministic continuous functions. This equation has an
explicit solution [5.8] given by

St = S0 exp
{∫ t

0

cσsdWs +

∫ t

0

σsdMs +

∫ t

0

(
βσs + µs −

c2σ2
s

2

)
ds
}

×
∏

0<s≤t

(1 + σs∆Ms) exp(−σs∆Ms).

We can observe that σ{Su : u ≤ t} = Ft and so a contingent claim fT expiring at time T could
be regarded as a non-negative FT -measurable random variable.

In order to ensure that St ≥ 0 for all t almost surely, we need σt∆Mt ≥ −1 for all t.
This in turn implies that the jumps of X must be bounded on at least one side. Suppose
∆Xt = ∆Mt ∈ [−c1, c2], in other words, Lévy measure ν is supported on [−c1, c2] where
c1, c2 ≥ 0 and one of them may be infinite. This implies that at least one of h1, h2 in (5.4) must
be infinite. Thus to ensure that St ≥ 0 we must have:

∀t, − 1

c2

≤ σt ≤
1

c1

. (5.11)

The riskless rate of interest is given by a deterministic continuous function rt and the value
of Bt of a bond or bank account paying this rate has the process:

dBt

dt
= rtBt.

The discounted stock price is given by,

Ŝt = e−rtSt. (5.12)

In later sections, we will introduce different measures equivalent to the underlying canoni-
cal measure P, which makes Ŝt a martingale.

62



5.3 Equivalent martingale measures in pricing formulas

We characterize all equivalent martingale measures Q under which the discounted price process
Ŝt defined in (5.12) is {Ft}-martingale.

Continue with our model structure, let M(dt dy) = N(dt dy) − dtν(dy) be the com-
pensated measure, where N(dt dy) is the Poisson measure associated with Y . Therefore the

martingale part of Y can be written as Mt =

∫ t

0

∫
R
yM(ds dy).

Note: We use E[·] to denote expectations under canonical measure P while EQ[·] denotes ex-
pectations with respect to any other measure Q.

Let P denote the previsible σ-algebra on Ω×R+ associated with the filtration {Ft} and let
P̃ = P×B, where B is the Borel σ-algebra on R. A functionH(ω, t, x) which is P̃-measurable
will be called Borel previsible.

Remark 5.3.1 A Borel previsible function H(t, y) is one such that the process t 7→ H(t, y) is
previsible for fixed y and the function y 7→ H(t, y) is Borel-measurable for fixed t.

Lemma 5.3.1 Let Gt and H(t, y) be previsible and Borel previsible processes respectively.
Suppose

E
[∫ t

0

G2
sds

]
<∞

and H ≥ 0, H(t, 0) = 1 for all t ≥ 0. Let h(t, y) be another Borel previsible process such that∫
R
[H(t, y)− h(t, y)− 1]ν(dy) <∞. (5.13)

Define a process Zt by

Zt = exp
{∫ t

0

GsdWs −
1

2

∫ t

0

G2
sds+

∫ t

0

∫
R
h(s, y)M(ds dy)

−
∫

[0,t)×R
[H(s, y)− h(s, y)− 1]ν(dy)ds

}
×
∏

0<s≤t

H(s,∆Ys) exp(−h(s,∆Ys)). (5.14)

Then Z is a nonnegative local martingale with Z0 = 1 and Z is positive if and only if H > 0.
The processes G,H and h can be chosen so that E[Zt] = 1 for all t, in which case Z is a
martingale.

Proof: See [12] Lemma 3.1.
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Now, we introduce an important theorem we will use later that is based on Lemma 5.3.1.

Theorem 5.3.1 Let P̃ be a measure which is absolutely continuous with respect to P on FT .
Then

dP̃
dP
|FT = ZT ,

where Z in in lemma (5.3.1), for some G,H and h for which E[ZT ] = 1. Under P̃, the process

W̃t = Wt −
∫ t

0

Gsds (5.15)

is a Brownian motion and the process Y is a quadratic pure jump process with compensator
measure given by ν̃(dt dy) = dtν̃t(dy), where

ν̃t(dy) = H(t, y)ν(dy), (5.16)

and previsible part is given by

β̃t = E[Yt] = βt+

∫ t

0

∫
R
y(H(s, y)− 1)ν(dy)ds. (5.17)

Proof: See [39] Theorems (3.24) and (5.19).
Now focusing on pricing a contingent claim fT , we need to find an equivalent measure Q

under which the discounted price process is a martingale. Then the price of the claim is given
by

f = EQ[e−rTfT ]. (5.18)

By Theorem 5.3.1, under probability measure Q, Y has Doob-Meyer decomposition [Appendix
A4],

Yt = M̃t + βt+

∫ t

0

∫
R
y(H(s, y)− 1)ν(dy)ds, (5.19)

where M̃ is a Q-martingale:

M̃t = Mt −
∫ t

0

∫
R
y(H(s, y)− 1)ν(dy)ds, (5.20)

where M is the P-martingale in the Doob-Meyer decomposition of Y under P. Notice that
∆M̃t = ∆Mt.

Now we write the discounted stock price Ŝt in terms of the Q-martingale M̃ and Q-
Brownian motion W̃ , we have
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Ŝt = S0 exp
{∫ t

0

cσsdW̃s +

∫ t

0

cσsdM̃s +

∫ t

0

(βσs + µs − rs −
c2σ2

s

2
+ cσsGs)ds

+

∫ t

0

σs

∫
R
y(H(s, y)− 1)ν(dy)ds

}
×
∏

0<s≤t

(1 + σs∆M̃s)e
−σs∆M̃s .

Since

exp
{∫ t

0

cσsdW̃s +

∫ t

0

cσsdM̃s −
∫ t

0

c2σ2
s

2
ds
} ∏

0<s≤t

(1 + σs∆M̃s)e
−σs∆M̃s

is a Q-martingale, a necessary and sufficient condition for Ŝ to be a martingale under Q is the
existence ofG andH for which the process Z in Lemma 5.3.1 is a positive martingale and such
that

cσsGs + βσs + µs − rs +

∫
R
σsy(H(s, y)− 1)ν(dy) = 0 (5.21)

for all s, almost surely. However (5.21) does not specify G and H , and hence the equivalent
martingale measure Q is unique. Next, we will examine various approaches to choose G and
H based on other criteria in addition to (5.21).

5.3.1 Föllmer–Schweizer minimal measure

When the noise X in (5.1) is a standard Brownian motion, the unique equivalent martingale
measure Q is obtained by

dQ
dP
|FT = ZT , (5.22)

where dZt = γtZtdWt.
The process γ is chosen so as to make Ŝ a martingale under Q. Now we can use the

martingale measure Q defined by (5.22), where the Radon-Nikodym derivative Z is now given
by

Zt = 1 +

∫ t

0

γsZs−(cdWs + dMs). (5.23)

We can see from here that the Brownian motion in the Black-Scholes setting has been
replaced by the martingale part of the noise process X .

In the Lemma 5.3.1, we see that, in general,

Zt = 1 +

∫ t

0

GsZs−dWs +

∫ t

0

∫
R
Zs−[H(s, y)− 1]M(ds dy).
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Compare this with expression (5.23), we see that we require

H(s, y)− 1 =
Gsy

c
= h(s, y), (5.24)

so that γs =
Gs

c
. To obtain a martingale measure, we will use the martingale condition (5.21)

together with (5.24).

Let ν =

∫
R
y2ν(dy), we find solution to (5.21) and (5.24):

Gs =
c(rs − bs − ασs)
σs(c2 + ν)

,

H(s, y)− 1 =

(
rs − bs − ασs
σs(c2 + ν)

)
y (5.25)

Substitute back to (5.23), we obtain:

γs =
rs − bs − ασs
σs(c2 + ν)

(5.26)

Next, there are conditions to ensure thatH(s,∆Ys) > 0 or the measure we obtained will not
be a probability measure. Based on assumptions that the jump size ∆y ∈ [−c1, c2], therefore
we require

− 1

c2

<
rs − bs − ασs
σs(c2 + ν)

<
1

c1

. (5.27)

In turns out that the martingale measure given by (5.22), (5.23) and (5.26) is the Föllmer–Schweizer
minimal measure introduced by Föllmer and Schweizer (1991) [21]. The minimal measure is
closely connected to a hedging portfolio, which minimizes the risk involved in trying to dupli-
cate a contingent claim fT . We will briefly sketch the main idea of Föllmer–Schweizer minimal
measure.

5.3.2 Minimizing risk in an incomplete market

Consider a contingent claim at time T given by a random variable f ∈ L2(Ω,FT ,P). In order
to hedge against the claim, we want to use a portfolio strategy which involves the stock S and
a riskless bond Y ≡ 1, and which yields the random payoff f at the terminal time T . Let ξt and
ηt denote the amounts of stock and bond respectively, held at time t. Assume that the process
ξ = (ξt)0≤t≤T is predictable while η = (ηt)0≤t≤T is allowed to be adapted. The discounted
quantity will be denoted by f̂t = e−rtft. Then the discounted value of the portfolio at time t
can be expressed as:

V̂t = ξtŜt + ηt (0 ≤ t ≤ T )
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We define the cost accumulated up to time t by

Ct = V̂t −
∫ t

0

ξsdŜs

and the remaining risk by

E[(CT − Ct)2|Ft].

We look for an admissible strategy which minimizes the remaining risk over all admissible
continuations of this strategy from time t on.

f is attainable if and only if the remaining risk can be reduced to zero. But for a general
contingent claim, the cost process associated to a risk-minimizing strategy will no longer be
self-financing. Instead, it will be mean-self-financing in the sense that

E[CT − Ct|Ft] = 0 (0 ≤ t ≤ T ).

In other words, the cost process C associated to a risk-minimizing strategy is a martingale.
To proceed, we need to define the concept of optimal strategy.

Definition 5.3.1 An admissible strategy (ξ, η) is called optimal if the associated cost C is a
square-integrable martingale orthogonal to the martingale part (Doob decomposition) of Ŝ
under P.

In the existence of a unique risk-minimizing strategy is shown. In order to describe it,
consider the Kunita-Watanabe decomposition [Appendix A5], where the contingent claim is
represented by fT :

f̂T = f0 +

∫ T

0

ξsdŜs + LT (5.28)

for some ξ, where Lt is a square-integrable martingale orthogonal to the martingale part of Ŝ
under P. Then risk-minimizing strategy is now given by

V̂t = f0 +

∫ t

0

ξsdŜs + Lt,

ηt = V̂t − ξtŜt,

In the present martingale case, the process V can also be computed directly as a right-
continuous version of the martingale

Vt = E[f |Ft] (0 ≤ t ≤ T )

Thus, the problem is solved by using a well-known projection technique in space M2 of
square-integrable martingales: simply project the martingale V associated to Γ on the martin-
gale S. From the risk-minimizing strategy, we see that (ξ, η) is an optimal admissible strategy.
Conversely, an optimal admissible strategy (ξ, η) gives a decomposition of the form (5.28) with
Lt = Ct − C0. Thus, the existence of an optimal strategy is equivalent to a decomposition of
the form (5.28).
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5.3.3 Minimal martingale measure

The notion of a martingale measure P∗ ≈ P was defined [20] following properties:

dP∗

dP
∈ L2(Ω,F ,P),

S is a martingale under P∗.

Such a martingale measure is determined by the right-continuous square-integrable martin-
gale G∗ = (G∗t )0≤t≤T with

G∗t = E
[
dP∗

dP
|Ft
]

(0 ≤ t ≤ T ).

Under P∗, the Doob-Meyer decomposition of M is given by M = X − X0 + (−A). But
the theory of the Girsanov transformation [Appendix A2] shows that the predictable process of
bound variation can also be computed in terms of G∗:

−At =

∫ t

0

1

G∗s−
d〈M,G∗〉s (0 ≤ t ≤ T );

Since 〈M,G∗〉 � 〈M〉 = 〈X〉, the process A must be absolutely continuous with respect
to the variance process 〈X〉 of X , i.e.,

At =

∫ t

0

τsd〈X〉s (0 ≤ t ≤ T ),

for some predictable process (τt)0≤t≤T .

Definition 5.3.2 A martingale measure P̂ ≈ P will be called minimal if

P̂ = P on F0, (5.29)

and if any square-integrable P−martingale which is orthogonal to M under P remains a mar-
tingale under P̂:

L ∈M2 and 〈L,M〉 =⇒ L is a martingale under P̂ (5.30)

Now, let us focus on the existence and uniqueness of minimal martingale measure. We
demonstrate this from the following theorem:

Theorem 5.3.2 (i) The minimal martingale measure P̂ is uniquely determined.

(ii) P̂ exists if and only if

Ĝt = exp

(
−
∫ t

0

τsdMs −
1

2

∫ t

0

τ 2
s d〈x〉s

)
(0 ≤ t ≤ T )

is a square-integrable martingale under P; in that case, P̂ is given by
dP̂
dP

= ĜT

68



(iii) The minimal martingale measure preserves orthogonality: Any L ∈ M2 with 〈L,M〉 =

0 under P satisfies 〈L,X〉 = 0 under P̂.

We will show the proof of the first theorem that the minimal martingale measure is uniquely
determined.

Proof: (i) Let G∗ = (G∗t )0≤t≤T be the square-integrable martingale associated to a martin-
gale measure P∗ ≈ P. Then

G∗t = G∗0 +

∫ t

0

βsdMs + Lt (0 ≤ t ≤ T )

where L is a square-integrable martingale under P orthogonal to M , and D = (Dt)0≤t≤T is a
predictable process with

E
[∫ T

0

D2
sd〈M〉

]
<∞

Under P∗, the predictable process of bounded variation in the Doob-Meyer decomposition
of M is given by ∫ t

0

1

G∗s−
d〈G∗,M〉s =

∫ t

0

1

G∗s−
Dsd〈X〉s.

X = X0 +M + A is assumed to be a martingale under P∗, and we get

τ = − D

G∗−
;

since G∗ > 0 P-a.s. due to P∗ ≈ P and since 〈M〉 = 〈X〉, plus the condition for finite
expectation above, we get ∫ T

0

τ 2
s d〈X〉s <∞ P− a.s.

Now suppose that P∗ is minimal. Then G∗0 = 1 due to (5.29), and L is a martingale under
P∗ due to (5.30). This implies 〈L,G∗〉 = 0, and so we get

〈L〉 = 0 = 〈L,G∗〉 = 0,

hence L ≡ 0. Thus, G∗ solves the stochastic equation

G∗t = 1 +

∫ t

0

G∗s−(−τs)dMs.

Since M is continuous and 〈M〉 = 〈X〉, we obtain G∗ = Ĝ, hence uniqueness. �

Clearly, if an optimal strategy and a minimal equivalent martingale measure Q exists, we
have V̂t = Q[f̂T |Ft], thus taking V0 = Q[f̂T ] as the price of the contingent claim.
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Then we want to show that measure given by (5.22), (5.23), (5.26) is minimal. It follows
from that in [21] for the continuous case. Under measure P, Ŝ satisfies

Ŝt = Ŝ0 +

∫ t

0

σsŜs−(cdWs + dMs) +

∫ t

0

(βσs + µs − rs)Ŝs−ds

= Ŝ0 + Zt + At, (5.31)

where

Zt =

∫ t

0

σsŜs−(cdWs + dMs)

is a P-martingale and

At =

∫ t

0

(βσs + µs − rs)Ŝs−ds

is continuous adapted and hence a previsible process. Therefore (5.29) gives the Doob decom-
position of Ŝ under P.

Definition (5.3.3) means that P̂ preserves the martingale property as far as possible under
the restriction that X is a martingale under P∗. This minimal departure from the given measure
P can also be expressed in terms of the relative entropy:

H(Q | P) =


∫

log
dQ
dP

dQ if Q� P

+∞ otherwise.

Since the relative entropy is always nonnegative, and that H(Q | P) = 0 is equivalent to
Q = P.

Theorem 5.3.3 In the class of all martingale measures P∗, the minimal martingale measure P̂
is characterized by the fact that it minimizes the functional

H(P∗|P)− 1

2
E∗
[∫ T

0

τ 2
s d〈X〉s

]
. (5.32)

In particular, P̂ minimizes the relative entropy H(.|P) among all martingale measures P∗ with
fixed expectation

E∗
[∫ T

0

τ 2
s d〈X〉s

]
. (5.33)

Proof: If P∗ is a martingale measure, then M has the Doob-Meyer decomposition

Mt = Xt −X0 +

(
−
∫ t

0

τsd〈X〉s
)
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under P∗. Due to the first property of 5.3.3 that
dP∗

dP
∈ L2(Ω,F ,P), we have

G∗T :=
dP∗

dP
∈ L2(Ω,F ,P);

in particular, the relative entropy in finite:

H(P∗ | P) =

∫
G∗T logG∗TdP <∞.

Now suppose that P̂ ≈ P ≈ P∗ is the minimal martingale measure. Then we have

H(P∗ | P) = H(P∗ | P̂) +

∫
log ĜTdP∗

= H(P∗ | P̂) +

∫ (
−
∫ T

0

τsdMs −
1

2

∫ T

0

τ 2
s d〈X〉s

)
dP∗

= H(P∗ | P̂) +
1

2
E∗
[∫ T

0

τ 2
s d〈X〉s

]
(localise first, then pass to the limit using H(P∗ | P < ∞). In particular, the expectation in
(5.33) is finite. Thus,

H(P∗ | P)− 1

2
E∗
[∫ T

0

τ 2
s d〈X〉s

]
= H(P∗ | P̂) ≥ 0,

and the minimal value 0 is assumed if and only if P∗ = P̂. �
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5.3.4 Pricing by martingale decompositions

In the continuous case, an important property of the minimal measure is that it gives Ŝ the law
of its martingale part under the Doob decomposition. The minimal measure can be uniquely
characterized by this property. It is important to find which equivalent martingale measure will
give Ŝ the law of its martingale part and to compare it to the minimal measure.

Consider the Doob decomposition of Ŝ under P given by (5.31). Let Q be a martingale
measure as described in Theorem (5.3.1), satisfying the martingale condition (5.21). Under
Q, Ŝ satisfies

Ŝt = Ŝ0 +

∫ t

0

σsŜs−(cdW̃s + dM̃s), (5.34)

where M̃ is the Q-martingale and W̃ is the Q-Brownian motion. More specifically,

M̃t =

∫ t

0

∫
R
y(Ñ(ds dy)− ν̃s(dy)ds),

where Ñ(ds dy) is a Poisson measure with compensator measure ν̃s(dy) in Theorem (5.3.1).
Comparing (5.34) with the form of Z, we can see that the only way in which Ŝ can have the
law of Z under Q is to have ν̃ ≡ ν, which in turn implies that H ≡ 1 and h = 0 and Q is given
by

dQ
dP
|FT= exp

{∫ T

0

GsdWs −
1

2

∫ T

0

G2
sds
}

(5.35)

where,

Gs =
rs − µs − βσs

cσs
. (5.36)

From (5.35) and (5.36) we can see about the measure that it corresponds to the classical
Black-Scholes formula, if we regard b + ασ as an overall drift which (5.35) removes by only
changing the drift of the underlying Brownian motion W while leaving the jump part of the
noise alone.

5.3.5 Pricing by minimum relative entropy and Esscher transform

Gerber and Shiu (1995) [23] proposed pricing contingent claims by Esscher transform. We
apply Esscher transform definition in Section 4.5. Let θ ∈ R be fixed. Then the Esscher
transform of a Lévy process X is defined to be the process whose law Qθ is given by

dQθ

dP
|Ft= exp{−θXt + γ(θ)t},

where γ(θ) = − logE[exp(−θX1)] is the Lévy exponent of X .
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Note: We replace θ in Section 4.3 by −θ to be consistent with conditions (5.4)-(5.7).
If the stock price process has constant coefficients, the value of θ can be chosen so as to

make the discounted price process Ŝ a martingale under Qθ.
When the stock price process has time-dependent coefficients as in this model, considering

generalized Esscher transforms of the form

dQθ

dP
|Ft= exp

{
−
∫ t

0

θsdXs +

∫ t

0

γ(θs)ds
}

(5.37)

and choose θs to satisfy the martingale condition. From results of [12], we see that the Esscher
transform corresponds to the choices H(t, y) = exp(−θty), h(t, y) = −θty and G ≡ −cθ.
Then the martingale condition (5.21) can then be used to specify θ as follows:

−c2σsθs + βσs + µs − rs +

∫
R
σsx(exp(−θsx)− 1)ν(dx) = 0. (5.38)

Note: This equation has unique solution θ for which γ(θs) < ∞ for all s. For an equivalent
martingale measure Q given by Theorem 5.3.2 and the martingale condition (5.21), the relative
entropy in terms of the Q-martingales W̃ and M̃ is therefore

IP(Q) = EQ
[
log

dQ
dP
|FT
]

= EQ
[

1

2

∫ T

0

G2
sds+

∫ T

0

∫
R
[H(s, y)(logH(s, y)− 1) + 1]ν(dy)ds

]
From this expression, we can clearly deduce that finding equivalent martingale measure of

minimum relative entropy is to minimize

EQ
[

1

2
G2
s +

∫
R
[H(s, y)(logH(s, y)− 1) + 1]ν(dy)

]
for fixed s subject to (5.21). Since measure Q varies with G and H , we need to discuss if the
problem can be reduced to minimize:

1

2
G2
s +

∫
R
[H(s, y)(logH(s, y)− 1) + 1]ν(dy) (5.39)

This optimization problem has a deterministic solution ofG andH since all the coefficients
are deterministic. Therefore, we need to find optimal choices of G and H to minimize the
expression. First, we fix G and choose H to minimize the function by setting up Lagrange
function. The solution to this optimization problem:

H∗(s, y) = exp(−λsσsy), G∗ = −cσλ.

where λs is the solution of equation:

−c2σ2
sλs + βσs + µs − rs +

∫
R
σsy(exp(−λsσsy)− 1)ν(dy) = 0.

Comparing this equation with equation (5.38), we can see that this is precisely the measure
constructed via Esscher transform, with θ ≡ σλ.
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5.4 Integro-differential equations for stock prices

Consider any contingent claim whose payoff depends only on the value at maturity of the
underlying security. Write the payoff as f(St). A European call with strike K, for which
f(St) = (St −K)+, let

Vt = EQ [e−r(T−t)f(St) | Ft
]

be the value of the claim at time t. Recall in the Section 4.3, the valuation process V admits a
Feynman-Kac type presentation Vt = g(t, St), where g is the solution to the Cauchy problem
associated with a linear PDE. The resulting integro-differential equation has the integral term
associated with the jumps in Lévy process.

Following from previous model, under Q, the price of the underlying stock satisfies

dSt = rtSt−dt+ σtSt−(cdW̃t + dM̃t).

Let η be the following integro-differential operator:

ηf(x) =
1

2
c2σ2

t x
2∂f

∂x
(x) + rtx

∂f

∂x
(x) +

∫
R
[f(x+ σtxy)− f(x)− σtxy

∂f

∂x
(x)]ν̃t(dy).

Theorem 5.4.1 Let g(t, x) be the solution to the Cauchy problem:

∂g

∂t
+ ηg − rtg = 0, g(T, x) = f(x). (5.40)

Then g admits the representation

g(t, x) = EQ
t,x

[
e−r(T−t)f(ST )

]
.

Proof: This is Feynman-Kac presentation under our setting. For any fixed t, apply Itô’s
formula to the process t′ 7→ e−r(T−t

′)g(t′, St′), we can show that it is a Q-martingale then we
can take its Q-expectation. �

The Markov property with the above theorem shows that Vt = g(t, St). Then we can solve
the Cauchy problem equation numerically to compute the price of option.

74



5.5 Numerical simulation of Esscher transform measure

In this section, we will directly apply simulation results to compare simulated option prices
under different measures. Let σ ≡ b ≡ c = 1 and r = 0, where we suppose risk free interest
is zero. We want to calculate the price of a European call option with strike price K = 1 in
unit and maturity time at t = 1 in unit for various values of the initial share price S0, using
martingale measures discussed above.

If we let Y in the above model follows a Gamma (1,1) process whose law is given by

E[exp(−λYt)] =

(
1

1 + λ

)t
.

Then the Lévy measure is ν(dy) = y−1e−y1[0,∞)(y)dy and the previsible part is β =

E[Y1] = 1. For Esscher transform measure, we submit our parameters in equation (5.38),
then the equation can be simplified to:

−θ + 2

∫ ∞
0

e−(θ+1)y − e−ydy = 0

Solve for the equaiton we get θ =
√

2. Under this measure, Y is still a Gamma process, but
with shape parameter 1 and scale parameter θ + 1,

EQθ [exp(−λYt)] =

(
θ + 1

θ + 1 + λ

)t
.

Now we have two ways to obtain option prices based on Gamma process model. One way
is to simulate Gamma process and find option prices by Monte Carlo method. In our setting,
we will obtain the price by numerically solving equation in (5.40). Here is result of simulation.

Table 5.1: Price based on Gamma process model

S0 Black-Scholes measure Esscher transform
measure

0.50 0.149 0.107
0.75 0.295 0.240
1.25 0.653 0.587
1.50 0.852 0.785

Table 5.1 gives the value of g(0, S0), where g is the solution to (5.4.1).
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Chapter 6

Variance gamma process and its
extensions

The variance gamma model completed by Madan, Carr and Chang (1998) [48], was introduced
as an extension of geometric Brownian motion to solve some imperfections that the Black-
Scholes model has in pricing option. The process is obtained by evaluating Brownian motion
with drift at a random time given by a gamma process. The two additional parameters are the
drift of the Brownian motion and the volatility of the time change. These additional parame-
ters is able to control over the skewness and kurtosis of stock price return distribution. Closed
forms are obtained for the return density and the prices of European options. The additional pa-
rameters successfully correct for pricing biases in the Black-Scholes model that is a parametric
special case of the option pricing model.

We then extend this model to a multivariate case. We use the model derived by Semeraro
(2006) [64]. The model is constructed as a multivariate Lévy process defined by subordination
of a Brownian motion with independent components by a multivariate gamma subordinator.

6.1 Variance gamma process

In a continuous time economy setting, over the interval [0,Θ], in which are traded a stock, a
money market account, and options on the stock for all strikes and maturities 0 < T ≤ Θ.
Suppose a constant continuous compounded interest rate r with money market account value
of exp(rt), stock prices of St and European call option prices c(t,K, T ) with strike K and
maturity T > t, at time t.

The V G process is obtained by evaluating Brownian motion with drift at a random time
given by a gamma process. Let

B(t, θ, σ) = θt+ σWt
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where (Wt)t≥0 is a standard Brownian motion. The process (Bt)t≥0 is a Brownian motion with
drift θ and volatility σ.

The gamma process γ(t, µ, ν) with mean rate µ and variance rate ν is the process of inde-
pendent gmma increments over non-overlapping intervals of time (t, t+h). The density fh(g),
of the increment g = γ(t + h, µ, ν) − γ(t, µ, ν) is given by the gamma density function with
mean µh and variance νh:

fh(g) =
(µ
ν

)µ2h
ν g

µ2h
ν
−1 exp(−µ

ν
g)

Γ(µ
2h
ν

)
, g > 0, (6.1)

where Γ(x) is the gamma function. The gamma density has a characteristic function given by

φγt(u) =

(
1

1− iu ν
µ

)µ2t
ν

(6.2)

The V G processX(t, σ, ν, θ) is defined in terms of the Brownian motion with driftB(t, θ, σ)

and the gamma process with unit mean rate:

X(t, σ, ν, θ) = B(γ(t, 1, ν), θ, σ). (6.3)

The V G process has three parameters:σ the volatility of the Brownian motion; ν the vari-
ance rate of the gamma time change; θ the drift in the Brownian motion with drift.

The density function for the V G process at time t can be expressed conditional on the
realisation of the gamma time change g as a normal density function:

fXt(X) =

∫ ∞
0

1

σ
√

2πg
exp

(
−(X − θg)2

2σ2g

)
g
t
ν
−1 exp(− g

ν
)

ν
t
ν Γ( t

ν
)

dg. (6.4)

The characteristic function for the V G process:

φXt(u) =

(
1

1− iθu+ (σ2ν/2)u2

) t
ν

. (6.5)

The dynamics of the continuous time gamma process is best explained by describing a
simulation of the process. As the process is an infinitely divisible one, of independent and
identically distributed increments over non-overlapping intervals of equal length, the simulation
may be described in terms of the Lévy measure explicitly given by

κγ(dx) =
µ2 exp(−µ

ν
x)

νx
dx, for x > 0 and 0 otherwise. (6.6)

Since the Lévy measure has an infinite integral, we see that the gamma process has an
infinite arrival rate of jumps, most of which are small, as indicated by the concentration of the
Lévy measure at the origin.
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The V G process can also be expressed as the difference of two independent increasing
gamma processes,

X(t, σ, ν, θ) = γp(t, µp, νp)− γn(t, µn, νn). (6.7)

The Lévy measure for the V G process is in terms of a symmetric V G process subjected to
a measure change induced by a constant relative risk aversion utility function as in Madan and
Milne (1991) [47]. We view as the difference of two gamma processes we may write the Lévy
measure for (Xt), employing as,

κX(dx) =


µ2n
νn

exp(−µn
νn
|x|)

|x| dx for x < 0,

µ2p
νp

exp(−µp
νp
x)

|x| dx for x > 0.
(6.8)

The explicit relation between parameters of the gamma processes differenced in (6.7) and
the original parameters of the V G process (6.3) is given by

µp =
1

2

√
θ2 +

2σ2

ν
+
θ

2
, µn =

1

2

√
θ2 +

2σ2

ν
− θ

2
, (6.9)

νp =

(
1

2

√
θ2 +

2σ2

ν
+
θ

2

)2

ν, νn =

(
1

2

√
θ2 +

2σ2

ν
− θ

2

)2

ν. (6.10)

The parameters of the V G process, directly reflect the skewness and kurtosis of the return
distribution. Explicit expressions for the first four central moments of the return distribution
over an interval of length t are given:

E[Xt] = θt, E[(Xt − E[Xt])
2] = (θ2 + σ2)t,

E[(Xt − E[Xt])
3] = (2θ3ν2 + 3σ2θν)t,

E[(Xt − E[Xt])
4] = (3σ4ν + 12σ2θ2ν2 + 6θ4ν3)t+ (3σ4 + 6σ2θ2ν + 3θ4ν2)t2.

6.1.1 Variance gamma for stock price processes and option pricing

In this subsection, we will describe the risk neutral dynamics of the stock price in terms of the
V G process and derives the prices of European options on the stock. The new specification for
the statistical stock price dynamics is obtained by replacing the role of Brownian motion in the
Black-Scholes geometric Brownian motion model by the V G process. Then the s.p.p is given
by

St = S0 exp [mt+X(t, σS, νS, θS) + ωSt] (6.11)

where ωS = 1
νS

ln(1− θSνS −σ2
SνS/2), and m is the mean rate of return on the stock under the

statistical probability measure.
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Under the risk neutral process, discounted stock prices are martingales and then the risk
neutral process is given by

St = S0 exp [rt+X(t, σRN , νRN , θRN) + ωRN t] , (6.12)

where subscript RN on the V G parameters indicates that these are the risk neutral parameters,
and ωRN = 1

νRN
ln(1− θRNνRN −

θ2RNνRN
2

).

The density of the log stock price relative over an interval of length t is, conditional on the
realization of the gamma time change, a normal density function.

Theorem 6.1.1 The density for the log price relative z = ln St
S0

when prices follow the V G
process dynamics of equation (6.11) is given by

f(z) =
2 exp(θx/σ2)

ν
t
ν

√
2πσΓ( t

ν
)

(
x2

2σ2/ν + θ2

) t
2ν
− 1

4

K t
ν
− 1

2

(
1

σ2

√
x2(2σ2/ν + θ2)

)
, (6.13)

where

x = z −mt− t

ν
ln(1− θν − σ2ν/2).

The price of a European call option, c(S0, K, t), for a strike of K and maturity t, is given
by

c(S0, K, t) = e−rtE[(St −K)+]

This evaluation of the option price proceeds by first conditioning on a knowledge of the
random time change g that has an independent gamma distribution. The European option price
for V G risk-neutral valuation is obtained on integrating the conditional Black-Scholes formula
over g with respect the gamma density. The price formula is given by the following theorem:

Theorem 6.1.2 The European call option price on a stock, where the risk neutral dynamics of
the stock price is given by the V G process is

c(S0, K, t) = S0Ψ

(
d

√
1− c1

ν
, (α + s)

√
ν

1− c1

,
t

ν

)

−K exp(−rt)Ψ

(
d

√
1− c2

ν
, (α + s)

√
ν

1− c2

,
t

ν

)
where

d =
1

s

[
ln(

S0

K
) + rt+

t

ν
ln(

1− c1

1− c2

)

]
and ζ = − θ

σ2
, s =

σ√
1 + ( θ

σ
)2 ν

2

, α = ζs.

c1 =
ν(α + s)2

2
, c2 =

να2

2

and the function Ψ is defined in terms of the modified bessel function of the second kind [Ap-
pendix A3] and degenerate hypergeometric function of two variables [48, A11].
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We expect the additional parameters of the V G model to be important for option pricing.
Risk aversion implies risk-neutral density of returns is negatively skewed (θ < 0 or α > 0), a
feature that is missed by the Black Scholes model where symmetry is essentially a consequence
of continuity coupled with continuous rebalancing.

Below the table, we compare the analytic results of European call option price given by
Carr-Madan formula with option prices obtained from Monte Carlo simulation of 107 times
[Appendix B5].

Table 6.1: Option prices based on V G analytic solutions and Monte Carlo simulation

S0 Analytic price Monte Carlo price

0.50 0.023 0.022
0.75 0.087 0.086
1.00 0.211 0.209
1.25 0.389 0.389

This table gives the European call prices at different initial stock prices under two methods,
where ν = 0.5, θ = −0.02, σ = 0.5, r = 0.05 and K = 1.

6.2 Sato’s model for multivariate option pricing

This section provides a multivariate Sato model for multivariate option pricing where the asset
log-returns are expressed as Sato time-changed Brownian motions and where the time change
is the weighted sum of a common and an idiosyncratic component. The main advantage of this
model is that it allows us to replicate univariate option prices in both the strike and time-to-
maturity dimensions.

Followed by introduction of Sato process, we will focus on the model proposed by Se-
meraro, the so-called α variance gamma model, which rests on a multivariate subordinator
process composed of the weighted sum of two independent gamma processes: an idiosyncratic
and a common component. Finally, the V G Sato model is obtained by replacing the Lévy time-
changed Brownian motions in the setting of Semeraro by Sato time-changed Brownian motions
and lead to marginal characteristic functions of the Sato type.

6.2.1 Sato processes

Sato processes are closely linked to the class of self-decomposable laws. Details we refer to [].
Here, we will just provide some main definitions and properties.
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Definition 6.2.1 The distribution of a random variable X is self-decomposable if, for any con-
stant c, 0 < c < 1, X has the same probability law as the sum of downscaled version of itself
and an independent random variable Xc:

X
d
= cX +Xc

Self-decomposable distributions are a subclass of infinitely divisible distributions with a
Lévy-Khintchine representation of the form:

log(φX(u)) = i〈γ, u〉 − 1

2
〈u, σσTu〉+

∫ ∞
−∞

(exp i〈u, x〉 − 1− i〈u, x〉1|x|<1)
h(x)

|x|
dx (6.14)

where h(x) ≥ 0 is decreasing for positive x and increasing for negative x. Hence, self-
decomposable laws are necessarily of infinite activity

A Sato process can be constructed from any self-decomposable distribution as follows. The
probability law of the Sato process at time t is obtained by scaling the self-decomposable law
of X at unit time: Xt

d
= tγX . γ is the self-similarity exponent.

6.2.2 The VG Sato process

From (6.14) and Lévy measure of the V G process (6.8) it is clear that the V G probability law
at unit time is self-decomposable for all acceptable V G parameter sets {σ, ν, θ}. By making
use of the space-scaling property of V G random variables, the characteristic function of the
V G Sato process at time t is thus given by:

φV G Sato(u, t, σ, ν, θ, γ) = φV G(u, 1, tγσ, ν, tγθ)

= (1− i〈u, νθtγ〉+
1

2
σ2νt2γu2)−1/ν

6.2.3 Multi-parameter process

Before we move to α − V G model, there is one more theorem that plays a fundamental role
in the characterisation in terms of Lévy triplet of the process we are going to construct. The
univariate version is Theorem 30.1 [61]. The general version and its proof are in [3, Theorem
3.3].

Consider n independent Lévy processesX1(t), ..., Xn(t). The stacked process Xt = (X1(t), ..., Xn(t))T

is a Lévy process on Rn. Consider the multi-parameter s = (s1, ..., sn)T ∈ Rn
+ and the partial

order on Rn
+:

s1 � s2 ⇔ s1
j ≤ s2

j , j = 1, ...n.

Define the multi-parameter process {X(s), s ∈ Rn
+} by

X(s) = (X1(s1), ..., Xn(sn))T .
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Theorem 6.2.1 Let G be a multivariate subordinator with triplet (γG, 0, νG) and let λt =

L(G(t)). Let Xt be a Lévy process on Rn
+ independent from G with independent compo-

nents and triplet (γX,ΣX, νX), where ΣX = diag(σ1, ..., σn) :=


σ1 0 · · · 0

0 σ2 · · · 0
...

...
...

...
0 0 · · · σn

, and let

ρs = L(X(s)). Define the process Y = {Y(t), t ≥ 0} by the following

Y(t) = (X1(G1(t)), ..., Xn(Gn(t)))T , t ≥ 0

then the process Y is a Lévy process and

E[ei〈z,Y(t)〉] = exp(tΨG(logψX(z))), z ∈ Rn
+,

where for any ω = (ω1, ..., ωn)T ∈ Cn with Re(ωj) ≤ 0, j = 1, ..., n, we let

ΨG(ω) = 〈m · ω〉+

∫
Rn

(e〈ω,x〉 − 1)ν(dx).

More, the characteristic triplet (γY,ΣY, νY) of Y is as follows

γY =

∫
Rn
γG(ds)

∫
|x|≤1

xρs(dx) + 〈m, γX〉.

ΣY = diag(m1σ1, ...,mnσn)

νY(B) = ν1(B) + ν2(B)

where ν1 and ν2 are defined by ν1(0) = 0, ν2(0) = 0 and for B ∈ B(Rn\0),

ν1(B) =

∫
Rn+
ρs(B)νG(ds),

ν2(B) =

∫
B
m11A1(x)νX1(dx) + · · ·+mn1An(x)νXn(dx).

where x ∈ R, νXi , i = 1, ..., n are the Lévy measures of the independent marginal processes of
X and finally Ai = {x = (x1, ..., xn)T ∈ Rn : xk = 0 for k 6= i, k = 1, ..., n}, i = 1, ..., n.

6.2.4 The α VG Lévy two-factor models

Under αV G models, the N−dimensional stock return is modelled by the exponential of a
multivariate time-changed Brownian motion:

St =


S

(1)
t

S
(2)
t
...

S
(N)
t

 =



S
(1)
0 exp((r−q1)t+Y

(1)
t )

E[exp(Y
(1)
t )]

S
(2)
0 exp((r−q2)t+Y

(2)
t )

E[exp(Y
(2)
t )]

...
S
(N)
0 exp((r−qN )t+Y

(N)
t )

E[exp(Y
(N)
t )]


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where S(i)
0 is the spot price of the ith underlying, r is the risk-free interest rate, qi denotes the

dividend yield of the ith stock and Y is an N−dimensional time-changed Brownian motion.
More particularly, under the Lévy setting, the process Y is given by:

Yt =


Y

(1)
t

Y
(2)
t
...

Y
(N)
t

 =


θ1G

(1)
t + σ1W

(1)

G
(1)
t

θ2G
(1)
t + σ2W

(2)

G
(2)
t...

θNG
(N)
t + σNW

(N)

G
(N)
t


where W (i), i = 1, ..., N , are independent standard Brownain motions and where the subordi-
nator G(i)

t are the weighted sum of two gamma processes:

Gt =


G

(1)
t

G
(2)
t
...

G
(N)
t

 =


X

(1)
t + α1Zt

X
(2)
t + α2Zt

...
X

(N)
t + αNZt


where αi > 0, Z1 ∼ Γ(c1, c2), c1, c2 > 0 and X

(i)
1 ∼ Γ(ai, bi), ai, bi > 0 are independent

random variables and are independent on the W (i).

6.2.5 The α VG Sato two-factor models

Under Sato setting, the asset log-returns are built by space scaling the time-changed Brownian
motions taken at unit time:

Yt =


Y

(1)
t

Y
(2)
t
...

Y
(N)
t

 =


θ1t

γ1G(1) + σ1t
γ1W

(1)

G(1)

θ2t
γ2G(2) + σ2t

γ2W
(2)

G(2)

...
θN t

γNG(N) + σN t
γNW

(N)

G(N)


where

G =


G(1)

G(2)

...
G(N)

 =


X(1) + α1Z

X(2) + α2Z
...

X(N) + αNZ


where αi > 0, Z ∼ Γ(c1, c2), c1, c2 > 0 and X(i) ∼ Γ(ai, bi), ai, bi > 0 are independent
random variables and are independent on the W (i).

Lemma 6.2.1 The characteristic function of the process Yt is given by

φY(u, t) = E[exp(iu′Yt)]

=
N∏
i=1

φX(i)(uiθit
γi +

1

2
iσ2
i t

2γiu2
i )φZ1

(
N∑
i=1

αi(uiθit
γi +

1

2
iσ2
i t

2γiu2
i )

)
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Proof: See [26] Lemma 3.1.
The marginal characteristic functions are directly obtained from Lemma (6.2.1):

φY (i)(u, t) = E[exp(iuY
(i)
t )]

=

(
1− i

uθit
γi + 1

2
iσ2
i t

2γiu2

bi

)−ai (
1− iαi

c2

(uθit
γi +

1

2
iσ2
i t

2γiu2)

)−c1
As we have obtained the joint and the marginal characteristic functions are known in closed

form, we have the following lemma:

Lemma 6.2.2 The linear correlation between the asset log-return processes Y (i)
t and Y (j)

t is
time independent and equal to the correlation under the corresponding Lévy models.

ρij =
cov(Y

(i)
t , Y

(j)
t )√

var[Y
(i)
t ]var[Y

(j)
t ]

where cov(Y
(i)
t , Y

(j)
t ) = θiθjαiαj

c1
c22
tγi+γj and

var[Y
(i)
t ] =

(
θ2
i (
ai
b2
i

+ α2
i

c1

c2
2

) + σ2
i (
ai
bi

+ αi
c1

c2

)

)
t2γi

Proof: See [27].
Let N be the number of underlying stocks, M (i) be the number of quoted options for the

ith stock. The model vanilla option prices of the ith underlying are computed by using the
Carr-Madan formula,

Formula 6.2.1 (Carr-Madan formula)

C(i)(K,T ) =
exp(−α log(K))

π

∫ +∞

0

exp(−iν log(K))ϕ(i)(ν)dν

where

ϕ(i)(ν) =
exp(−rT )Φi(ν − (α + 1)i, T )

α2 + α− ν2 + i(2α + 1)ν

where Φi is the risk-neutral characteristic function of the ith log stock price process at maturity
T:

Φi(u, T ) = EQ[exp(iu log(S
(i)
T )) | S(i)

0 ]

=
exp(iu(log(S

(i)
0 ) + (r − qi)T ))φY (i)(u, T

φY (i)(−i, T )iu

The Carr-Madan formula can be used for all the models under investigation since we now
in closed form the marginal characteristic function of log return of stocks.
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6.2.6 Monte Carlo for multivariate option pricing

The multivariate Lévy and Sato two-factor models allow for a straightforward Monte Carlo
simulation for the multivariate asset log-return process, which can be used to price multivari-
ate derivatives. For numerical examples, we can consider 252 trading days a year, a daily
discretization and ten thousands Monte Carlo simulations. One realization of the multivari-
ate Lévy process in Section 6.2.4 at the set of times {0,∆t, 2∆t, ..., T = M∆t} is simulated
below.

(i) Simulate M independent outcomes of the N + 1 gamma subordinator at time ∆t:

X
(i)
∆t(m) ∼ Gamma(ai∆t, bi), Z∆t(m) ∼ Gamma(c1∆t, c2), m = 1, ...,M.

The subordinator processes are given by:

X
(i)
0 = 0, X

(i)
j∆t =

j∑
m=1

X
(i)
∆t(m), j = 1, ...,M

and

Z0 = 0, Zj∆t =

j∑
m=1

Z∆t(m), j = 1, ...,M

(ii) Then G is given by

G
(i)
j∆t = X

(i)
j∆t + αiZj∆t

(iii) We then simulate one realization of the multivariate time-changed Brownian motion by:

Y j∆t(i) = θiG
(i)
j∆t + V

(i)
j∆t, V

(i)
j∆t ∼ N(0, σ2

iG
(i)
j∆t).

The price of options is then computed by considering the mean of the discounted payoff
over a large number of realizations. If we follow Sato two-factor modes, as above, we
will adjust (i) as

X
(i)
0 = 0, X

(i)
j∆t ∼ Γ(ai, bi), j = 1, ...,M

Z0 = 0, Zj∆t ∼ Γ(c1, c2), j = 1, ...,M

One sample path of the multivariate asset log-return is then obtained by

Y j∆t(i) = θi(j∆t)
γiG

(i)
j∆t + V

(i)
j∆t, V

(i)
j∆t ∼ N(0, σ2

i (j∆t)
2γiG

(i)
j∆t).

In general, this section introduces multivariate Sato models for asset pricing, built on a Sato
time-changed Brownian motion where the time change consists of a weighted sum of an id-
iosyncratic and a common component.
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Appendix A

A1. Radon-Nikodym Derivative

Let (Ω,F , ν) be a measure space and f be a nonnegative Borel function. Note that

λ(A) =

∫
A

fdν, A ∈ F

is a measure satisfying

ν(A) = 0 ⇒ λ(A) = 0.

We say λ is absolutely continuous w.r.t. ν. Computing ν(A) can be done through integra-
tion w.r.t. a well-known measure λ� ν is also most sufficient.
Theorem. (Radon-Nikodym theorem) Let ν and λ be two measures on (Ω,F) and ν be
σ−finite. If λ� ν, then there exists a nonnegative Borel function f on Ω such that

λ(A) =

∫
A

fdν, A ∈ F

More, f is unique a.e. ν, i.e., if λ(A) =

∫
A

hdν for any A ∈ F , then f = h a.e.ν. The

function f is called the Radon-Nikodym derivative of λ w.r.t. ν and is denoted by
dλ

dν
.

If f is Borel on (Ω,F) and
∫
A

fdν = 0 for any A ∈ F , then f = 0 a.e.

If
∫
fdν = 1 for an f ≥ 0 a.e. ν, then λ is a probability measure and f is called its

probability density function w.r.t ν.

A2. Girsanov Transformation

Let W = (W1, ...,Wd) be a d-dimensional Brownian motion defined on a filtered probability
space with filtration satisfying regular conditions. Let (γt)0≤t≤T be a measurable, adapted d-

dimensional process with
∫ T

0

γ2
i,tdt <∞ a.s., i = 1, ..., d, and define process (Gt)0≤t≤T by

Gt = exp
{
−
∫ t

0

γ′sdWs −
1

2

∫ t

0

||γs||2ds
}
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Then G is continuous and being the stochastic exponential of −
∫ t

0
γ′sdWs, is a local mar-

tingale. Given sufficient integrability on the process γ,G will be a continuous martingale. The
Novikov’s condition is stated as,

E
[
exp

{1

2

∫ t

0

||γs||2ds
}]

<∞

Theorem. (Girsanov) Let γ be as above and satisfy Novikov’s condition; let G be the corre-
sponding continuous martingale. Define the processes W̃i, i = 1, ..., d by

W̃i := Wi,t +

∫ t

0

γi,sds, 0 ≤ t ≤ T.

Then under the equivalent probability measure P̃ with Radon-Nikodym derivative

dP̃
dP

= GT ,

the process W = (W1, ...,Wd) is d-dimensional Brownian motion.

A3. Bessel Functions

Bessel’s equation of order k is in the form

x2 d
2y

dx2
+ x

dy

dx
+ (x2 − k2)y = 0

for every x ∈ R. The general solution is given by

y(x) = AJk(x) +BYk(x),

where A,B are arbitrary constants and Jk is a Bessel function of the first kind,

Jk(x) =
∞∑
n=0

(−1)n(x/2)k+2n

n!Γ(k + n+ 1)
.

Consider a modified Bessel equation of order k,

x2 d
2y

dx2
+ x

dy

dx
− (x2 + k2)y = 0,

which has a general solution in the form

y(x) = AJk(ix) +BJk(ix).

Real-valued modified Bessel functions is given by

Vk(x) = e−ikπ/2Jk(ix).
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Yk(x) in the solution to Bessel’s equation is referred to as a Bessel function of the second
kind or sometimes the Weber function. It is introduced by H. M. MacDonald, in the form

Yk(x) = (
π

2
)
V−k(x)− Vk(x)

sin(kπ)
.

More, there is a recurrence relation,

Yk+1(x) = Yk−1(x) +
2k

x
Yk(x).

A4. Doob-Meyer decomposition

J. L. Doob noticed that in discrete time an integrable process can be uniquely presented as the
sum of a martingale M and a predictable process A starting at 0; in addition, the process A is
increasing iff S is a submartingale. The Doob-Meyer decomposition is defined as

X = X0 +M + A,

of X into a local martingale M = (Mt)0≤t≤T and a predictable process A = (At)0≤t≤T with
paths of bounded variation, this amounts to the integrability condition

E[X2
0 + 〈X〉T + |A|2T ] <∞.

Here 〈X〉 = 〈M〉 denotes the pathwise defined quadratic variation process of X resp. M,

and |A| is the total variation of A. In particular, M is a square-intergrable martingale under P.

A5. Galtchouk-Kunita-Watanabe decomposition

Let (Ŝt)0≤t≤T be a square-integrable martingale with respect to Q. Any random variable Ŷ
with finite variance depending on the history (FSt )0≤t≤T of Ŝ can be represented as the sum of
a stochastic integral with respect to Ŝ and a random variable Z orthogonal to a set of attainable
claims Γ: there exists a square integrable predictable strategy (φYt )0≤t≤T such that,

Ŷ = EQ[Ŷ ] +

∫ T

0

φYt dŜt + ZY ,

where ZY is orthogonal to all stochastic integrals with respect to Ŝ. Moreover, the martingale
defined by ZY

t = EQ[ZY | Ft] is strongly orthogonal to Γ: for any square integrable predictable

process (γt)0≤t≤T , Zt

∫ t

0

γdS is again a martingale.

90



Appendix B

B1. Generate option price surface using FFT (Matlab)

AssetPrice = 100;

Rate = 0.05;

DividendYield = 0;

OptSpec = ’call’;

V0 = 0.04;

ThetaV = 0.04;

Kappa = 2.0;

SigmaV = 0.2;

RhoSV = -0.8;

Settle = datenum(’05-Nov-2018’);

Maturity = datemnth(Settle, 12*[1/12 0.25 (0.5:0.5:3)]’);

Times = yearfrac(Settle, Maturity);

Strike = (2:2:200)’;

% Increase ’NumFFT’ to support a wider range of strikes

NumFFT = 2ˆ13;

Call = optByHestonFFT(Rate, AssetPrice, Settle, Maturity, OptSpec,

Strike, ... V0, ThetaV, Kappa, SigmaV, RhoSV, ’DividendYield’, DividendYield,

’NumFFT’, NumFFT, ... ’CharacteristicFcnStep’, 0.050, ’LogStrikeStep’, 0.001,

’ExpandOutput’, true);

[X,Y] = meshgrid(Times,Strike);

figure;

surf(X,Y,Call);

title(’Price’);
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xlabel(’Years to Option Expiry’);

ylabel(’Strike’);

view(-112,34);

xlim([0 Times(end)]);

zlim([0 80]);

B2. Simulate stock price paths under Jump-Diffusion model
(Matlab)

Ns=5; %number of simulation

dt=1/252; %the per-time in one year

t=linspace(0,(1250-1)*dt,1250)’;

mu=0.16;sigma=0.3;lambda=5;m=0.005;delta=0.05; S0=10;

Rsim=lognrnd(dt,mu,sigma,lambda,m,delta,t,Ns);

Ssim=S0*exp(cumsum([zeros(1,size(Rsim,2));Rsim]));

plot(t,Ssim)

hold on

plot(t_2,empiri cal_price)

xlabel(’time’)

ylabel(’stock_ price’)

function Rsim=lognrnd(dt,mu,sigma,lambda,m,delta,t,Ns) %define simulated return

function

dN=poissrnd(lambda*dt,length(t)-1,Ns);

Y=m*dN+delta*sqrt(dN).*randn(length(t)-1,Ns);%sum of normal jumps

dW=sqrt(dt).*normrnd(0,1,length(t)-1,Ns); % SBM

Rsim=(mu-sigmaˆ2/2)*dt+sigma*dW+Y;

end

B3. Estimate parameters (Matlab)

S=csvread(’AAPL.csv’,1,5,[1,5,1260,5]);% historical stock price

dt=1/252;

R=diff(log(S),1);% the return of logarithmic stock price

epsilon=0.03; %values to verify jump

jumpindex=find(abs(R)>epsilon); %if ture considered as jump

lambdahat=length(jumpindex)/((length(S)-1)*dt);%jump intensity
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Rjumps=R(jumpindex);%the data of ’jumpindex’

diffusionindex=find(abs(R)<=epsilon);%without jumps

Rdiffusion=R(diffusionindex);%data of diffusion index

sigmahat=std(Rdiffusion)/sqrt(dt);

muhat=(2*mean(Rdiffusion)+(sigmahatˆ2)*dt )/(2*dt) ;

deltahat=sqrt((var (Rjumps)-sigmahatˆ2*dt)) ;

mhat=mean(Rjumps)-(muhat-sigmahatˆ2/2 )*dt ;

plot(S)

B4. Simulate AAPL stock prices compared with empirical
prices (Matlab)

empirical_price=csvread(’aapl_5.csv’);

t_2= linspace(0,5,60);

Ns=1; %number of simulation

dt=1/252; %the per-time in one year

t=linspace(0,(1250-1)*dt,1250)’;

mu=0.3264;sigma=0.1871;lambda=21.2168;m=-0.0014;delta=0.051; S0=30;

Rsim=lognrnd(dt,mu,sigma,lambda,m,delta,t,Ns);

Ssim=S0*exp(cumsum([zeros(1,size(Rsim,2));Rsim]));

plot(t,Ssim)

hold on

plot(t_2,empirical_price)

xlabel(’time’)

ylabel(’stock_ price’)

function Rsim=lognrnd(dt,mu,sigma,lambda,m,delta,t,Ns) %define simulated

return function

dN=poissrnd(lambda*dt,length(t)-1,Ns);

Y=m*dN+delta*sqrt(dN).*randn(length(t)-1,Ns);%sum of normal jumps

dW=sqrt(dt).*normrnd(0,1,length(t)-1,Ns); % SBM

Rsim=(mu-sigmaˆ2/2)*dt+sigma*dW+Y;

end
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B5. Monte Carlo simulation of option price under V G model
(R)

v=c(2,-0.02, 0.5)

N=10ˆ7

T=1

g=rgamma(N,shape=v[1]*T,scale=1/v[1])

V=c()

V=rnorm(N,v[2]*g,((v[3])ˆ2*g)ˆ0.5)

S0=0.5 #S_0=0.5,0.75,1,1.25

r=0.05

omega=r+v[1]*log(1-v[2]/v[1]-v[3]ˆ2/(2*v[1]))

K=1

c=c()

for (i in 1:N) {

c[i]=max(S0*exp(omega*T+V[i])-K,0)

}

c0=(exp(-r*T)/N)*sum(c)
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[4] BINGHAM, N. H. Lévy processes and self-decomposability in finance. Probab. Math.
Statist. 26 (2006), no. 2, 367–378.

[5] BINGHAM, N. H., AND KIESEL, R. Risk-neutral valuation. Pricing and hedging of
financial derivatives. Second edition. Springer, London, 2004.

[6] BLACK, F., AND SCHOLES, M. The pricing of options and corporate liabilities. J. Polit.
Econ. 81 (1973), no. 3, 637–654.

[7] BOIKOV, A. The Cramer–Lundberg Model with Stochastic Premium Process. Theory of
Probability and Its Applications, 2003.

[8] BORODIN, A. N., AND SALMINEN, P. Handbook of Brownian motion—facts and for-
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Lévy processes and minimal entropy martingale measures. Imperial College Press, Lon-
don, 2012.

98



[57] PLATEN, E., AND HEATH, D. A benchmark approach to quantitative finance. Springer
Finance. Springer-Verlag, Berlin, 2006.

[58] PROTTER, P. Stochastic integration and differential equations. Springer-Verlag, Berlin,
2004.
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[61] SATO, K.-I. Lévy processes and infinitely divisible distributions. Cambridge University
Press, Cambridge, 1999.

[62] SATO, K.-I. Self-similar processes with independent increments. Probab. Theory Related
Fields 89 (1991), no. 3, 285–300.

[63] SCHOUTENS, W. Levy Processes in Finance: Pricing Financial Derivatives. Wiley,
2003.

[64] SEMERARO, P. A multivariate variance gamma model for financial applications. Int. J.
Theor. Appl. Finance 11 (2008), no. 1, 1–18.

[65] STAUM, J. Chapter 12 Incomplete Markets. Handbooks in Operations Research and
Management Science, Elsevier (2007), Volume 15, 511-563.

[66] STEELE, J. M. Stochastic calculus and financial applications. Applications of Mathemat-
ics (New York), 45. Springer-Verlag, New York, 2001.

[67] TANG, F. Merton Jump-Diffusion Modelling of Stock Price Data (Dissertation), 2018.

[68] TANKOV, P. Pricing and hedging in exponential Lévy models: review of recent results.
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