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Abstract 

Porous media are omnipresent in various natural and engineered systems. The study of 

transport phenomena in porous media has attracted the attention of researchers from a wide 

variety of disciplines. In many applications such as hydrogeology, petroleum engineering and 

thermochemistry, porous media are encountered, in which heterogeneity exists at a multitude 

of length-scales. In solar thermochemical reactors, a promising approach to accomplish the 

thermochemical cycle is to form the reactive solid into a porous structure to promote efficient 

solid–gas reactions through a high specific surface area, while simultaneously achieving 

desired transport characteristics. Recently, in light of the apparent trade-offs between rapid 

reaction kinetics and efficient radiation absorption, reticulated porous ceramics (RPCs) 

featuring dual-scale porosity have been engineered. These structures are capable of 

combining the desired properties, namely uniform radiative absorption and high specific 

surface area. Therefore, investigations are required to understand and analyse different 

transport phenomena in such structures. 

This dissertation is motivated by the need for understanding and analysing transport 

phenomena dual-scale porous media appear and used in many applications such as 

hydrogeology, petroleum engineering, chemical reactors, and in particular, energy 

technologies in high-temperature thermochemistry. The main objective of this thesis is to 

theoretically formulate and numerically demonstrate the fluid flow and heat transfer 

phenomena in dual-scale porous media. The theoretical and numerical results are used to 

propose models in forms of effective flow and heat transfer coefficients. The models are 

capable of estimating the fluid flow and heat transfer phenomena taking place in dual-scale 

porous media with appropriate fidelity and lower computational cost. The physical 

understanding of the models of transport phenomena in dual-scale porous structures allows 

us to tailor and optimise the morphology to accomplish optimal transport characteristics for 

the desired applications.  

To determine the flow coefficients, numerical simulations are performed for the fluid 

flow in a dual-scale porous medium. Two numerical procedures are considered. Firstly, we 
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perform direct pore-level simulations by solving the traditional mass and momentum 

conservation equations for a fluid flowing through the dual-scale porous structure. Secondly, 

numerical simulations are performed at the Darcy level. For this purpose, the permeability 

and Forchheimer coefficient of the small-scale pores are numerically determined. Then, they 

are implemented in Darcy-level simulations in which the volume-averaged and traditional 

conservation equations are solved for the small- and large-scale pores, respectively. The 

results of the two approaches are separately used to determine and compare the permeability 

and Forchheimer coefficient of the dual-scale porous media. 

To analyse the energy transport phenomena in dual-scale porous media, a mathematical 

model is developed by applying volume-averaging method to the convective–conductive 

energy conservation equation to derive the large-scale equations with effective coefficients. 

The closure problems are introduced along with the closure variables to establish the closed 

form of the two-equation model for heat transfer of dual-scale porous media. The closure 

problems are numerically solved for specific cases of dual-scale porous medium consisting of 

packed beds of porous spherical particles. The effective coefficients appearing in the two-

equation model of heat transfer in dual-scale porous media are determined using the solution 

of the closure problems. The velocity field in the dual-scale porous structure is calculated 

using the solution of the fluid flow simulations in dual-scale porous medium. Finally, 

“numerical experiment” is performed to qualitatively and quantitatively analyse the accuracy 

of the numerical results obtained using the up-scaled model in comparison with those of the 

pore-level simulations. 

The mathematical models developed in this work allow for the convenient use of the up-

scaled conservation equations with the effective coefficients to numerically analyse the fluid 

flow and heat transfer in dual-scale porous media at a reduced computational cost. 
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Chapter 1 

Introduction 

1. Introduction 

Natural and artificial porous media are omnipresent in various natural and engineered 

systems. The study of transport phenomena in porous media has attracted the attention of 

researchers from a wide variety of disciplines including Civil Engineering, Hydrology, 

Mechanical Engineering, Chemical and Petroleum Engineering, Material Engineering, and 

Biomedical Engineering, to name but a few [1]. Examples of porous media found in nature 

are gas and oil reservoirs, aquifers, and biomedical tissues such as vertebrate skeleton and 

plants vascular system. In addition, porous media have been designed and engineered to be 

used in different industrial systems such as fuel cells, chemical reactors, filtration processes, 

and building insulations. 

 Motivation 1.1.

“With the significant paradigm shift towards sustainable development in response to the 

growing environmental, economic, and security concerns associated with vulnerable reliance 

on fossil fuels, growing energy demand and continuing unmitigated CO2 releases, it becomes 

apparent that clean and renewable energy technologies will remain in the focus of 

international research and development activities in the foreseeable future” [2]. One of the 

recent technologies in the field of renewable fuel production is to thermally dissociate H2O 

and CO2 via solar thermochemical cycles based on metal oxide redox reactions [3–8]. 

Figure  1.1 schematically shows the working principle of a two-step solar thermochemical 

redox cycle [9]. In the first endothermic step, a metal oxide is thermally reduced using 

concentrated solar radiation to a lower oxidation state. Subsequently, in the exothermic 

oxidation step, reduced metal oxide is reoxidised with H2O and/or CO2 to form H2 and/or CO 

(synthetic gas). Finally, the reduced metal oxide is recycled to be used again in the cycle. 
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Figure  1.1. Schematic of the two-step solar thermochemical redox cycles for syngas production. 

The idea behind this technology is that by coupling the cycle to CO2 capture directly from 

atmospheric air, the same amount of CO2 is used to produce the fuel as is emitted by the 

combustion of the fuel. Thus, these solar-made hydrocarbon fuels can be considered as 

carbon-neutral fuels. Different variety of metal oxide redox pairs, such as Fe3O4/FeO, 

ZnO/Zn, SnO2/SnO and CeO2/Ce2O3, have been theoretically and experimentally assessed 

for solar H2O/CO2 splitting [10–15]. However, irrespective of the applied metal oxide redox 

pairs, a promising approach to accomplish the thermochemical cycle in a solar reactor is to 

form the reactive solid into a porous structure to promote efficient solid–gas reactions 

through a high specific surface area, and simultaneously achieving desired transport 

characteristics [3, 5, 16, 17]. 

The first reduction step is usually performed with solar reactors that are directly exposed 

to high-flux solar irradiation. Within the reactor, the more uniform the porous metal oxide is 

heated, the more efficient the metal oxide is reduced. Thus, uniform radiative absorption is 

desired to enable uniform volumetric heating of the structure. Thus, a porous structure with 

slightly large pores is desirable such that the radiation can penetrate through the medium. On 

the other hand, the second oxidation step is largely surface dependent. Thus, large specific 

surface area (SSA) is desired to enhance reaction kinetics. In a porous structure, it is well 

established that the smaller the pores are, the larger the SSA becomes. 
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Figure  1.2. An RPC ceria sample with dual-scale porosity. Reprinted from [18] with permission from Royal 

Society of Chemistry. 

However, porous structures supporting redox materials generally features only one of two 

desired properties: either with pores in μm-range exhibiting high SSA and less uniform 

radiative absorption, or with pores in mm-range exhibiting low SSA and more uniform 

radiative absorption. Recently, in light of the apparent trade-offs between rapid reaction 

kinetics and efficient radiation heat transfer, reticulated porous ceramics featuring dual-scale 

porosity were engineered, which are capable of combining both of the desired properties, 

namely uniform radiative absorption and high SSA [5, 18–23]. Figure  1.2 shows a dual-scale 

RPC ceria sample which can be used in a solar thermochemical reactor for H2O and CO2 

splitting [18]. Such novel structure can provide pores in the scale of millimetre for efficient 

radiative penetration and also micrometre pores within the struts to provide large surface area 

for the heterogeneous chemical reaction. 

For such novel technology in renewable fuel production, performing numerical 

simulations can not only give us insight into different phenomena occurring in a solar 

thermochemical reactor, but also enable us to find optimal designs for more efficient fuel 

production. Therefore, numerical simulations at a reactor level are needed to be performed to 

solve for heat and mass transfer coupled with chemical reaction. In a solar thermochemical 

reactor equipped with a dual-scale porous metal oxide (as illustrated in Figure  1.2), different 

length-scales are present from micrometers for the pores inside the struts to meters for the 

reactor and cavity receiver. Thus, performing numerical simulations at the reactor level is 

impossible using conventional numerical methods, since it requires enormous computational 
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resources. However, if we can propose models for the transport features taking place in the 

dual-scale porous media, it becomes possible to numerically analyse the phenomena 

occurring at the large-scale with logical computational cost. In addition, the effective 

transport properties of the media depend on the morphology. Thus, physically understanding 

the models of transport features of dual-scale porous structures enables us to engineer and 

optimise the morphology of the medium to achieve optimal transport characteristics for the 

desired applications. Investigation of transport in porous structures featuring different length-

scales can not only give a comprehensive insight into fundamental aspects of the transport 

phenomena in such structures, but also prepare the ground for developing numerical 

simulations to be used in practical large-scale engineered systems. 

 Thesis outline 1.2.

A comprehensive review of the literature is presented in Chapter  2 to understand the 

fundamentals of the field under study and to identify the knowledge gaps in the literature. 

This survey includes the background of the works that have been done to investigate modes 

of transport in different porous structures, and the approaches used to model such transport 

phenomena, including analytical, computational and experimental approaches. More 

attention is given to the studies in which the up-scaling method of volume averaging is used 

to theoretically analyse the transport phenomena in porous media. 

In Chapter  3, the fluid flow in a dual-scale porous medium is numerically investigated at the 

pore level. The dual-scale porous medium is consisted of a packed bed of porous spherical 

particles. The void-space between the spherical particles is the big pores. Inside the spherical 

particles, there is three-dimensionally ordered macroporous (3DOM) media featuring small 

interconnected pores. For direct pore-level simulations (DPLS), the mass and momentum 

conservation equations are solved for a fluid flowing in the media using the finite volume 

method. The results are then used to calculate the permeability and Forchheimer coefficient 

of the dual-scale porous media. In addition, the permeability and Forchheimer coefficient of 

the 3DOM structures are numerically determined to be implemented in Darcy-level 

simulations. Finally, the results of Darcy-level simulations are compared with those of the 

direct pore-level simulations. 

Chapter  4 presents a theoretical model development of heat transfer in dual-scale porous 

media. Firstly, the methodology is introduced, which is the method of volume averaging 
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applied for up-scaling transport phenomena. Then, a dual-scale porous structure is defined 

along with the associated length-scales, followed by the energy conservation equation and 

boundary conditions at the smallest scale considered in this work. The volume-averaging 

procedure is applied to the terms appearing the energy conservation equation. Then, the up-

scaled energy equation is introduced along with the effective coefficients which take into 

account the heat transfer of the small-scale in the up-scaled equation. Finally, the closure 

problems are introduced. The effective coefficients are calculated using the solution of the 

closure problems. 

Chapter  5 presents the numerical determination of the effective coefficients for different 

cases of dual-scale porous media. Firstly, the closure problems are numerically solved in 3D 

unit cells of packed beds of porous particles with different arrangements, representing the 

dual-scale porous media. The solution of the closure problem is then used to determine the 

effective coefficients appearing in the up-scaled energy equation. Finally, the results of the 

up-scaled model are compared with those of the pore-level simulations to investigate the 

fidelity of the up-scaled model. 

The key findings of this dissertation are summarises in Chapter  6, followed by 

recommendations for future work. 
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Chapter 2 

Background 

 

2. Background 

This chapter reviews the work done in the field of transport in porous media. This survey 

includes the background of the works that have been done to investigate modes of transport, 

including mass, momentum and heat transfer, in different porous structures. In addition, a 

brief review is presented for the approaches used to model transport phenomena in porous 

media, including analytical, computational and experimental approaches. Since the 

methodology used in current dissertation is the method of volume averaging, more attention 

is given to review the studies in which this up-scaling method is used to theoretically analyse 

the transport phenomena in porous media. 

 Significance of transport phenomena in porous media 2.1.

Different transport phenomena in porous media, including diffusion and adsorption, single- 

and multi-phase fluid flow, and different modes of heat transfer, can occur at various length-

scales from nano- and micro-meters to tens of meters. Therefore, it is of great importance to 

investigate each of the mentioned processes both individually and simultaneously. Such 

effort results in understanding and controlling the transport occurring in natural porous 

systems, as well as designing optimal engineered porous structures with desired transport 

features to be used in relevant industries.  

Mass transfer in porous structures is an important aspect of many environmental and 

engineering processes, including catalysis, reactors, petroleum recovery and separation via 

membranes. There are numerous examples of diffusion-controlled processes in various fields 

of engineering and science. For instance, diffusion can control the catalytic performance in 

porous catalysts [24], the ion- and proton exchange in fuel-cell electrodes [25], and species 

separation rate in membranes [26, 27]. It was shown in many experimental studies that the 

diffusion process in porous media is slower than that of a normal container without porous 
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media. Therefore, different effective diffusion coefficients have been proposed in porous 

media. Salama [28] used X-ray computed tomography scanning method to measure the 

diffusion of some hydrocarbon solvents in heavy oil in the presence of sand. Gooddy et al. 

[29] developed a method that enables the rapid determination of the effective diffusion 

coefficient of a solute in chalk. They reported that the outward diffusion of solute is not well 

characterised, however, an acceptable estimation of the apparent diffusion coefficient can be 

obtained with a relatively small effort. Cave et al. [30] presented a simple non-destructive 

method to measure one-dimensional pore diffusion coefficients in low-permeability geologic 

porous materials based on X-ray radiography. They concluded that the radiography 

measurements can significantly reduce the time for diffusion experiments, and also visualise 

the small-scale heterogeneities in diffusive properties within rocks. 

In various environmental and engineering applications, there exists fluid flow in porous 

media. In this case, the mass transport in a porous medium is mostly controlled by the fluid 

displacement, which is called hydrodynamic dispersion [31]. In other words, the distribution 

of mass inside the porous structure is a result of the velocity field developing in the medium. 

In addition, when flow rate is very small in a porous medium, the contribution of mass 

transport by diffusion and dispersion can be comparable to each other, which means they are 

needed to be considered simultaneously. Different models have been introduced for 

dispersion coefficient in porous media, which take into account the effect of pure diffusion 

and fluid flow. Bernard and Wilhelm [32] and Carberry [33] studied the effect of particle 

shape on dispersion in fixed beds. They observed that using non-spherical particles leads to 

higher values of dispersion in comparison with similarly-sized spherical particles. Auset and 

Keller [34] investigated the effect of particle and pore size on colloid dispersion at the pore-

level. They observed that the value of the dispersion coefficient at any constant flow rate 

depends not only on the pore‐space geometry but also on the size of the pore channels and 

the size of the colloids. 

Fluid flow in porous media is of great importance since it can significantly affect 

transport phenomena. The fluid dynamics in porous media is a relatively old topic. Since the 

development of Darcy's law in 1856 [35], it has been extensively used to estimate the 

velocity field in porous structures. Darcy's law correlates the pressure drop to the bulk 

velocity as: 
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p q

L K A





  ( 2.1) 

where Δp denotes the pressure difference across the length L, μ is fluid dynamic viscosity, K 

is the permeability of the porous media, q is the fluid volumetric flow rate, A is cross-section 

area of the bulk porous media. There are some assumptions made in the development of 

Darcy's law: (i) the solid phase is rigid; (ii) there is no chemical reaction; (iii) the fluid is 

homogeneous and incompressible; (iv) the value of Reynolds number is low, and (v) the drag 

coefficient is independent of velocity and pressure. It has been shown over the years that 

many of the above-mentioned assumptions are no longer valid for specific applications. For 

instance, as the Reynolds number increases, the contribution of inertial terms to the 

momentum balance leads to deviation from Darcy’s law [36, 37], leading to the well-known 

Forchheimer modification of the Darcy’s law [38]: 

2
p q q

L K A A

  
   

 


   ( 2.2) 

where  is the fluid density and β is the inertial flow coefficient. To predict momentum 

transport in porous media, Brinkman [39] modified the Darcy’s law by introducing a term 

which takes into account the fluid–solid boundary effects. In Brinkman’s model, an effective 

viscosity was proposed by considering the effect of porosity as below: 

 eff 1 2.5 1         ( 2.3) 

where ε is the porosity of the medium. In addition, studies have been carried out to modify 

the above correlation to take into account different types of porous structures [40]. 

Different modes of heat transfer (i.e. conduction, convection and radiation) can occur in 

porous structures used in various applications including thermochemical reactors [41, 42], 

compact heat exchangers [43, 44] and solar receivers [45, 46]. In porous media, the 

conduction heat transfer takes place in both solid struts with high thermal conductivity and 

fluid in the pores with lower thermal conductivity. Maxwell [47] was among the first 

researchers who studied the thermal conductivity in a fluid-saturated porous medium. Thus 

far, numbers of models have been proposed to determine effective thermal conductivity in 

different porous media such as packed beds of spheres [48] and metal foams [49, 50]. Singh 

[51] made a comprehensive review on various models of effective thermal conductivity in 

porous media. It was stated that apart from the thermal conductivities of the solid and fluid 
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phases and porosity, the effective thermal conductivity depends on the morphology of the 

porous structure and interphase interactions. 

In a porous medium, convective heat transfer arises when a fluid is flowing in the pores 

and around the solid struts, and this phenomenon is of practical interest in many industries. 

Generally speaking, porous media can provide very large specific surface area resulting in 

high overall heat transfer, which makes them promising structures to be used in many 

thermochemical reactors and thermal management applications. When there is a fluid flow in 

a porous medium, the energy transport is actually a conjugate heat transfer problem. Heat 

transfers in the solid struts by means of conduction, and then, is taken away via convection 

by the fluid flowing around the solid struts at the exposed surface area. Studies have been 

performed to measure convective heat transfer coefficients of different porous structures. 

Eroshenko and Yaskin [52] analysed the problem of forced convection in sintered metal 

foams, and reviewed the latest results reported in the field. Dixon et al. [53] and Balakrishnan 

and Pei [54] studied convection heat transfer in packed bed systems, and proposed model for 

overall heat transfer coefficients. Calmidi and Mahajan [55] experimentally and numerically 

investigated the forced convection of air in high-porosity aluminium foams. They reported 

that due to relatively low values of effective thermal conductivity of the foam, the extended-

surface efficiency of the porous block is very low, and convective heat transfer only occurs in 

a thin layer adjacent to the heated surface. More recently, with the help of numerical 

methods, convective heat transfer of different porous structures have been analysed at the 

pore level. Yang et al. [56] numerically studied the flow and heat transfer of some novel 

structured packed beds. They observed that packing arrangement and particle shape can 

significantly affect the convective heat transfer. They reported that the traditional correlations 

obtained for randomly packed bed arrangements overpredict the pressure drop and Nusselt 

number (the ratio of convective to conductive heat transfer) for structured packed beds, and 

proposed new correlations. Petrasch et al. [21] performed pore-level simulations on the 3D 

geometry of an RPC sample obtained from X-ray computed tomography. The results of the 

numerical simulations were used to determine the interfacial heat transfer coefficient and to 

derive a correlation for Nusselt number, which in turn were compared to proposed 

experimentally-determined correlations. 
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While most studies are focused on heat transfer and fluid flow problems in various porous 

structures, few are devoted to the radiative transfer phenomena in porous media. Radiative 

transfer in porous structures is of importance in many high-temperature engineering 

applications including porous burners [57, 58], fuel cells [59], thermochemical reactors [8], 

and thermal insulation [60, 61]. In complex structures such as porous media, solving 

Maxwell equations becomes a computationally-demanding task.  Inverse techniques have 

been developed to experimentally estimate the hemispherical/directional transmissivity and 

reflectivity of porous structures [62–64]. In addition, analytical models have been developed 

based on the independent scattering approach [65–67]. Significant efforts have been devoted 

to use more practical numerical procedures to model radiative transfer in porous systems, 

which can be classified into two categories. The first one is to use homogeneous phase 

approach in which the radiative transfer equation (RTE) is used to calculate the radiative 

properties of a porous system [68, 69]. In recent years, ray-tracing Monte–Carlo methods 

have been used to compute the intensity distribution in porous media. Similarly to the inverse 

techniques, the numerical results are used instead of experimental ones to predict radiative 

properties [70, 71]. 

 Analysis of transport phenomena in porous media 2.2.

In Section  2.1, it was shown how different modes of transport—including mass diffusion, 

fluid flow and heat transfer—can occur in porous structures. Therefore, modelling the 

mentioned phenomena is of significant importance in several fields of engineering. For 

instance, in enhanced oil recovery applications, the objective of water injection is to fill the 

voids saturated with oil to maintain the desired pressure. Therefore, understanding the multi-

phase fluid flow behaviour can lead to more efficient oil recovery [72–74]. In addition, in the 

field of groundwater protection, modelling the diffusion of contaminants in porous rocks can 

give us insight into contamination of drinking water supplies. Last but not least, in modern 

thermochemical reactors equipped with porous reacting media, different modes of transport 

phenomena such as diffusion due to chemical reaction, fluid flow and heat transfer play a 

significant role. In this section, a review is conducted on different approaches used to 

investigate transport phenomena in porous media, including analytical, computational, and 

experimental techniques. 
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2.2.1. Theoretical methods 

Mathematical description of transport phenomena in porous structures is rather complicated 

due to the presence of different length-scales. For the conventional numerical methods, 

spatial discretisation is required to consider all these length-scales to capture the details of the 

transport phenomena and remain stable. Such different length-scales can vary from nano- or 

micro-meters to tens of meters. Thus, it seems to be a computationally-challenging task, even 

with current advances in computer technologies.  

Beside difficulty of resolving different length-scales, investigating average properties 

seems to suffice in most of the engineering applications. For instance, in a thermochemical 

reactor used for water-splitting, it is of interest to estimate the amount of hydrogen 

production in the cycle. Therefore, different up-scaling techniques have been used to propose 

averaged models to take into account the transport features at different length-scales. The 

objective of using up-scaling techniques is to theoretically provide models for transport 

features of small-scales which can be applied in the large-scale transport equations to 

significantly reduce the required computational time. In the following, a brief review is 

presented on the up-scaling techniques in the field of porous media. 

Non-local theory 

Non-locality on the macro-scale is the result of not using boundary data during the up-scaling 

procedure from micro-scale [75, 76]. For a given transport variable under consideration, if 

information coming from the regions of time and space is different from the point vicinity 

where the variable is evaluated, then the theory is said to be non-local. In the context of 

transport phenomena in porous media, a constitutive theory is called non-local if it includes 

time and/or space integration or higher-order derivatives. Therefore, it is not possible to 

define intrinsic properties attached to a point of space. It has been shown in some numerical 

and experimental studies that the macroscopic dispersion is non-local for specific 

heterogeneous structures [77–80]. 

The development of non-local theories is based on time integration of fluid flow in 

heterogeneous media, and the effect of velocity fluctuations is mainly investigated in a 

probabilistic manner [81, 82]. The macroscopic dispersion tensor is obtained from a spatio-

temporal procedure involving a memory function that takes into account the complexity of 

the local velocity field [75, 83–85]. The local dispersion is neglected in these purely 
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adventive theories by judging its effect. This issue has been discussed many times, and 

extensions have been proposed [86, 87]. However, the major disadvantage is the difficulty of 

practically using such models, because of the complex definition of the macroscopic 

dispersion tensor. 

Stochastic approach 

Experimental techniques including core, seismic, and electric measurements do not allow 

providing a complete cartography of a geological formation. They provide either global and 

qualitative or precise and localised information. The analysis of all the data leads to defining 

statistical quantities related to heterogeneities. Due to the lack of reliable information in 

natural environments, stochastic theories have been proposed. In these approaches, a porous 

medium is considered as a realisation of a random phenomenon. The term “random” simply 

means that the configuration, arrangement, and properties vary from one realisation to 

another. Thus, the most appropriate tool to study its variations is probabilistic concept. 

However, in practice, there is only one realisation. To be able to use this probabilistic 

concept, two fundamental hypotheses are added: 

 Stationarity hypothesis: it is generally assumed that, for all directions, the law of 

probability of the property under investigation is stationary in the space. 

 Ergodicity hypothesis: it is possible to replace the spatial average of a variable in a 

single realisation with the ensemble average of the given variable within the 

ensemble. This hypothesis actually connects the single realisation to the ensemble. 

In stochastic approach, a variable, such as the porosity, permeability, position, and 

velocity, at the Darcy level is defined by its average value plus a random time-statistical 

fluctuation term. Several hypotheses on the statistics of local properties are made in order to 

make it possible to theoretically develop the macroscopic equations. One of the most 

fundamental variables in the framework of the stochastic approach is the hydraulic 

conductivity of the medium (or permeability of the medium) whose variation in space 

reflects directly the field heterogeneity [88–90]. It was shown that the effects of porosity 

variation or the variation of the local dispersion coefficient are secondary to the effects of 

permeability distribution [91, 92]. Freeze [93] studied a large number of aquifers, and 

showed that the logarithm of the permeability followed a normal distribution. Dagan [94] 
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chose a Gaussian distribution for the random function representing the logarithm of the 

permeability. However, the proposed model seems to be valid only for a small range of 

variation in the permeability distribution. The models of transport phenomena in porous 

structures provided by the stochastic approach have been successfully verified in some 

numerical and experimental studies [95, 96]. However, it has been shown that the 

fundamental assumptions of this approach, in particular the ergodicity hypothesis, is only 

valid when the domains are unrealistically and infinitely large [97]. 

The homogenisation method 

Homogenisation theory has been used to theoretically develop macroscopic models which 

are derived from microscopic transport phenomena in porous media. This method was firstly 

developed in the studies of partial differential equations for extremely heterogeneous media. 

The purpose of homogenisation theory is to study the limiting behaviour transport variables 

at the pore-level. The idea behind this theory is that the microscopic fluctuations of transport 

variables generated in pores will average out, resulting in a simple homogenised partial 

differential equation which governs the macroscopic behaviour. The basic principles of this 

theory can be found in the textbook by Yang [98]. The most famous work in this field was 

performed by Tartar [99, 100], who used the homogenisation theory on the Stokes equation 

in periodic domains to show the mathematical proof of Darcy’s law and to obtain 

permeability tensor. Using homogenisation theory, researchers have theoretically 

investigated the mechanical characteristics of composite materials [101], transport 

phenomena in electrochemical systems [102], and nano-porous materials [103]. 

The method of volume averaging 

The volume-averaging method (VAM) applies the volume-averaging operator to the 

transport equations. This method was firstly introduced by Anderson and Jackson [104], 

Slattery [105] and Whitaker [106]. Since then, it has been used as a general mathematical 

tool in a wide range of applications, including single- and two-phase flows, as well as heat 

and mass transfer. The methodology used in the current work is the volume-averaging 

method to theoretically develop the heat transfer in dual-scale porous structures. Thus, the 

details of this method are presented next, along with a brief review of application of this 
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method in the field of transport phenomena in porous media. Considering Figure  2.1, this 

method is based on the following two assumptions: 

1) The characteristic length-scale of the first level is very small compared to the 

characteristic length-scale of the upper level. 

2) The radius of the averaging volume is large relative to the characteristic length-scale 

of the first level, and small relative to the characteristic length-scale of the upper 

level. 

These two ideas can be formulated as: 

0, l l r L   ( 2.4) 

 

Figure  2.1. Characteristic length-scales at different levels and averaging volume. 

Up-scaling techniques based on VAM have been widely used in different fields of 

engineering to derive the continuum governing equations and model transport phenomena in 

multiphase systems. In this method, the spatial and/or temporal averaging procedures are 

applied to the governing equations to remove the large gradients appearing in the 

microscopic field variables including pressure, velocity and temperature. Figure  2.2 

schematically shows the volume-averaging procedure in a porous medium consisting of fluid 

(β) and solid (σ) phases. Applying VAM to the microscopic governing equations lead to the 

up-scaled volume-averaged equations with effective coefficients.  
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Figure  2.2. Schematic of the volume-averaging procedure in a porous medium. 

The effective coefficients are obtained from the solution of the closure problems for a 

spatially periodic model of the given porous structure. The closure problems are derived by 

developing the governing equation for the spatial deviation of the transport property under 

study. Spatially-periodic assumption makes it possible to study the REV with periodic 

boundary condition instead of studying the entire porous domain. The REV needs to be large 

enough, such that the calculated effective coefficients from the solution of the closure 

problems for the selected REV can represent the whole porous medium. A rigorous 

mathematical development of the transport equations for multiphase systems was presented 

by Whitaker [107] and Gray [108]. The general procedure of the VAM is presented next. 

Assume that the general transport equation is as below: 

 





   


s
t

v Ω   ( 2.5) 

where  , v  and s  are a generic transport variable, the velocity vector, and the source term, 

respectively. The parameter Ω  is a tensor with one order greater than  . Considering fluid 

(β) and solid (σ) phases in Figure  2.1, the averaging volume V is the sum of the volumes of 

the β- and σ-phases. Two definitions are used for the average of   to analyse the transport 

phenomena in the multiphase systems. The superficial or extrinsic average is defined as: 
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The intrinsic average is defined as: 

β

β

β β

β

1
d  

V

V
V

  ( 2.7) 

The superficial and intrinsic averages are related to each other by the volume fraction of the 

phase ( β β V V ) as below: 

β

β β β     ( 2.8) 

During the averaging process, we make use of spatial averaging theorem (SAT) [109] 

which relates the average of a derivative to the derivative of the average as below: 

βσ
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n   ( 2.10) 

where βσA  is the interfacial area between the β- and σ-phases, and βσn  is the unit normal 

vector pointing from β to σ. In addition, to change the average of product into product of 

averages during the volume-averaging procedure, deviation terms ( βv  and β ) are defined 

as: 

β β β v v v   ( 2.11) 

β β β      ( 2.12) 

With some arrangements and with the assumption of constant phase volume fractions, 

applying the volume-averaging procedure to Eq. ( 2.5) and using the definitions presented in 

Eqs. ( 2.9)–( 2.12), the volume-averaged transport equations for the β- and σ-phases read: 

 
βσ

β

β ββ

β β β β β β βσ β β β

1
d


   


      
 

A

A s
t V

v v Ω n Ω   ( 2.13) 

σβ

σ

σσ

σ σ σβ σ σ σ

1
d


 


   

 
A

A s
t V

Ω n Ω   ( 2.14) 

This procedure can be applied to the mass, momentum and energy conservation equations to 

derive the macroscopic transport equations. 



17 

 

In porous media, applying VAM to the microscopic transport equations leads to the 

macroscopic transport equations along with the explicit relation between the two regions in 

the form of the macroscopic coefficients appearing during the up-scaling procedure [109]. In 

the first studies of using VAM in porous structures, the method was applied to theoretically 

develop the up-scaled mass, momentum and energy conservation equations. For instance, 

applying VAM to the mass and momentum conservation equation in porous media leads to 

the development of Darcy and Darcy–Forchheimer equations along with the introduction of 

local effective coefficients as permeability and Forchheimer coefficient [110, 111]. 


 p

K
v   ( 2.15) 

F
  

c
p

K K
v v v   ( 2.16) 

where v  is the superficial average velocity vector and 
Fc  is the Forchheimer coefficient. 

To theoretically analyse the diffusion phenomena in porous structures, VAM was applied 

to the species governing equation [106, 112], leading to the introduction of diffusivity tensor. 

In addition, volume-averaged energy conservation equation in porous media has been 

developed based on two assumptions. The first one is local thermal equilibrium (LTE) 

assumption leading to one-equation model with effective thermal conductivity tensor [113]. 

The second one is local thermal non-equilibrium (LTNE) assumption leading to two-equation 

model with effective thermal conductivity tensor plus the interfacial heat transfer coefficient 

which takes into account the convection heat transfer between the solid and fluid phases 

[114]. Lipiński et al. [115, 116] applied volume-averaging method to the discrete-scale 

equations of radiative transfer to theoretically derive the continuum-scale radiative transfer 

equations and the corresponding boundary conditions of two-phase and multi-component 

media. 

In the earlier studies using the VAM to theoretically investigate the transport phenomena 

in porous media, many simplifications have been made including incompressible fluid, no 

heat source or linear heat sources, and single-phase fluid flow. Leroy and Bernard [117] 

considered up-scaling of heat transfer in porous media with nonlinear heat sources using 

VAM. They also made used of down-scaling methodology which allows reconstructing the 

temperature field and the heat source in the sub-domain of the porous media, in order to 
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improve the accuracy of the up-scaled heat transfer model. Zaouter et al. [118] analysed the 

flow of slightly compressible gas in fractured media. They applied VAM to mass, 

momentum, and gas state law equations to provide a macroscopic model with the definition 

of effective transmissivity tensor. They showed that an expansion to the first order in the 

Knudsen number (the ratio of the molecular mean free path to the representative physical 

length-scale) is carried out on the closure, yielding a decomposition of the effective 

transmissivity tensor into its purely viscous part and its slip correction. Qiu et al. [119] used 

volume-averaging method to up-scale multi-component mass transfer and reaction in rigid 

porous media. They considered the first-order reversible reaction occurring at the solid–fluid 

interface, and calculated the effective coefficients by solving the associated closure 

problems. 

Apart from transport phenomena within porous media, the problem of transport at the 

boundary between a porous medium and a homogeneous fluid is of great importance as it 

occurs in a wide variety of technological applications. Therefore, studies have been 

conducted using VAM to investigate the interface conditions. Ochoa-Tapia and Whitaker 

[120, 121] developed the momentum transfer interface conditions as jump conditions, which 

apply at the boundary between a porous medium and a homogeneous fluid based on the non-

local form of the volume-averaged momentum equation. They stated that further 

experimental studies are required to develop a reliable empirical representation. In another 

investigation performed by Ochoa-Tapia and Whitaker [122], VAM was applied to develop 

the heat transfer interface conditions at the boundary between a porous medium and a 

homogeneous fluid. The flux jump conditions derived in their study is in the form of surface 

transport equations consisting of excess surface accumulation, convection, conduction, and 

the excess surface heat exchange. Alazmi and Vafai [123] analysed the effect of using 

different types of interfacial conditions between a porous medium and a fluid layer on fluid 

flow and heat transfer at the vicinity of interface region. They investigated the effects of 

Darcy number (the ratio of permeability of the medium to its cross-sectional area), inertia 

parameter, Reynolds number (the ratio of inertial forces to viscous forces), porosity and slip 

coefficients. They concluded that using different interface conditions has more significant 

effect on the velocity field compared to the temperature field and Nusselt number 

distributions. 
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2.2.2. Experimental methods 

Parallel to the theoretical methods, experimental techniques have been extensively used to 

investigate and model the transport phenomena in porous media. Macroscopic transport 

properties have been experimentally estimated for different porous structures. Straatman et 

al. [124] carried out experiments to quantify the hydraulic loss and convective heat transfer 

of water flowing through blocks of graphitic foams. Figure  2.3 shows the schematic of the 

experimental setup used in their study. A similar experimental setup was used in other 

studies in which the macroscopic heat and fluid flow properties were investigated. By using 

the classical Darcy–Forchheimer law for porous media, they calculated the permeability and 

Forchheimer coefficients from the pressure drop obtained experimentally. In addition, they 

used the correlation below to calculate the convective heat transfer coefficient hsf: 

sf

fa LM fa
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h D q D

k T k


 


  ( 2.17) 

where D is the characteristic pore diameter, kfa is the fluid thermal conductivity, 
LMT  is the 

log-mean temperature difference, and q  is the heat flux. 

 

Figure  2.3. Schematic of experimental setup used for obtaining macroscopic heat and fluid flow properties. 

Reproduced from [124], with permission from ASME. 

Similar experimental procedure was applied by Leong et al. [125] to estimate the 

permeability, Forchheimer coefficients and average Nusselt number of graphite foams. Yang 

et al. [126] experimentally studied the macroscopic hydrodynamic and heat transfer 

characteristics in structured packed beds with different arrangements. They reported that the 

traditional Ergun’s [127] and Wakao’s [128] equations overpredict the friction factors and 

Nusselt numbers for the structured packed beds, respectively. They proposed experimentally-

modified correlations. From microscopic standpoint, studying flow and heat transfer 

characteristics in porous media is a difficult task due to the invasive characteristics of direct 
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measurement methods, high mixing and the inherent three-dimensionality of the flow. 

Recently, optical methods such as particle image velocimetry (PIV) have been used to 

achieve the required optical access and to microscopically investigate the transport 

phenomena [129–131]. Huang et al. [130] proposed imaging methods to characterise liquid 

flow through transparent porous medium composed of randomly packed beds of spheres. It 

was stated that the pore-level experimental results can be used to validate the direct pore-

level simulations of the flow. Shams [132] used the PIV method to study flow behaviour at 

the interface of a porous medium and homogenous fluid. He reported that the fluid penetrates 

the porous medium much less significantly than predicted by Brinkman's equation. Although 

high quality 3D information can be provided by such experimental methods, they generally 

require expensive imaging equipment. 

2.2.3. Computational methods 

Transport phenomena in porous media significantly depend on several morphological and 

pore-level features such as tortuosity of the structure, irregular pore surfaces and even dead-

end pores. Raoof and Hassanizadeh [133] demonstrated the significance of including kinetics 

obtained from the pore level, rather than relying on macroscopic properties. Therefore, 

studying the transport phenomena in porous media at the pore level is of great fundamental 

importance. Although it is possible to estimate the macroscopic effective properties of a 

porous structure by performing experiments, finding experimental correlation for such 

effective properties is an expensive task. In addition, the experimental investigation of 

transport phenomena in porous media is inherently difficult due to the invasive 

characteristics of direct measurement methods. Therefore, experimental methods can only 

give the macroscopic properties without any details about fluid–solid interaction, mixing, and 

secondary flows due to the fluid flow in tortuous interstitial pores.  

Fatt [134] was amongst the first researchers who modelled a simple network of tubes 

representing real porous media, and derived the capillary pressure curves and pore size 

distributions. However, the real 3D pore-level modelling did not occur until the main 

advancement in computer power. The recent advancement in computers and imaging 

techniques has made it possible to three-dimensionally investigate transport phenomena in 

porous media at the pore level using numerical methods. 
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The first step to perform pore-level simulations is to choose the representative elementary 

volume (REV) of the given porous structure. The REV is the smallest volume of a structure 

which represents a property of the whole medium. If the porous sample is too small, 

oscillations are observed in the measurement of the property under study. By increasing the 

size of the sample, the observed fluctuations start to relax until the sample is big enough such 

that consistent measurements can be made for the property. There are several criteria to 

choose the dimensions of REV such as average pore diameter. However, this matter is not 

reviewed here for brevity. Once the appropriate size is selected for an REV, the 3D image of 

the structure is generated. One technique is to use direct imaging methods to generate the 

image of the porous structure using 2D destructive cutting [135], confocal laser scanning 

microscopy [136, 137] or X-ray computed tomography [138, 139]. Once the 3D images are 

generated, the physical model is built and meshed, and the numerical simulation can be 

performed [21-23, 140–146]. Void-space reconstruction is another technique to generate 

samples of porous media based on a statistical knowledge of the micro-structure of interest. 

In this method, a large number of small primitive objects, such as spheres and cylinders, are 

generated based on the dimensions obtained from statistical data describing the micro-

structure of interest. Then, a finite domain is filled with the generated interfering primitives. 

The result is a digital domain representing the desired micro-structure, which is used in pore-

level simulations to predict effective transport properties [147–156]. 

In a study performed by Vu and Straatman [156], the numerical results obtained using 

pore-level simulations were compared with of the volume-averaged model for three-

dimensional spherical-void-phase models. They used the results of the pore-level simulations 

to establish effective coefficients such as the porosity, permeability, Forchheimer 

coefficients, interstitial exchange and interstitial surface area. They implemented the 

effective coefficients as closure coefficients in the volume-averaged model. It was shown 

that the temperature variations predicted by the volume-averaged model is acceptably close 

to those obtained using the pore-level simulation. Das et al. [157] applied immersed 

boundary method and CFD to solve the flow and heat transfer in an actual foam geometry 

obtained using a 3D scan of computed tomography. They compared their fluid flow results 

with those obtained using the Ergun correlation [127] as well as the experimental ones 

reported in [158]. They proposed a correlation for the Nusselt number of the foam sample. 
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Alam et al. [159] applied new techniques to obtain exact three-dimensional geometry of 

silicon carbide foams and performed direct pore-level simulations to study transport 

phenomena of the porous medium. By using this method, they were able to determine the 

thermal conductivity, permeability, friction factor, and heat transfer coefficients of the foam. 

It was claimed that the approach is quite general and can be used for other porous media. 

Suter et al. [146] experimentally characterised reticulate porous ceramic of ceria via 3D 

tomographic techniques. Then, they performed direct pore-level simulations on the generated 

geometry to determine the effective transport properties including extinction coefficient, 

scattering phase function, effective thermal conductivity, interfacial heat transfer coefficient, 

permeability, Dupuit–Forchheimer coefficient, and tortuosity. They concluded that such 

investigation provides guidance for pore-level engineering of materials used in solar reactors 

and other high-temperature heat and mass transfer applications. 

Although performing numerical simulations on the exact porous structure generated by 

direct scanning can provide useful details of transport phenomena in porous media, it is an 

expensive and time-consuming task, in particular for performing parametric studies. Thus, 

idealised geometries have been generated based on the morphology of the porous medium. 

Then, numerical simulations are performed on the idealised REV [160–162]. Krishnan et al. 

[163] carried out direct simulations of the fluid flow and heat transfer in an open-cell metal 

foam using a periodic idealised unit cell. Figure  2.4 shows the geometry creation procedure 

for the metal foam unit cell. As depicted, the unit cell can be generated by subtracting the 

body-cantered cubic packing arrangement from the cube, where the diameter of the spheres is 

slightly larger than the cube edge length. They calculated the effective thermal conductivity, 

pressure drop, and convective heat transfer coefficient of the structure, and reported 

acceptable consistency with the existing experimental measurements and semi-empirical 

models. Choosing ideal periodic isotropic foam structures made it possible for Kumar and 

Topin [164] to study the effect of different strut shapes and their various orientations on the 

flow properties, namely the permeability and the inertia coefficient, for a wide range of 

porosity and Reynolds number. They compared their numerical results with the available 

experimental data, and observed an acceptable agreement. 
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Figure  2.4. Metal foam unit cell geometry creation, reproduced from [163] with permission from ASME. 

An interesting phenomenon in porous media is the transport occurring at the interface of a 

porous medium and homogeneous fluid. Sahraoui and Kaviany [165–167] performed direct 

pore-level simulations to analyse the fluid flow, conduction and convection occurring at the 

interface of porous and plain media. They examined the effect of fluid flow direction, 

porosity, Reynolds number, and the 2D porous structure arrangement on the velocity and 

temperature slip coefficients. It was observed that the slip coefficients depend on the 

structure, the flow direction, the Reynolds number, and the nonuniformity in the arrangement 

of the porous medium. 

 Transport phenomena in porous media with different length-scales 2.3.

In many applications such as hydrogeology, petroleum engineering and chemical reactors, 

multiple length-scales are present in the porous media. By using VAM, models have been 

developed for such porous media, which can capture the phenomena occurring at different 

length-scales [168–171]. Quintard and Whitaker [172] considered the two-phase flow in 

heterogeneous porous media. They stated that the local volume averaging becomes extremely 

complex for a porous medium featuring different length-scales. Thus, large-scale averaging 

can be used to average the equations at the Darcy level over a region which is larger enough 

containing the different length-scales. Using the large-scale volume averaging of the 

continuity and momentum equations and assuming the principle of local mechanical 

equilibrium, they derived the up-scaled equations along with the closure problems. Solution 

of the closure problems leads to the calculation of large-scale permeability tensors and 

capillary pressure. In another study by Quintard and Whitaker [173], the transport of an 

adsorbing solute in a two-region model of a heterogeneous porous medium was theoretically 

analysed using large-scale VAM. They stated that if the assumption of large-scale mass 

equilibrium is valid, one-equation model can represent the solute transport process. With 
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such constraints, they developed the large-scale mass transport equation in terms of the large-

scale average velocity, an average adsorption isotherm, and a single large-scale dispersion 

tensor. Yan et al. [174] applied the VAM to develop the closed form of solute transport in 

columns consisting of ordered pillar array columns with a thin retentive layer. They 

developed the closure problems and solved them for a unit cell with periodic boundary 

condition to calculate the dispersion tensor as a function of geometry shape and size, velocity 

field, retention, and resistance to mass transfer. They compared the results of their up-scaled 

model with those of the pore-level simulations as well as the experimental ones. Good 

agreement was observed. In another study performed by Yan et al. [175], they expanded their 

previous investigation and analysed the solute transport in hierarchical porous structure with 

reversible adsorption using the VAM. They derived a transient macroscopic advection–

diffusion equation to describe the multi-scale solute transport problem, and introduced the 

closure problems. It was stated that the theoretical dispersion tensor is a function of velocity 

field at the pore level, and it can be calculated by performing pore-level simulations for unit 

cells of the hierarchical porous media. They concluded that the volume-averaged model can 

be used for predicting solute transport behaviour in packed beds of particles. 

While numerous theoretical and experimental studies of transport phenomena exist for 

single-scale porous media, only few studies address transport phenomena in multi-scale 

porous media, e.g. for solute transport and advection–diffusion [173–175], and heat transfer 

problems [176–181]. Jadhav and Pillai [176] employed the control-volume approach to 

perform numerical simulation of 1D non-isothermal flow in fibrous dual-scale porous media 

based on energy balance in a two-layer model. They included conduction and convection 

between the two scales in their energy balance analysis. However, no definition for effective 

coefficients of the dual-scale porous media was presented. They stated that the conventional 

models for single-scale porous media cannot properly predict the heat transfer in dual-scale 

porous media, and more investigation is required to model and validate the heat transfer 

phenomena in a dual-scale porous medium. Munagavalasa and Pillai [177] performed 

numerical simulation on a 2D REV of an idealised dual-scale porous medium to estimate the 

effective thermal conductivity used in the volume-averaged energy equation of a dual-scale 

porous media. They included the convective heat transfer between the two regions in their 

volume-averaged energy equation. However, they only focused on the estimation of effective 
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thermal conductivity and its dependency on relevant parameters including velocity and 

spacing between regions.  

Bi-disperse porous media (BDPM) is another terminology for porous structures with two 

different pore length-scales. in BDPM, the ligaments of the parent porous medium are porous 

themselves with interconnected pores [182, 183]. A review of the studies on convective heat 

transfer in bi-disperse porous media is presented by Nield and Bejan [182] and Mahmoudi et 

al. [183]. Nield and Kuznetsov [184–186] modelled fluid flow and heat transfer in BDPM, 

assuming LTE inside the micro-porous media. They proposed volume-averaged equations to 

model fluid flow and heat transfer in BDPM. Their volume-averaged two-equation model is 

an extended version of the two-equation model used for heat transfer in single-scale porous 

media based on LTNE assumption. They considered the convection term in both regions, 

without taking into account the energy exchange occurring as a result of fluid flow between 

the regions. The effective coefficients were not defined in their study. In addition, the model 

was not verified against experimental experimental data or the results obtained using pore-

level simulations. In another study performed by Nield and Kuznetsov [187], they applied the 

same model to numerically investigate external natural convection in BDPM. Model 

verification was not performed by comparing the numerical results with experimental data or 

those obtained using pore-level simulations. The model proposed by Nield and Kuznetsov 

[184–186] was used by other researchers such as Kumari and Pop [188] for mixed 

convection of a circular cylinder embedded in a BDPM, and Wang and Li [189] for forced 

convection in BDPM incorporating viscous dissipation. Narasimhan and Reddy [190] and 

Narasimhan et al. [191] numerically investigated the application of  BDPM in thermal 

management of heat generating electronics. They performed two-dimensional numerical 

simulations at the Darcy level—solving traditional conservation equations in the macro-pores 

and the volume-averaged conservation equations in the micro-pores. They assessed the effect 

of the permeability of the micro-porous region. Similar procedure was used in another study 

by Narasimhan and Reddy [192] to numerically investigate two-dimensional natural 

convection inside a square BDPM enclosure made from uniformly-spaced micro-porous 

blocks. However, the Darcy-level simulations performed in their study are computationally 

very expensive. Thus, this procedure is not feasible to model the three-dimensional transport 

phenomena in dual-scale porous structures in actual large-scale applications. 
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 Research objectives 2.4.

No previous pertinent studies reported the development of volume-averaged conservation 

equations for dual-scale porous media. A new approach to modelling the fluid flow and heat 

transfer in dual-scale porous media is proposed to facilitate computationally inexpensive but 

high-fidelity simulations suitable for large-scale applications. No studies have been reported 

on rigorously defining the effective fluid flow and heat transfer coefficients in a dual-scale 

porous media by performing multi-scale analyses of mass, momentum, and energy equations, 

and considering the exchange between the regions of different length-scales. This research 

gap needs to be addressed for contemporary engineering applications of dual-scale porous 

media in hydrogeology, petroleum engineering chemical reactors, and in particular high-

temperature solar thermochemical systems featuring advanced materials-by-design [18, 19, 

193–195]. Therefore, in order for the novel dual-scale porous structures to be used in their 

full potential in different applications, investigations are required to understand and model 

different transport phenomena in such structures. This issue becomes even more complicated, 

more important and worthy of investigation when dual-scale porous media are used as a 

reacting medium in high-temperature thermochemical reactors. In such applications, different 

modes of transport occur simultaneously, such as fluid flow, different modes of heat transfer 

and species transfer due to chemical reaction. 

This dissertation is motivated by the need for understanding and analysing transport 

phenomena in structures featuring dual-scale porosity appear and used in many applications 

such as hydrogeology, petroleum engineering, chemical reactors, and in particular energy 

technologies in high-temperature thermochemistry. The main objective of this thesis is to 

theoretically formulate and numerically demonstrate the fluid flow and heat transfer 

phenomena in dual-scale porous media. To investigate the flow process, numerical 

simulations, at the pore and Darcy levels, are performed on fluid flow in a dual-scale porous 

medium. The effective flow coefficients are determined using the numerical results. To 

investigate heat transfer in dual-scale porous media, the up-scaling method of volume 

averaging [109] is used to progressively pass information from the smallest scale (pores in 

the struts of the medium depicted in Figure  1.2) to the largest one (the bulk of porous 

structure at the application level). The closed form of the energy equation in dual-scale 

porous media is derived, and the effective coefficients are defined. The up-scaled form of the 
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conservation equations with the effective coefficients are exactly the requirements for 

performing parametric numerical studies at the application level such as the reactor level. 

 Summary 2.5.

A review of the literature in the field of transport phenomena in porous media has been 

presented in this chapter. The importance of modelling different transport phenomena in 

porous structures used in numerous natural and engineering applications was discussed. A 

review of the methods employed to investigate the transport phenomena in porous media has 

been presented, including theoretical, experimental, and computational methods. 

In Section  1.1, the promising features of dual-scale porous structures have been 

discussed, in particular as a reacting medium in solar thermochemical applications. A review 

on the literature presented in Sections ‎2.1 and ‎2.2 reveals that a great deal of attention has 

been devoted to theoretical, experimental and numerical investigations on transport 

phenomena in conventional porous media featuring only one characteristic length-scale. 

Transport phenomena in multi-scale porous media have been addressed in few studies, which 

have been reviewed in Section ‎2.3. Finally, the research questions, the gaps in the literature, 

and the objective of this thesis are discussed in section ‎2.4. 
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Chapter 3 

Fluid flow analysis 

 

3. Fluid flow analysis 

Fluid flow in dual-scale porous media is numerically investigated at the pore level. The 

model dual-scale porous medium consists of a packed bed of porous spherical particles. The 

void-space between the spherical particles represents the large-scale pores. The spherical 

particles are formed from three-dimensionally ordered macroporous (3DOM) media 

featuring small interconnected pores. To perform DPLS, traditional mass and momentum 

conservation equations for a fluid flowing through the medium are solved. The results are 

then used to calculate the permeability and Forchheimer coefficient of the dual-scale porous 

media. The permeability and Forchheimer coefficient of the 3DOM structures forming the 

spherical particles are numerically determined and implemented in the Darcy-level 

simulations. For this case, the volume-averaged and traditional conservation equations are, 

respectively, solved for the small-scale pores inside the spherical particles and large-scale 

pores between the particles. Finally, the results of Darcy-level simulations are compared with 

those of the DPLS. 

 Problem statement 3.1.

Figure  3.1a illustrates the spherical particles containing 3DOM porous structures which are 

used in the model of the dual-scale porous packed bed. In the packed bed, the porous 

spherical particles ( 2 1R mm) are arranged such that they create a body-centred cubic 

(BCC) packing arrangement, resulting in inter-particle pores of a much larger length-scale 

than contained in the particles. The length of the BCC unit cell is 
4

1.16
3

 
R

L mm. One 

quarter of the BBC unit cell is used as a computational domain to reduce computational cost 

since it is symmetric (Figure  3.1b). The intra-particle region consists of 3DOM structures in 

which the solid ligaments are generated by subtracting an FCC packing arrangement from a 
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cube (Figure  3.1c). In the unit cell of the 3DOM structure with the edge length of a, the 

radius of the small particle (r) needs to be slightly greater than 
2

4
a  to generate 

interconnected pores. Thus, the greater the value of r compared to 
2

4
a  is, the bigger the 

windows between the small pores becomes (Figure  3.1c). In the packed bed of porous 

spherical particles, the values of R, L, and a remain constant for the numerical simulations. 

Three values 18, 18.5 and 19 µm are considered for r leading to 3DOM porosity of 0.78, 0.85 

and 0.92, respectively. ANSYS DesignModeler [196] has been used to generate the 

structures shown in Figure  3.1. In addition, line 1 is defined in the computational domain as a 

location containing flow both in the inter- and intra-particle regions for further analysis after 

a solution has been found. 

 

 

(a) (b) 

 

Figure  3.1. Packed bed of porous spherical particle, (a) 3DOM spherical particles, (b) computational domain, 

and (c) unit cells of 3DOM structures. 
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Before describing the numerical method for solving fluid flow in the dual-scale porous 

structure depicted in Figure  3.1, the reason for choosing the 3DOM structures as the model 

material is briefly discussed here. These structures have recently attracted attention of 

researchers due to their unique pore structure such as high specific surface area and high 

porosity. These features made them promising materials in applications including 

heterogeneous catalysis [197, 198], thermochemical reactors [199–201] and lithium ion 

batteries [202, 203]. 3DOM structures with open and interconnected pores have been 

successfully synthetised and tested in different catalytic cycles [197, 200, 204, 205]. Thus, a 

model of dual-scale porous medium consisting of a packed bed of 3DOM particles is 

considered due to its potential application in solar thermochemical reactors. The proposed 

structure simultaneously benefits from the unique characteristics of dual-scale porous media 

and 3DOM structures. 

 Methodology 3.2.

In this section, the methodology used to perform direct pore-level simulations as well as 

Darcy-level simulations is presented. This includes the mass and momentum conservation 

equations at pore level and Darcy level, boundary and interface conditions, numerical 

method, and grid independency analysis. 

Governing equations 

For DPLS, the traditional conservation equations of mass and momentum are used for steady 

flow of an incompressible Newtonian fluid (air in this study):  

0 v  ( 3.1) 

  2

f f     pvv v  ( 3.2) 

where v and p are the velocity vector and the pressure, respectively. The parameters f  and 

f , respectively, define the fluid density and dynamic viscosity. In addition, simulations at 

the Darcy level are performed to make a comparison with the pore-level simulations. For 

Darcy-level simulations, the traditional mass and momentum equations, Eqs. ( 3.1) and ( 3.2), 

are solved for the big inter-particle pores, and the volume-averaged equations for mass and 

momentum are solved to model the fluid flow within the small pores of the spheres as below: 
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p 0 v  ( 3.3) 

  f 2f f f F
p p f p p p p

c
p

K K
       v v v v v v

  
 


 ( 3.4) 

where ε is the porosity of the 3DOM structure, pv  is the superficial average of the velocity 

inside the spherical particles, and 
f

p  is the intrinsic average of the pressure. The third and 

fourth terms on the right-hand side of Eq. ( 3.4) are the Darcy and Forchheimer terms, which, 

respectively, describe the microscopic viscous and inertial forces caused by interaction 

between the fluid and solid constituents. In these terms, the permeability K and the drag 

coefficient Fc  are required as inputs to model the fluid flow in the porous region. In this 

study, they are numerically calculated for the 3DOM unit cells. 

Boundary and interface conditions 

For pore-level simulations, the no-slip boundary condition is applied on the solid walls. For 

both direct pore-level and Darcy-level simulations, the periodic boundary conditions are 

applied on the front and back faces of the domain to obtain the fully developed velocity field 

[206]. The periodic boundary condition enforces identical velocity profiles on the front and 

back walls of the domain. The symmetry boundary condition is applied on the lateral faces of 

the domain (Figure  3.1b). The pressure field is then obtained by post-processing the results of 

the simulations. Interface conditions are needed for Darcy-level simulations to couple the 

mass and momentum transfer between the homogenous fluid flowing in the inter-particle 

region and the fluid flowing in the porous spherical particles. For the interface between these 

two regions, the conditions of continuity of velocity and interfacial stress are applied as [120, 

207, 208]: 

pv v  ( 3.5) 

p pf
f

p






    
    

       

u vu v

y x y x
 ( 3.6) 

p pf
f

p






    
    

       

w vw v

y z y z
 ( 3.7) 
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p pf
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x z x z

    
    

       





 ( 3.8) 

f
  p p  ( 3.9) 

where u , v and w  are the x-, y- and z- components of the velocity vector, respectively. The 

subscript p refers to the porous spherical particles. In Eq. ( 3.5), it is assumed that at the 

nominal interface, the velocity on inter-particle side immediately becomes equivalent to the 

superficial average velocity on intra-particle side. In addition, Eqs. ( 3.6)–( 3.8) assume that all 

the components of the total stress on the inter-particle side are equivalent to those of the 

intrinsically-averaged stress on the intra-particle side. A fraction ε of the total stress on the 

inter-particle side of the interface is carried in the fluid constituent of the porous domain of 

the intra-particle side, with the remainder carried by the solid constituent. In Eq. ( 3.9), we 

force the pressure on the inter-particle side of the interface to be equivalent to the 

intrinsically-averaged pressure on the intra-particle side. By implementing Eqs. ( 3.6)–( 3.9), 

we enforce that the viscous portion of the normal stress and the portion of the normal stress 

due to pressure are continuous at the interface. 

Numerical method, grid independency and validation 

The three-dimensional computational domain is discretised using tetrahedral cells. The CFD 

code ANSYS FLUENT 17.1 is used to solve the governing equations using the finite volume 

method [209]. The velocity–pressure coupling is resolved by the SIMPLE (Semi-Implicit 

Method for Pressure Linked Equations) algorithm. The advection terms are discretised using 

the second order upwind scheme [210]. The convergence is achieved when the residuals 

reach 10
-6

 and 10
-8

 for the continuity and momentum equations, respectively. For periodic 

boundary condition, a constant mass flow rate is considered in the computational domain. 

Once the simulation is converged, the flow field and pressure drop are calculated by post-

processing the results of the simulations. Figure  3.2 shows the meshing of the computational 

domain for DPLS and Darcy-level simulations. For the case of DPLS, finer meshing is 

implemented near the solid walls due to the presence of large velocity gradients. For the case 

of Darcy-level simulations, finer meshing is implemented near the interface between inter-

particle region and porous spherical particles due to the presence of large velocity gradients. 
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(a) 

 

(b) 

 

Figure  3.2. Meshing of the computational domain for (a) DPLS and (b) Darcy-level simulations. 

Grids with different numbers of mesh elements are examined to ensure the grid 

independency. The total number of mesh elements for the dual-scale porous structures was 

varied from approximately 10
7
 to 2.5×10

7
. The velocity magnitude at different points (P1 in 

inter-particle region, P2 in intra-particle region, and P3 at the vicinity of inter-particle and 

intra-particle regions) as well as the pressure drop per unit length of the packed bed have 

been selected as the sample parameters   for which the grid independency is examined. The 

relative error er of the parameter   under examination is calculated by: 

r

ˆ

ˆ
e



 


 ( 3.10) 
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where ̂  represents the value of the parameter obtained using the results of the simulation 

with the highest number of mesh elements. Figure  3.3a to Figure  3.3d show the mesh 

independency analysis for the selected parameters. It is observed that by increasing the 

number of mesh elements to approximately 1.9×10
7
, the value of er for all the mentioned 

parameters is less than 3%. 

The numerical results obtained in current study are benchmarked against the experimental 

results reported by Leong et al. [125] for porous graphite foam in order to validate the 

solution approach. Comparison verifies the consistent implementation of Darcy and 

Forchheimer terms in the solver, as indicated by the agreement shown in Figure  3.3e. In 

addition, to validate the numerical method, the pressure drop per unit length is calculated in 

terms of Reynolds number using the results of pore-level simulations. The numerical results 

are then compared with the experimental data reported by Yang et al. [126] for packed beds 

of solid particles (single-scale porosity) with different packing arrangements—simple cubic 

(SC), body-centred cubic (BCC) and face-centred cubic (FCC). The comparison presented in 

Figure  3.3f demonstrates close agreement. The two validation approaches corroborate the 

consistency of the solution approach for both pore- and Darcy-level simulations. 
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(a) (b) 

  
(c) (d) 

  

(e) (f) 
Figure  3.3. Mesh independency analysis and numerical method validation: (a–d) variation of the selected 

parameters with mesh refinement and (e, f) benchmarking of the solver with experimental results in [125, 126]. 
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 Direct pore-level simulations 3.3.

Direct pore-level simulations are performed to study the fluid flow in dual-scale porous 

media consisting of packed beds of 3DOM spherical particles. The effect of changing 

porosity of the 3DOM structure on the flow characteristics of the packed bed is 

systematically studied for Reynolds numbers ranging from zero to 265. Figure  3.4 shows the 

velocity vectors in the in packed bed of 3DOM spherical particles at Rep=100 for three 

different values of 3DOM porosity. The superficial average of the velocity is used to define

p pRe ρ v d μ  in the packed bed. It can be qualitatively seen that as the porosity of the 

3DOM structures in the spherical particles increases, more fluid passes through intra-particle 

region (small pores) and, less fluid flows in the spaces between the spheres. 

Figure  3.5 shows the velocity magnitude U for line 1 (see Figure  3.1b) at Rep=100 for 

three different values of 3DOM porosity. At 0.78  , it can be seen that most of the fluid 

flows through the inter-particle region such that the average of the velocity in the inter-

particle and intra-particle regions are 3.15 m/s and 0.44 m/s, respectively. By increasing the 

porosity of the 3DOM structures, the flow resistance is reduced, and more fluid passes 

through the 3DOM particles. In addition, it seems that changing the porosity of the 3DOM 

structures has a nonlinear effect on the amount of fluid flowing in the intra-particle pores, 

such that increasing the value of 3DOM porosity from 0.78 to 0.85 and from 0.85 to 0.92 

increases the averaged velocity in the small pores by approximately 81 and 31%, 

respectively. 

To better visualise the fluid flow inside the dual-scale porous structures, three control 

boxes are placed at different locations of the medium as shown in Figure  3.6: one inside a 

3DOM sphere, and two encompassing both part of a 3DOM sphere and inter-particle pore. 
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(a) 

 

(b) 

 

(c) 

 

Figure  3.4. Velocity vectors in the in packed bed of 3DOM spherical particles at Rep=100 for (a) 0.78  , (b) 

0.85  , and (c) 0.92  . 
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Figure  3.5. Velocity magnitude for line 1 at Rep=100 

for different values of 3DOM porosity. 

Figure  3.6. Location of three boxes for visualising the 

pore-level velocity field. 

The velocity vectors in three control boxes, depicted in Figure  3.6, are illustrated in 

Figure  3.7 at Rep=100 for three values of 3DOM porosity. For the box inside the 3DOM 

sphere (Figure  3.7a), increasing the porosity of the 3DOM structures leads to more uniform 

velocity distribution and increases the velocity in the intra-particle region. At 0.78  , the 

throats between the small pores are very tight (Figure  3.1c). This forces the fluid to pass 

through a narrow path, resulting in the local maximum velocity occurring there (the red 

velocity vectors). By increasing the porosity of the 3DOM structures, the throats between the 

small pores widen. Thus, the fluid passes through with less resistance and a more uniform 

velocity distribution is observed. Similar observations can be made for the fluid flow inside 

the small pores in Figure  3.7b and Figure  3.7c. In addition, it can be seen in Figure  3.7c that 

at 0.78  , the fluid seems to mostly bypass the 3DOM spheres. This can be again 

attributed to the fact that the throats in the 3DOM structures are rather tight, which creates 

significant flow resistance. However, as the porosity of the 3DOM structures increases and 

the throats between the small pores become wider, the velocity vectors at the vicinity of the 

big pores and small pores gradually shift their direction towards the 3DOM structure rather 

than away from the structure. The 3DOM structure with wider throats between the pores 

creates less amount of resistance for the flow, and the fluid can pass through the structure 

more freely. 
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0.78   0.85   0.92   

(a) 

 

   

(b) 

 

   

(c) 

 

 
  

Figure  3.7. Pore-level velocity vectors in the packed bed unit cell at different values of 3DOM structure 

porosity and Rep=100 for (a) box 1, and (b) box 2, and (c) box 3. 
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 Darcy-level simulations 3.4.

Now that direct pore-level simulations have been performed, Darcy-level simulations are 

carried out to compare the results with those of the DPLS. Pore-level simulations are 

performed on the unit cell of the 3DOM structures (Figure  3.1c), to calculate the effective 

flow properties—the permeability and Forchheimer coefficient. Then, the calculated 

effective properties are considered in the volume-averaged momentum conservation 

equation, Eq. ( 3.4), to model the fluid flow in the porous spherical particles of the packed 

bed. Thus, instead of directly resolving the small pores, the spheres of the BCC packed bed 

are considered as lumped media with the numerically-calculated effective permeability and 

Forchheimer coefficient of the 3DOM unit cells. Figure  3.8 shows the computational domain 

and meshing of the three 3DOM unit cells. Periodic boundary conditions are applied on the 

front and back faces in z direction (fluid flow direction), and symmetry boundary conditions 

are considered for the lateral surfaces. 

   

0.78   0.85   0.92   

Figure  3.8. Computational domain and meshing of the three 3DOM structures. 

Figure  3.9 shows the pressure drop per unit length in terms of superficial average of the 

velocity in the 3DOM unit cells 
3DOM

v . As the porosity of 3DOM structure increases and 

the throats between the small pores widen, the resistance of the structure to fluid flow, and 

consequently, the pressure drop decreases in the 3DOM unit cell. 
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Figure  3.9. Pressure drop per unit length as a function of superficial velocity for the three 3DOM unit cells. 

Pressure data from the pore-level simulations of the fluid flow in the 3DOM unit cells are 

now used to derive permeability ( K ) and Forchheimer coefficient ( Fc ) of the 3DOM 

structures using the classical Darcy–Forchheimer law for porous media [38, 111, 211]: 

2f f F

3DOM 3DOM

cp
v v

a K K


 
 

 ( 3.11) 

As shown in Figure  3.9, the numerical data for pressure drop per unit length of the 3DOM 

structures in terms of unit cell velocity are fitted in second-order polynomial models. By 

matching the second-order polynomial models into the Darcy–Forchheimer law in Eq. ( 3.11), 

the effective permeability and Forchheimer coefficient of the 3DOM structures can be 

calculated. It should be noted that the R
2
 values for the second-order polynomial models 

presented in Figure  3.9 are 1. Table  3.1 lists the calculated permeability and Forchheimer 

coefficient for three 3DOM structures. It can be seen that increasing the porosity of the 

3DOM structures results in increase in the permeability and decrease in the Forchheimer 

coefficient. This is due to the nonlinearity of pressure drop in terms of velocity for fluid flow 

in porous media. The nonlinearity is attributed to the inertia forces when the direction of the 

fluid flow changes frequently in a medium [212]. When a medium is more tortuous, the flow 

is forced to change its direction due to the curvature of the pores, leading to higher inertia 
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forces. As can be seen in Figure  3.7a, the throats between the small pores widen by 

increasing the porosity of the 3DOM structures, and thus, a more uniform velocity 

distribution is observed. Therefore, the flow pattern experiences less curvature in the pores, 

leading to less inertia forces and lower values of Forchheimer coefficient. 

Table  3.1. Permeability and Forchheimer coefficient for the 3DOM structures. 

  K  (m
2
) Fc  

0.78 1.37×10
-12

 0.84 

0.85 5.36×10
-12

 0.10 

0.92 1.09×10
-11

 0.06 

For Darcy-level simulations, the effective permeability and Forchheimer coefficient of 

the 3DOM structures presented in Table  3.1 are used in the Eqs. ( 3.3) and ( 3.4) to model the 

fluid flow in the 3DOM particle structures. 

Figure  3.10 shows the pressure drop per unit length of the BCC packed bed in terms of 

superficial average of velocity in the packed bed v  for DPLS and Darcy-level simulations. 

It can be seen that the Darcy-level simulations overestimate the pressure drop of the dual-

scale packed bed for all cases. One reason can be the fact that in Darcy-level simulations, the 

effective permeability and Forchheimer coefficient calculated for the 3DOM unit cell are 

forced for the whole domain of the spherical particles. However, periodic boundary 

conditions with a fully developed flow field were considered when determining these 

coefficients. In the DPLS, the fluid requires to flow in a couple of consecutive 3DOM unit 

cells at the interface of the two regions in order to develop, leading to the apparent 

disagreement. Therefore, the effective permeability and Forchheimer coefficient calculated 

for the 3DOM unit cells may not accurately model the viscous and inertia forces occurring in 

the small pores in the vicinity of the two regions.  
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Figure  3.10. Pressure drop per unit length in terms of superficial average of the velocity in the packed bed. 

 In addition to the interface conditions, another possible reason for the observed 

discrepancy between the pore- and Darcy-level simulations can be related to the flow 

patterns in the inter-particle regions. Figure  3.11 shows the velocity vectors in the region 

between two porous spheres obtained using DPLS and Darcy-level simulations for example 

at Rep=200. The Darcy-level simulations show vortex structures between the porous 

particles. Such vortex patterns were also observed in the study performed by Yang et al. [56] 

for a packed bed of solid spherical particles. However, for the case of DPLS, the fluid flows 

smoothly in the inter-particle regions. This pattern observed in the inter-particle regions for 

the case of Darcy-level simulations is another reason for Darcy-level simulations 

overestimating the pressure drop compared to DPLS. Note that as the porosity of the 3DOM 

structure increases, the trend of pressure gradient in the packed bed as a function of velocity 

becomes less quadratic, showing that the necessity of considering the Forchheimer term 

becomes less important to model the fluid flow at macro-scale. 
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(a) 

  

(b) (c) 

Figure  3.11. Velocity field analysis in the region between two porous spheres at Rep=200: (a) control plane for 

post-processing the velocity field, (b) velocity vectors for DPLS, and (c) velocity vectors for Darcy-level 

simulations. 

Table  3.2 compares the permeability and Forchheimer coefficient of the BCC dual-scale 

packed bed, Kdual and cF,dual, respectively, obtained using the results of DPLS and Darcy-level 

simulations for Reynolds number in the range 0–265. The results of the pressure drop per 

unit length of the packed bed in terms of superficial average of the velocity in the packed bed 

are fitted in second-order polynomial models. Then the effective permeability and 

Forchheimer coefficient of the dual-scale packed bed are calculated by matching the second-

order polynomial models into Darcy–Forchheimer law in Eq. ( 3.11) for the cases of DPLS 

and Darcy-level simulations. It can be seen that by increasing the 3DOM porosity, the error 

between the effective properties calculated using DPLS and Darcy-level simulations 

increases. This can again be attributed to the fact that, as the throats between the small pores 
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widen and the porosity of 3DOM structure increases, the flow can penetrate the 3DOM 

particles more significantly. Thus, the fluid requires more numbers of 3DOM unit cells at the 

interface in order to fully develop similarly to the fully-developed velocity field obtained 

using periodic boundary condition. For the case of Darcy-level simulations, the effective 

coefficients are applied for the whole domain of the spheres. However, since it takes more 

depth for the flow to fully develop inside the 3DOM structures by increasing the 3DOM 

porosity, the real region—for which the effective coefficients are valid—becomes smaller 

compared to the whole sphere. That is the reason why researchers have investigated more 

realistic interface conditions which take into account the flow transition between the 

homogeneous and porous regions instead of considering those presented in Eqs. ( 3.5)–( 3.8) 

[123]. This issue becomes even more important since it was reported that the interface 

conditions depend on the structure, the flow direction, the Reynolds number, the 

nonuniformity in the arrangement, and tortuosity of porous medium [165]. 

Table  3.2. Permeability and Forchheimer coefficient BCC dual-scale packed bed. 

 
DPLS Darcy-level simulations 

Kdual (m
2
) cF,dual Kdual (m

2
) Error (%) cF,dual Error (%) 

0.78   5.54×10
-12

 0.64 5.24×10
-12

 5.31 0.68 6.37 

0.85   8.81×10
-12

 0.47 7.99×10
-12

 9.24 0.52 10.63 

0.92   1.35×10
-11

 0.31 1.20×10
-11

 11.26 0.35 12.16 

Alazmi and Vafai [123] analysed different types of interfacial conditions between a 

porous medium and a fluid layer. They observed that, in general, application of different 

types of interfacial conditions considerably affect the velocity field. They concluded that the 

discrepancies between the different types of interfacial conditions can be more significant at 

higher Reynolds numbers and/or Darcy numbers. However, their study lacks experimental 

validation, and it is not clearly stated which type of interfacial conditions leads to more 

accurate results compared to experiments or pore-level simulations. Therefore, the accuracy 

of the different types of interfacial conditions investigated in their study is unknown. Another 

important issue is that the physical configuration used in their study is a very simple two-

dimensional configuration consisting of a porous medium and a fluid layer, such that the 

normal component of velocity at the interface is always zero. However, in a real dual-scale 

porous structure, the tortuous flow channels lead to the three-dimensional flow patterns. 

Therefore, the angles at which the fluid flow in the big pores reaches the small pores are 
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different throughout the medium. Therefore, at this stage, it is difficult to judge which type of 

interfacial conditions leads to more accurate results. Thus, it is assumed that the well-

established interface conditions introduced in Eqs. ( 3.5)–( 3.8) suffice. 

 Summary 3.5.

The fluid flow in a dual-scale porous medium consisting of a packed bed of 3DOM spherical 

particles was numerically investigated at the pore level and Darcy level. The effect of 

different 3DOM structures with different porosities was analysed. It was observed that the 

size of the throats between the small pores considerably affects the fluid flow patterns in the 

inter- and intra-particle regions as well as the region between them. The permeability and 

Forchheimer coefficient of the packed bed featuring dual-scale porosity were calculated 

using the results of DPLS and Darcy-level simulations. It was observed that the Darcy-level 

simulations overestimate the pressure drop in the dual-scale porous packed bed compared to 

the DPLS, in particular for 3DOM structures with higher values of porosity. However, 

Darcy-level simulations can provide acceptably accurate results using much less 

computational resources compared to DPLS. For the Darcy-level simulations, the average of 

the error in predicting effective flow properties compared to DPLS was approximately 7%. In 

future works, more accurate interface conditions need to be modelled to be used in Darcy-

level simulations. which take into account the transition between the porous and homogenous 

regions as well as the effect of flow direction and velocity at the interface. This leads to more 

accurate results obtained using the Darcy-level simulations which are computationally much 

less expensive compared to DPLS. The results of this chapter for fluid flow in dual-scale 

porous media will be used in Chapter  5, since the convection term is considered for the heat 

transfer in dual-scale porous media. In the following chapters, the heat transfer in dual-scale 

porous media is theoretically and numerically analysed.  
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Chapter 4 

Theoretical development of conductive–

convective heat transfer model 

 

4. Theoretical development of conductive–convective heat transfer 

model 

In this chapter, the mathematical model of heat transfer in a dual-scale porous medium is 

developed. A dual-scale porous structure is introduced along with the associated length-

scales, followed by the energy conservation equation and boundary conditions at the smallest 

scale under study. The volume-averaging procedure is applied to the terms appearing on the 

conductive–convective energy conservation equation. This procedure results in the 

introduction of the up-scaled energy equation along with the effective coefficients which take 

into account the heat transfer feature of small-scale in the up-scaled equation. Finally, the 

closure problems are introduced, which are solved in the next chapter to determine the 

effective heat transfer coefficients for given cases of dual-scale porous media. 

 Dual-scale porous structure 4.1.

Figure  4.1 shows a schematic representation of a two-zone dual-scale porous medium. Three 

length-scales are considered: 

1. Level A: a micro-scale level at which VAM is applied over volume VA consisting of fluid 

and solid phases denoted as β and σ, respectively. The length-scales for this level are lβ 

and lσ, where β σl l . 

2. Level B: a meso-scale level at which VAM is applied over volume VB consisting of 

regions η and ω. The length-scales for this level are lη and lω, where η ωl l . 
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3. Level C: a macro-scale level at which effective transport equations with effective 

transport properties are used without any further volume averaging. The length-scale 

for this level is Lc. 

The constraints for the dual-scale porous medium are    β σ β ση ω
, ,l l l l  (or vice versa) 

and  β σ η ω cη,ω
, ,l l l l L . In addition, we consider that in the system illustrated in 

Figure  4.1, the σ-phase represents a rigid, impermeable solid phase, and the β-phase 

represents a Newtonian fluid. The parameter   in Figure  4.1 is the general scalar transport 

variable. It specifically has the meaning of temperature (T) in the present study of the 

conductive–convective heat transfer problem. The transport variable   is first up-scaled 

from level A to level B by its volume-averaging in volume VA resulting in 
ω

  or 
η

 . 

Next, the transport variables at level B, 
ω

  and 
η

 , are up-scaled to level C by their 

volume-averaging in volume VB, resulting in   . 

 

Figure  4.1. Schematic representation of a dual-scale porous medium. 
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 Model assumptions 4.2.

Now that the dual-scale porous media and the associated length-scales are defined, it is 

convenient to present all the available up-scaling strategies as shown in Figure  4.2. In this 

figure, LTE and LTNE represent the local thermal equilibrium and local thermal non-

equilibrium assumptions, respectively. LTE is used when it can be assumed that the one 

phase or one region is in thermal equilibrium with the other phases or regions existing in its 

close vicinity. On the other hand, LTNE is used when it cannot be assumed that the one 

phase or one region is in thermal equilibrium with the other phases or regions existing in its 

close vicinity. This means that the convective heat transfer between the phases or heat 

exchange between the regions should be considered. The four available strategies for up-

scaling energy transport in a dual-scale porous medium are as below: 

 The first strategy, least complex scenario, is when we assume   β σ η,ω
LTE


for 

volume averaging over VA, and  
η ω

LTE


 for volume averaging over VB. In this 

case, LTE assumption is made between β- and σ-phases in both η- and ω-regions 

when up-scaling from level A to B. Then, LTE assumption is made between η- and 

ω-regions during the up-scaling procedure from level B to C. Thus, one-equation 

model will be derived, which contains the effective coefficients. 

  The second strategy is when we assume   β σ η,ω
LTE


 for volume averaging over 

VA, and  
η ω

LTNE


for volume averaging over VB. In this case, LTE assumption is 

made between β- and σ-phases in both η- and ω-regions when up-scaling from level 

A to B. Then, LTNE assumption is made between η- and ω-regions during the up-

scaling procedure from level B to C. Thus, two-equation model will be derived, 

which contains the effective coefficients including the heat exchange coefficient 

between the regions. If the heat exchange coefficient between the regions—which 

actually couples the two equations together—is assumed zero in this case, the 

situation will be the same as the first strategy. 

 The third strategy is when we assume   β σ η
LTE


 and   β σ ω

LTNE


 for volume 

averaging over VA, and proceed with volume averaging over VB. Thus, when up-
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scaling from level A to B, we assume LTE between β- and σ-phases in η-region and 

LTNE between β- and σ-phases in ω-region, and then, continue the up-scaling 

procedure from level B to C. For up-scaling from level A to B in ω-region, the 

convective heat transfer between β- and σ-phases is taken into account, leading to the 

introduction of a convective heat transfer coefficient which will be up-scaled during 

the volume averaging over VB. In this case, three-equation model will be derived (one 

for energy transport in β-phase of ω-region, one for energy transport in σ-phase of ω-

region, and one for energy transport in η-region) along with the effective coefficients. 

If the convective heat transfer coefficient between β- and σ-phases in ω-region—

which actually couples two of the equations related to ω-region together—is assumed 

zero in this case, the situation will be the same as the second strategy. 

 The fourth strategy, the most complex scenario, is when we assume   β σ η,ω
LTNE



for volume averaging over VA, and proceed with volume averaging over VB. Thus, 

when up-scaling from level A to B, we assume LTNE between β- and σ-phases in 

both η- and ω-regions, and then, we continue up-scaling process from level B to C. 

For the up-scaling from level A to B in both η- and ω-regions, the convective heat 

transfer between β- and σ-phases is taken into account, leading to the introduction of 

two convective heat transfer coefficients which will be up-scaled during the volume 

averaging over VB. In this case, four-equation model will be derived (one for energy 

transport in β-phase of ω-region, one for energy transport in σ-phase of ω-region, one 

for energy transport in β-phase of η-region, and one for energy transport in σ-phase of 

η-region) along with the effective coefficients. If the convective heat transfer 

coefficient between β- and σ-phases in η-region—which actually couples two of the 

equations related to ω-region together—is assumed zero in this case, the situation will 

be the same as the third strategy. If the convective heat transfer coefficients between 

β- and σ-phases in both η- and ω-regions are assumed zero in this case, the situation 

will be the same as the second strategy. 
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Figure  4.2. Different possible strategies for applying volume average method on the dual-scale porous medium. 

In this thesis, the second strategy is employed to perform the volume-averaging procedure 

and derive the up-scaled governing equations for heat transfer in dual-scale porous media. 

This assumption was made by considering the specific application of dual-scale porous 

structures in solar thermochemistry, as shown in Figure  1.2. The dual-scale porous structures 

used for this applications can be RPC with porous struts [4, 213], or packed bed of porous 

particles [214]. As discussed in Section ‎1.1, such structures featuring dual-scale porosity,

η 1   and ω0 1  , are capable of combining both of the desired properties in a solar 

thermochemical applications. For such cases, the velocity inside the micro-pores is 

considerably smaller than that of the macro-pores. Therefore, the convective heat transfer in 

the micro-pores can be neglected, and thus, LTE can be assumed within the micro-porous 

region. However, heat and mass transfer between micro- and macro-pores is of great 

importance, because most of the heterogeneous reactions occur in the micro-pores, and then, 

the species are transferred to the macro-pores. Thus, by making LTNE assumption between 

the regions, we ensure that heat transfer phenomena between the micro- and macro-pores are 

taken into account. 

 Darcy-level governing equations 4.3.

The energy conservation equation at level A reads: 

       β

p β β β ββ β
 


    


p

T
c c T k T

t
v  ( 4.1) 
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B.C.1 β σT T   ( 4.2) 

B.C.2 βσ η β βσ σ σ    k T k Tn n  ( 4.3) 

   σ
p σ σσ

T
c k T

t


 


   ( 4.4) 

where ρ, pc and k are density, specific heat capacity, thermal conductivity, respectively. In 

addition, v and T represent the velocity vector and temperature, respectively. The VAM is 

used to pass information of energy transport phenomena step-by-step from smallest to largest 

scale until we reach the application level. For the first step, the up-scaling of energy 

conservation equation presented in Eqs. ( 4.1)–( 4.4) is performed by applying volume-

averaging procedure over volume VA. Since we have two regions of η and ω with two 

different length-scales, volume averaging over VA needs to be performed for both η- and ω-

regions. Up-scaling the energy conservation equation from level A to level B by means of 

VAM was previously reported in [109, 211], and a derivation step re-used in this thesis but 

omitted from detailed presentation for brevity. Therefore, we start applying volume-

averaging procedure over VB on the volume-averaged energy equations at level B. As 

mentioned in Section  4.2, for up-scaling from level A to B, the LTE assumption is made 

between β- and σ-phases within both η- and ω-regions. Thus, the energy equations of the η–ω 

system at level B along with the corresponding boundary conditions read, 

       
η

η ηη

η β η η ηη β,η η
  


    


p p

T
c c T T

t
v K  ( 4.5) 

       
ω

ω ωω

ω β ω ω ωω β,ω ωp p

T
c c T T

t


    


v K    ( 4.6) 

B.C.1 
η ω

η ωT T , at Aηω ( 4.7) 

B.C.2 

  
  

η η

ηω β η η ηβ,η η

ω ω

ηω β ω ω ωβ,ω ω





   

   

p

p

c T T

c T T

n v K

n v K

, at Aηω ( 4.8) 

where ε and K are porosity and thermal conductivity tensor, respectively. In addition, 
η

ηT

and β η
v represent the intrinsic average of temperature in the η-region and the superficial 
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average of velocity of the β-phase (i.e. fluid phase) in η-region, respectively. The intrinsic 

average of temperature is used in Eqs. ( 4.5)–( 4.8) because it best represents thermal energy 

transport processes occurring in η- and ω- regions [211]. In Eq. ( 4.7), it is assumed that the 

total average temperature on the ω-region side of the interface is continuous with that of on 

η-region side of the interface to satisfy the thermal equilibrium at the interface. In addition, 

Eq. ( 4.8) assumes that the values of energy transfer due to conduction and convection 

occurring in both η- and ω-regions are equal to each other at the interface. Solution of the 

system of Eqs. ( 4.5)–( 4.8) requires simultaneous solutions of mass and momentum equations. 

The continuity equations at level B for the η- and ω-regions and the associated boundary 

condition are given by  

β η
0 v   ( 4.9) 

β ω
0 v  ( 4.10) 

B.C.3 ηω β ηω βη ω
  n v n v  ( 4.11) 

Next, we apply VAM to Eqs. ( 4.5)–( 4.8) in VB to up-scale the energy transport from the 

meso- to macro-scale level. The large-scale superficial and intrinsic averages of the general 

scalar transport variable are: 

 
η

η η
B

1
d

V

V
V

    ,  
η

η

η η
η

1
d

V

V
V

    ( 4.12) 

   
η

ηη η
    ( 4.13) 

η

η

B

 
V

V
 ( 4.14) 

In addition, the large-scale form of the spatial averaging theorem is: 

   
ηω

ηωη η η
B

1
d     

A

A
V

n  ( 4.15) 

   
ηω

ηωη η η
B

1
d      

A

A
V

n  ( 4.16) 
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 Volume averaging of conductive and convective terms 4.4.

In this study, it is assumed that the boundaries, the size of the regions, and the properties do 

not change with time. Therefore, the time derivative operator is not applied to them. 

Temperature is the only time-dependent parameter. Performing VAM on the energy transport 

equation for η-region, Eq. ( 4.5): 

         
η

η ηη

η β η η ηη β,η η
  

  
     

  

p p

T
c c T T

t
v K  ( 4.17) 

For the first term on the LHS of Eq. ( 4.17), the variation of the term   ηη
 pc  is ignored 

over VB and therefore: 

     
 

 
 

η
η η

η η

η η
η η

η η η η ηη η η η
        

         
     

         

p p p p

T TT T
c c c c

t t t t
 ( 4.18) 

Using the spatial averaging theorem (SAT) provided by Eqs. ( 4.15) and ( 4.16), the 

convective and conductive terms take the forms as: 

         
       

ηω

η η

β η β ηβ,η η β,η η

η η

β η ηω β ηβ,η η β,η η
B

1
d

 

 

   

   

p p

p p

A

c T c T

c T c T A
V

v v

v n v
 ( 4.19) 

      
ηω

η η η

η η η η ηω η η

B

1
d      

A

T T T A
V

K K n K  ( 4.20) 

Substituting Eqs. ( 4.19) and ( 4.20) into ( 4.18) leads to: 

 
 

    
    

ηω

η
η

η η

η η β ηη β,η η

η η η

η η ηω β η η ηβ,η η
B

1
d

   




 



      

p p

p

A

T
c c T

t

T c T T A
V

v

K n v K

 ( 4.21) 

In order to consider the variation of ηK , we make use of decomposition below: 

 
η

η η η K K K  ( 4.22) 

Applying the above decomposition on the first term on the RHS of Eq. ( 4.21) leads to: 
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        

     
ηω

ηη η η

η η η η η η

η η η η

η η ηω η η η

B

1
d

       

  
        

  
  


A

T T T

T T A T
V

K K K

K n K

 ( 4.23) 

Therefore, Eq. ( 4.21) takes the form: 

 
 

    

     

  
ηω

ηω

η
η

η η

η η β ηη β,η η

η η η η

η η ηω η η η

B

η η

ηω β η η ηβ,η η
B

1
d

1
d

   




 



  
        

  
  

   





p p

A

p

A

T
c c T

t

T T A T
V

c T T A
V

v

K n K

n v K

 ( 4.24) 

Now we can use the decomposition below for the second term on the LHS of Eq. ( 4.24): 

 

 

η

β β βηη η

η
η η

η η η

 

 T T T

v v v

 ( 4.25) 

According to Eqs. (3.2-15)–(3.2-17) of  [109]: 

     

       

     

ηηη η

β η β βη η ηη η

η ηη ηη η

β η β η βη η βη ηη η

ηη ηη

η β η η βη ηη
 

   
     

   

 
    
 

 

T T T

T T T T

T T

v v v

v v v v

v v

 ( 4.26) 

Substituting Eq. ( 4.26) into ( 4.24) leads to: 

 
 

     

     

       
ηω

ηω

η
η

ηηη η

η η η β ηη β,η η

η η η η

η η ηω η η η

B

η η η

η βη η ηω β η η ηβ,η β,η η
B

1
d

1
d

    

  

   
   

   

  
        

  
  

     





p p

A

p p

A

T
c c T

t

T T A T
V

c T c T T A
V

v

K n K

v n v K

 
( 4.27) 
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To address the term  
ηω

η η

η ηω η

B

1
d

 
  
 
 


A

T T A
V

n , we use the decomposition provided in 

Eq. ( 4.25) for temperature. In addition, variations of average quantities  
η

η

ηT  within the 

averaging volume VB are zero. Thus, by following the procedure presented by Carbonell and 

Whitaker [114] we obtain:  

     

     

 

ηω ηω ηω

ηω ηω

η

ηω

η η
η η η η

η ηω η η η ηω η ηω η

B B B

η η η
η η η

η η η η η ηω ηω η

B B

η
η

η η ηω η

B

1 1 1
d d d

1 1
d d

1
d





 





 
       

 

 
       
 
 

  

  

 



A A A

A A

A

T T A T T A T A
V V V

T T T A T A
V V

T T A
V

n n n

n n

n

 
( 4.28) 

Considering the term  ηη η TK  and using the decomposition presented in Eq. ( 4.25) for 

temperature: 

     
η

η η

η η η η η η

 
     

 
T T TK K K  ( 4.29) 

Once again, since variations of average quantities within the averaging volume are zero and 

also the fact that   0  , the first term on the RHS of Eq. ( 4.29) is zero. Substituting Eqs. 

( 4.28) and ( 4.29) into ( 4.27) leads to: 

 
 

     

     
ηω

η
η

ηηη η

η η η β ηη β,η η

accumulation
macro-scale convection

η
η η

η η η ηω η η η

B

macro-scale conduction

1
d

    



   
    

   

  
        

  
  



p p

A

T
c c T

t

T T A T
V

v

K n K

       
ηω

η η η

η βη η ηω β η η ηβ,η β,η η
B

macro-scale dispersion
inter-region flux

1
d       p p

A

c T c T T A
V

v n v K

 ( 4.30) 

The heat transfer equation for the ω-region is: 



57 

 

 
 

     

     
ωη

ω
ω

ωη ω ω

ω ω ω β ωω β,ω ω

accumulation macro-scale convection

ω
ωω

ω ω ω ωη ω ω ω

B

macro-scale conduction

1
d

    




  

    
   

  
        

  
  



p p

A

T
c c T

t

T T A T
V

v

K n K

       
ωη

ω ω ω

ω βω ω ωη β ω ω ωβ,ω β,ω ω
B

macro-scale dispersion
inter-region flux

1
d       p p

A

c T c T T A
V

v n v K

 ( 4.31) 

The macro-scale continuity conservation equation is required in the process of developing the 

two-equation model. 

   

   

ηω

ωη

β β ηω βη η η

β β ωη βω ω ω

1
0 0

1
0 0





     

     





A

A

dA
V

dA
V

v v n v

v v n v

 ( 4.32) 

Using the decomposition presented in Eq. ( 4.25) for temperature on the inter-region flux 

term: 

  

     

  

ηω

ηω

ηω

η η

ηω β η η ηβ,η η
B

η η
η η

ηω β η η ηβ,η η
B

ηω β η η ηβ,η η
B

1
d

1
d

1
d

p

A

p

A

p

A

c T T A
V

c T T A
V

c T T A
V

  

 
    

 

   







n v K

n v K

n v K







 ( 4.33) 

The second term on the RHS of Eq. ( 4.33) can be conveniently utilised to formulate the 

closure problem since it only contains the spatial deviation quantities. However, the first term 

is required to be treated using the decomposition provided in Eq. ( 4.22): 
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     

         

   

     

ηω

ηω

ηω

ηω

η

η η
η η

ηω β η η ηβ,η η
B

η η η
ηη η η

ηω β η η η η ηβ,η η
B

η
η

η ηω ββ,η η
B

zero

η η
η η η

η η ηω ηω η η

B B

1
d

1
d

1
d

1 1
d

p

A

p

A

p

A

A

c T T A
V

c T T T A
V

c T A
V

T A T
V V



 
   
 

 
      

 

 
  
 
 

  
     
 
 









n v K

n v K K

n v

K n n K









ηω

d
A

A


 
 



 ( 4.34) 

For a spatially periodic system, the first term on the RHS of Eq. ( 4.34) and η  are zero 

[168]. Consequently, Eq. ( 4.34) takes the form: 

     

 
ηω

ηω

η η
η η

ηω β η η ηβ,η η
B

η
η

ηω η η

B

1
d

1
d


 
    
 

 
    

 





p

A

A

c T T A
V

T A
V

n v K

n K

 ( 4.35) 

By substituting Eq. ( 4.35) into Eq. ( 4.33), the inter-region flux term takes the form: 

  

   
ηω

ηω

η η

ηω β η η ηβ,η η
B

η
η

ηω β η η η η ηβ,η η
B

1
d

1
d





  

 
      

 





p

A

p

A

c T T A
V

c T T T A
V

n v K

n v K K

 ( 4.36) 

By substituting the inter-region flux term developed in Eq. ( 4.36) into Eq. ( 4.31), the large-

scale average heat transfer equation for η- and ω-region takes the form: 
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 
 

     

     
ηω

η
η

ηηη η

η η η β ηη β,η η

accumulation
macro-scale convection

η
η η

η η η ηω η η η

B

macro-scale conduction

1
d

p p

A

T
c c T

t

T T A T
V

   
    

   

  
         

  
  



v

K n K

    



        
ηω

ηη η

η βη η ηω β η η η η ηβ,η β,η η
B

macro-scale dispersion
inter-region flux

1
dp p

A

c T c T T T A
V

 
         

 
v n v K K  

 ( 4.37) 

 
 

     

     
ωη

ω
ω

ωωω ω

ω ω ω β ωω β,ω ω

accumulation macro-scale convection

ω
ωω

ω ω ω ωη ω ω ω

B

macro-scale conduction

1
d

p p

A

T
c c T

t

T T A T
V

   
    

   

  
         

  
  



v

K n K

    



        
ωη

ωω ω

ω βω ω ωη β ω ω ω ω ωβ,ω β,ω ω
B

macro-scale dispersion
inter-region flux

1
dp p

A

c T c T T T A
V

 
         

 
v n v K K  

  

( 4.38) 

In Eqs. ( 4.37) and ( 4.38), there are some terms with large-scale averages such as

   
ηη η

η β ηη
T

 
 
 

v , and some terms involving the spatial deviation quantities such as

βη ηTv . In addition, the inter-region flux is specified entirely in terms of the Darcy-scale 

variables such as β η
v . In the following section, we need to develop the closure problem 

which will allow us to determine the terms such as  η ηTK  and  
η

βη ηTv . More 

importantly, developing a representation for the inter-region flux is required, which is 

entirely determined by the closure problem. 

 Introducing closure problems 4.5.

All terms in Eqs. ( 4.37) and ( 4.38) are either macro-scale averages or spatial deviation 

quantities. Thus, the closure problem must be formulated and solved to proceed. There is no 
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need to decompose the Darcy-level velocity, β η
v  or 

β ω
v , since it is available directly 

from solving the meso-scale mass and momentum equations for a unit cell of a spatially 

periodic porous medium. By assuming constant η , the closure problems for the spatial 

deviation temperatures, ηT  and ωT , are developed by subtracting the intrinsic form of Eq. 

( 4.37) from ( 4.5) and ( 4.38) from ( 4.6),: 

       

     
 

        

ηω

ηω

ηη ηβη

η β β ηηη β,η η η

η
1

η ηηη η η η

η η η η ηω η η η

B

1 ηη ηη

βη η ηω β η η η η ηβ,η β,η η
B

d

d

  




 





   
    

   

 
              

 

 
        

 





p p

A

p p

A

T
c c T T

t

T T T A T
V

c T c T T T A
V

v v

K
K K n K

v n v K K

 ( 4.39) 

Subtracting Eq. ( 4.39) from ( 4.5) leads to: 

       

     
 

        

ηω

ηω

ηη ηβη

η β β ηηη β,η η η

η
1

η ηηη η η η

η η η η ηω η η η

B

1 ηη ηη

βη η ηω β η η η η ηβ,η β,η η
B

d

d

  




 





   
    

   

 
              

 

 
        

 





p p

A

p p

A

T
c c T T

t

T T T A T
V

c T c T T T A
V

v v

K
K K n K

v n v K K

 ( 4.40) 

To obtain    
ηηη η

β η β ηη η
T Tv v , we multiply the two decompositions presented in 

Eq. ( 4.25) together: 
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       

       

     

       

   

η ηη ηη η η

β η β η β η βη η βη ηη η η

η ηη ηη η η

β η β η β η βη η βη ηη η η

η ηη η η

β βη η βη η β η βη ηη η

η ηηη η η

β η β η β η βη ηη η η

ηηη η

β η β ηη η

T T T T T

T T T T T

T T T T

T T T T

T T

   

    

 
     
 

   
       

   

 
   

 

v v v v v

v v v v v

v v v v v

v v v v

v v      
η η

η η

β η η βη βη ηη
T T T    v v v

 ( 4.41) 

Considering the decomposition presented in Eq. ( 4.25) for velocity: 

   
η η

β β βη β β βηη η η η

zero

    v v v v v v  ( 4.42) 

According to Eq. ( 4.9), β η
0 v . For a spatially periodic system,  

η

β η
 v  is zero. 

Consequently, βη 0 v  and Eq. ( 4.41) is simplified to: 

       
η ηηη η η

β η β η β η βη ηη η η

 
     

 
T T T Tv v v v  ( 4.43) 

We again apply the decomposition presented in Eqs. ( 4.22) and ( 4.25) for thermal 

conductivity and temperature: 

   

        

   

η
ηη η

η η η η

η η
η ηη η

η η η η η η

η
η η

η η

T T

T T T

T

  

 
       

 

 

K K

K K K

K        
η η

η ηη η

η η η η η η η ηT T T T       K K K K

    
η

η
η η

η η η η ηT T    

K

K K K

 ( 4.44) 

By substituting Eqs. ( 4.43) and ( 4.44) into ( 4.40), the transport equation for ηT  becomes: 
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             

     
 

 

ηω

η ηηη

η β η βη η βη ηη β,η η β,η β,η

convective source

η
1

η ηη η η

η η η η ηω η η η

B

diffusive source

1

η

ηω β,
B

d

    











     



 
               

 

 



p p p p

A

p

T
c c T c T c T

t

T T T A T
V

c
V

v v v

K
K K n K

n  
ηω

η
η

β η η η η ηη η
d

 
    

 


A

T T T Av K K

 ( 4.45) 

The term 
 

ηω

η
1

η η

ηω η

B

d
 


A

T A
V

K
n  is simplified using SAT: 

       

 
 

  

ηω ηω

ηω ηω

0

η η ηω η ηω η η

B B

η
11 ηη ηη ηη

ηω η η ηω η η η

B B

1 1
d d

d d









     

     

 

 

A A

A A

T T T A T A T
V V

T A T T A T
V V

n n

K
n n K

 ( 4.46) 

Substitute of Eq. ( 4.46) in the second term on the RHS of Eq. ( 4.45) leads to: 

 
      

     

ηω

η
1

ηη ηηη η

ηω η η η η η η η

B

η
ηη

η η η η η

d
  

              
 

      


A

T A T T T
V

T T

K
n K K K

K K K

 ( 4.47) 

Therefore, Eq. ( 4.45) is simplified to: 

             

     

   

η ηηη

η β η βη η η ηη β,η η β,η β,η

convective source

η ηη

η η η η η η

conductive source

1 η
ηη

ηω β η η η η ηβ,η η
B

    







     



 
       

 

 
      

 

p p p p

p

T
c c T c T c T

t

T T T

c T T T
V

v v v

K K K

n v K K

ηω

d
A

A

 ( 4.48) 

Equation ( 4.48) is simplified by comparing orders of magnitude of terms appearing in the 

equation. The orders of magnitudes for the accumulation and conductive terms are 
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 
 

 

η ηη η

ηη

η η

η η 2

η

 
 

 
 

  
 

 
     

  

p

p

c TT
c

t t

K T
T

l

O

K O

 ( 4.49) 

Equation ( 4.48) becomes quasi-steady for [114]: 

 
η

2

η ηη

1
 p

K t

l c
 ( 4.50) 

This constraint has already been applied on the small-scale, during up-scaling from level A to 

B. Thus, it can be used at the macro-scale as well. Similar procedure is done for the 

convective, the large-scale dispersive, and the conductive terms in Eq. ( 4.48) as below: 

   
  β ηβ,η η

β ηβ,η η
η




 
  
 
 

p

p

c T
c T

l

v
v O  ( 4.51) 

   
  β ηη β,η η

η ηβ,η
c




 
  
 
 

p

p

c T
c T

L

v
v O  ( 4.52) 

  η η

η η

η c

 
    

  

K T
T

l L
K O  ( 4.53) 

where cL is the length-scale for the region averaged temperature. With the constraint

η ω c,l l L , it is possible to neglect the large-scale dispersive and the conductive terms. By 

applying the decomposition presented in Eqs. ( 4.22) and ( 4.25) into Eqs. ( 4.6), ( 4.7) and 

( 4.11), the boundary conditions for the spatial deviation variation are obtained. Therefore, by 

applying the order of magnitude analysis (Eqs. ( 4.49)–( 4.53)), the closure problem can be 

obtained as follows: 

           

   
ηω

η η
η η

β η βη η η η η ηβ,η η β,η

convective source
conductive source

1 η
ηη

ηω β η η η η ηβ,η η
B

d

p p

p

A

c T c T T T

c T T T A
V



 
          

 

 
      

 


v v K K

n v K K

 




  ( 4.54) 
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B.C.1    
ηω ηω

η ω ω η

exchange source

 
   

 
T T T T , at ηωA  

( 4.55) 

B.C.2    
η ωη ω

ηω η η ηω η η ηω ω ω ηω ω ω

conductive sourceconductive source

          T T T Tn K n K n K n K , at ηωA  ( 4.56) 

           

   
ωη

ω ω
ω ω

β ω βω ω ω ω ω ωβ,ω ω β,ω

convective source
conductive source

1 ω
ωω

ωη β ω ω ω ω ωβ,ω ω
B

d

p p

p

A

c T c T T T

c T T T A
V



 
          

 

 
      

 


v v K K

n v K K

 




 ( 4.57) 

Periodicity:    η η iT l Tr r  ,    ω ω iT l Tr r , 1,2,3i  ( 4.58) 

 
η

η 0T  ,  
ω

ω 0T  ( 4.59) 

For Eqs. ( 4.54)–( 4.57), the periodic conditions are applied on spatial deviation 

temperature. The idea is that the closure problem is only needed to be solved in an REV of a 

spatially periodic model of a porous medium [109, 211]. In addition to the periodic 

conditions, the average of the spatial deviation temperatures is required to be zero in order to 

determine the value of the area integrals in Eqs. ( 4.54) and ( 4.57). 

It can be observed that in Eqs. ( 4.54)–( 4.57), the convective, conductive and exchange 

sources are functions of  
η

η

η T ,  
ω

ω

ω T , and    
ηω ηω

ω η

 
 

 
T T . Therefore, we 

can represent the spatial deviation temperature in the following forms: 

       
η ηω ωη ηω ω

η ηη η ηω ω η ω η

 
      

 
T T T r T Tb b  ( 4.60) 

       
η ηω ωη ηω ω

ω ωη η ωω ω ω ω η

 
      

 
T T T r T Tb b  ( 4.61) 

Where ηηb , ηωb , ηr , ωηb , ωωb and ωr  are closure variables. Three closure problems are 

required to have a solution for the closure variables. 

Closure problem I 
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The first closure problem is related to the source  
η

η

η T , and is given by: 

        1

β ηη βη η ηη ω η ηηβ,η η β,η
        p pc cv b v K b K c   ( 4.62) 

B.C.1 ηη ηωb b , at ηωA  ( 4.63) 

B.C.2 ηω η ηη ηω η ηω ω ωη      n K b n K n K b , at ηωA  ( 4.64) 

      1

β ωη ω ωη ω ωηβ,ω ω
     pc v b K b c   ( 4.65) 

Periodicity:    ηη ηη ilb r b r  ,    ωη ωη ilb r b r , 1,2,3i  ( 4.66) 

 
η

ηη 0b  ,  
ω

ωη 0b  ( 4.67) 

  
ηω

ηη ηω β ηη η ηη ηβ,η η
B

1
d      p

A

c A
V

c n v b K b K  ( 4.68) 

  
ωη

ωη ωη β ωη ω ωηβ,ω ω
B

1
d     p

A

c A
V

c n v b K b  ( 4.69) 

Closure problem II 

The second closure problem is related to the source  
ω

ω

ω T , and is given by: 

      1

β ηω η ηω η ηωβ,η η
     pc v b K b c   ( 4.70) 

B.C.1 ηω ωωb b , at ηωA  ( 4.71) 

B.C.2 ηω η ηω ηω ω ωω ηω ω     n K b n K b n K , at ηωA  ( 4.72) 

        1

β ωω βω ω ωω ω ωωβ,ω ω β,ω
       p pc cv b v K b c   ( 4.73) 

Periodicity:    ηω ηω ilb r b r  ,    ωω ωω ilb r b r  , , 1,2,3i  ( 4.74) 

 
η

ηω 0b  ,  
ω

ωω 0b  ( 4.75) 

  
ηω

ηω ηω β ηω η ηωβ,η η
B

1
d     p

A

c A
V

c n v b K b  ( 4.76) 
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  
ωη

ωη ωη β ωω ω ωω ωβ,ω ω
B

1
d      p

A

c A
V

c n v b K b K  ( 4.77) 

Closure problem III 

The third closure problem originates from the exchange source    
ηω ηω

ω η

 
 

 
T T , and is 

given by: 

      1

β η η η ηβ,η η
     pc r rv K   ( 4.78) 

B.C.1 η ω 1 r r , at ηωA  ( 4.79) 

B.C.2 ηω η η ηω ω ω    r rn K n K , at ηωA  ( 4.80) 

      1

β ω ω ω ωβ,ω ω
     pc r rv K   ( 4.81) 

Periodicity:    η η ir l rr r  ,    ω ω ir l rr r  , 1,2,3i  ( 4.82) 

 
η

η 0r  ,  
ω

ω 0r  ( 4.83) 

where  is: 

  

  
ηω

ωη

ηω β η η ηβ,η η
B

ωη β ω ω ωβ,ω ω
B

1
d

1
d

 



    

    





p

A

p

A

c r r A
V

c r r A
V

n v K

n v K

 ( 4.84) 

We define new variables as below: 

η ηs r and ω ω 1 s r  ( 4.85) 

Thus, the third closure problem takes the form shown next. 

Closure problem III' 

      1

β η η η ηβ,η η
     pc s sv K   ( 4.86) 

B.C.1 η ωs s , at ηωA  ( 4.87) 

B.C.2 ηω η η ηω ω ω    s sn K n K , at ηωA  ( 4.88) 
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      1

β ω ω ω ωβ,ω ω
     pc s sv K   ( 4.89) 

Periodicity:    η η is l sr r  ,    ω ω is l sr r  , 1,2,3i  ( 4.90) 

 
η

η 0s  ,  
ω

ω 0s  ( 4.91) 

  
ηω

ηω β η η ηβ,η η
B

1
d      p

A

c s s A
V

n v K  ( 4.92) 

 Up-scaled energy equation 4.6.

By substituting Eq. ( 4.60) into ( 4.37), the closed from energy equation (i.e. the up-scaled 

volume-averaged energy equation at level C) for the η-region becomes: 

 
 

     

       

η
η

ηηη η

η η η β ηη β,η η

accumulation
convection

η ηω ωη ηω ω

η η ω ηη η ηω ω

non-traditional convec
traditional energy source

. .

p p

T
c c T

t

T T T T

   
    

   

  
        

  

v

d u u

    

       

tion

η ηω ωη ηω ω

ηη η ηω ω η ω

coupling thermal dispersiondominant thermal dispersion inter-region energy exchange

T T T T
    

           
    

K K 

  ( 4.93) 

where the coefficients are defined as: 

 
η

η η βη η η η  s sd v K  ( 4.94) 

  
ηω

ηη ηω β ηη η ηη ηβ,η η
B

1
d      p

A

c A
V

u n v b K b K  ( 4.95) 

  
ηω

ηω ηω β ηω η ηωβ,η η
B

1
d     p

A

c A
V

u n v b K b  ( 4.96) 

  
η

ηη η η ηη βη ηη   IK K b v b  ( 4.97) 

 
η

ηω η η ηω βη ηω  K K b v b  ( 4.98) 

  
ηω

ηω β η η ηβ,η η
B

1
d      p

A

c s s A
V

n v K  ( 4.99) 
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In addition, by substituting Eq. ( 4.61) into ( 4.38), the closed form of energy equation for 

the ω-region becomes: 

 
 

     

       

ω
ω

ωωω ω

ω ω ω β ωω β,ω ω

accumulation convection

η ηω ωη ηω ω

ω ω η ωω ω ωη η

non-traditional conv
traditional energy source

. .

p p

T
c c T

t

T T T T

   
    

   

  
        

  

v

d u u

    

       

ection

ηω ω ω ηω ω ω

ωω ω ωη ω ω η

dominant thermal dispersion coupling thermal dispersion inter-region energy exchange

T T T T
    

            
     

K K 

  ( 4.100) 

where the coefficients are defined as: 

 
ω

ω ω βω ω ω ω  s sd v K  ( 4.101) 

  
ωη

ωω ωη β ωω ω ωω ωβ,ω ω
B

1
d      p

A

c A
V

u n v b K b K  ( 4.102) 

  
ωη

ωη ωη β ωη ω ωηβ,ω ω
B

1
d     p

A

c A
V

u n v b K b  ( 4.103) 

  
ω

ωω ω ω ωω βω ωω   IK K b v b  ( 4.104) 

 
ω

ωη ω ω ωη βω ωη  K K b v b  ( 4.105) 

  
ωη

ωη β ω ω ωβ,ω ω
B

1
d      p

A

c s s A
V

n v K  ( 4.106) 

In Eqs. ( 4.93) and ( 4.100), the heat transfer in the dual-scale porous medium is controlled 

by energy transport mechanisms of convection, conduction, and inter-region heat exchange. 

They are quantified via the effective transport coefficients defined in Eqs. ( 4.94)–( 4.99) and 

Eqs. ( 4.101)–( 4.106). In the above equations, the coefficients ηηK  and ηωK  are referred to as 

the dominant thermal dispersion tensors. The coefficients ηωK  and ωηK  are the coupling 

thermal dispersion tensors. In the two non-traditional convective transport terms in Eqs. 

( 4.93) and ( 4.100), the coefficients ηηu , ηωu , ωωu , ωηu  are the pseudo-velocity vectors. The 
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coefficients ηd  and 
ωd  are related to the energy source terms. The parameter α is the inter-

region energy exchange coefficient. 

 Summary 4.7.

In this chapter, a theoretical approach is used to present mathematical model of heat transfer 

in dual-scale porous structures. The volume-averaging method was applied to the 

convective–conductive energy conservation equation to derive the large-scale equations. The 

closure problems were introduced along with the closure variables to establish the two-

equation model for heat transfer of dual-scale porous media. It possible for the users 

intending to perform numerical simulation at level C, such as reactor level, to conveniently 

apply the up-scaled two-equation model along with the effective coefficients to model the 

heat transfer in the dual-scale porous media. The effective coefficients are calculated using 

the solution of the closure problems for an REV of a given dual-porosity medium. In the 

following chapter, the effective coefficients for given dual-scale porous media are 

numerically determined. The accuracy of using the up-scaled two-equation model with 

effective coefficients, Eqs. ( 4.93) and ( 4.100), is examined by comparing the results of the 

volume-averaged model to those of pore-level simulations.   
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Chapter 5 

Numerical determination of effective heat 

transfer coefficients 

 

5. Numerical determination of effective heat transfer coefficients 

This chapter presents the numerical determination of the effective heat transfer coefficients 

introduced in Chapter  4 for air flowing in packed beds of porous spherical particles. Firstly, 

the introduced closure problems defined in Section  4.5 are numerically solved in 3D unit 

cells of packed bed of porous particles, representing the dual-scale porous medium. Then, the 

solution of the closure problem is used to determine the effective coefficients appearing in 

the up-scaled energy equation. Finally, the results of the up-scaled model are compared with 

those of the pore-level simulations (at the meso-scale) to investigate the accuracy of the up-

scaled model. 

 Solution procedure of the closure problems 5.1.

The effective coefficients defined in Eqs. ( 4.94)–( 4.99) and Eqs. ( 4.101)–( 4.106), which are 

related to the two-equation model of conductive–convective heat transfer in a dual-scale 

porous medium presented in Eqs. ( 4.93) and ( 4.100), are functions of closure variables ηηb , 

ηωb , ηr , ωηb , ωωb , and ωωb . Therefore, the closure problems introduced in Section  4.5 are 

needed to be solved numerically for an REV of a dual-scale porous medium in order to 

determine the effective coefficients. In the method of volume averaging, it is assumed that 

the representative cells can be periodically repeated in all directions to produce the entire 

desired porous medium. Each closure problem is in the form of a steady-state boundary value 

problem with two variables coupled through the inter-region flux term. The solutions to the 

closure problems are unique depending on the structure of the porous medium. The 

procedure of determining the effective coefficients in a dual-scale porous medium is:  

1) Define the REV of a dual-scale porous system 
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2) Calculate the pore-scale periodic velocity field in the REV 

3) Apply the velocity field in the closure problems 

4) Solve the closure problems (boundary value problems) 

5) Calculate effective coefficients based on the closure variables field 

In the first step, the REV of the given dual-scale porous medium is defined. The 

advection terms appears in the closure problems, and the integral sources ηηc , ωηc , ηωc , ωωc

and   are functions of velocity field. Thus, we need to calculate the pore-level velocity field 

in the REV. Then, we apply the velocity fields as the inputs to the closure problems. In the 

next step, the closure problems are solved in both regions separately from the up-scaled two-

equation model of heat transfer. In the final step, the effective coefficients defined in Eqs. 

( 4.94)–( 4.99) and Eqs. ( 4.101)–( 4.106) are determined  using the solution of the closure 

problems. 

5.1.1. Case study definition 

We emphasise that the two-equation model developed in Chapter  4 is for a general case of η- 

and ω-regions being porous but with different characteristic length-scales. As discussed in 

Section  4.2, a specific case of η 1   and 0 1   is considered in this work.  

The model dual-porosity medium is depicted in Figure  5.1. It consists of a packed bed of 

porous spherical particles. The inter-particle region, referred to as the η-region, contains a 

fluid only.  The intra-particle region, referred to as the ω-region, contains a porous domain. 

The mathematical model developed in Chapter  4 and the procedure of determining the 

effective coefficients presented in Section  5.1 can be used for any given dual-scale porous 

medium. However, each specific dual-scale porous medium has its own unique solution of 

the closure problems, and consequently, its own unique effective coefficients. Therefore, the 

dual-scale porous medium used in this study has been chosen as a specific case due to its 

application in industry in general and in solar thermochemistry in particular. Thus, this 

section focuses on the procedure of solving the closure problems and determining the 

effective coefficients.  

Figure  5.1 illustrates the REVs of dual-scale porous media consisting of packed bed of 

porous spherical particles with SC, BCC, and FCC packing arrangement. By utilizing the unit 

cell symmetry, a quarter of the selected geometries sufficies to obtain the numerical solution 
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at a reduced computational cost. To calculate the fully-developed velocity fields—as inputs 

for solving the closure problems—the periodic boundary conditions are applied on the front 

and back faces of the domains shown in Figure  5.1. Symmetry boundary conditions are on 

the lateral faces. In Figure  5.1a, the periodic boundary conditions are applied on the faces

0z   and SCz l , and the symmetry boundary conditions are applied on the faces 0x  ,

SC 2x l , 0y   and SC 2y l . The symmetry boundary conditions on the lateral faces are 

justified assumptions due to the reasons below: 

i. The unit cells of the packed bed shown in Figure 5.2 are symmetrical. 

ii. Fluid flow is in z direction 

iii. Normal velocity component at the lateral faces can be neglected.  

The use of symmetry boundary conditions for fluid flow is a well-established procedure 

for simulating the transport phenomena in REVs of porous media [56, 164, 215–218]. In the 

case of calculating the fluid flow, constant mass flow rate in the z direction is considered for 

the periodic boundary condition, which forces equivalent velocity profiles at the front and 

back faces of the domains (at the planes 0z   and SCz l ). Same conditions are applied for 

solving the closure problems, namely periodicity for front and back faces, and symmetry for 

the lateral faces. The symmetry boundary condition at each face enforces the values of the 

closure variables on the given face to become equivalent to those on the faces mirrored by 

the symmetry plane. For instance, consider Figure  5.1a. The symmetry condition is applied 

on the plane SC 2x l . Thus, this plane reproduces the values of closure variables being 

calculated in its front. Consequently, the values of closure variables on plane SCx l  are 

exactly similar to those calculated on plane 0x  . Therefore, the periodic conditions of the 

closure variables are satisfied for the whole representative unit cells shown in the top row of 

Figure  5.1 according to Eqs. ( 4.68), ( 4.74) and ( 4.90). This is a common procedure within the 

volume-averaging framework [109]. 
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(a) (b) (c) 

 

Figure  5.1. Representative 3D unit cells and the computational domain used to solve the closure problem for (a) 

SC, (b) BCC, and (c) FCC packing arrangements. 

Table  5.1 summarises the closure problem parameters for the considered model medium 

consisting of a packed bed of porous spherical particles. Because the two-equation volume-

averaged model derived in Chapter 4 is generally applicable to dual-scale porous media, two 

different values were chosen for the permeability of the porous particles of the packed bed 

(ω-region) as shown in Table  5.1. These values are chosen to show the general character of 

the two-equation volume-averaged model. Thereby, one of the values for permeability is in 

the order of those reported in Table  3.2. The other one is higher than those reported in 

Table  3.2. Therefore, the case studies and the values of the relevant parameters presented in 

Table  3.2 are only chosen for the sake of investigating the fidelity of the model by 

performing numerical experiment. Note that the permeability of a porous medium is a 

function of many factors, including pore size, porosity and tortuosity. From the theoretical 

standpoint, even if the porosity of a porous structure remains constant, the permeability of the 

medium can still be tuned by changing the pore size and/or tortuosity. Hence, changing the 

value of permeability at constant porosity is justified. 
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Table  5.1. Parameters related to the solution of the closure problems. 

Parameter Value 

Permeability of ω-region ( ωK ) 10
-9 

and 10
-11

 (m
2
) 

Porosity of η-region ( η ) 1 

Porosity of ω-region ( ω ) 0.5 

Flowing fluid air 

Solid to fluid thermal conductivity ratio in ω-region  s f ω
k k   10 and 100 

5.1.2. Velocity field calculation 

To calculate the pore-level velocity field at level B (see Figure  4.1), the mass and momentum 

conservation equations are solved for the fluid. Only a narrow range of temperatures is 

considered to neglect the effect of temperature on thermophysical properties of the fluid. 

Governing equations 

In the inter-particle region (η-region), the traditional mass and momentum equation are 

solved. For the intra-particle region (ω-region), volume-averaged mass and momentum 

equations with the Darcy term are solved considering the values of permeability of ω-region 

presented in Table  5.1. For the inter-particle region (η-region), the conservation equations of 

mass and momentum for steady flow of an incompressible Newtonian fluid read: 

η 0 v  ( 5.1) 

  2

η η η η η η     pv v v  ( 5.2) 

where ηv  and ηp  are the η-region velocity vector and the pressure, respectively. For intra-

particle region (ω-region), the volume-averaged mass and momentum conservation equations 

are solved to model the fluid flow within the small pores of the spheres as below: 

ω 0 v  ( 5.3) 

 
ω 2ω ω ω

ω ω ω ω ω ω

ω ω

  
 


      p

k
v v v  ( 5.4) 

where ω  is the porosity of the spherical particles of the packed bed, ωv  is the superficial 

average of velocity inside the spherical particles, and 
ω

ωp  is the intrinsic average of the 

pressure. The third term on the right hand side of Eq. ( 5.4) is the Darcy term which describes 
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the microscopic viscous force caused by interaction between the fluid and solid constituents 

in the ω-region. 

Boundary and interface conditions 

For the fluid flow simulations, the periodic boundary conditions are applied on the front and 

back faces of the domain in z direction to obtain the fully-developed velocity field. The 

symmetry boundary conditions are applied on the lateral faces of the domain (Figure  5.1). 

Interface conditions are needed to couple the momentum and mass transfer phenomena 

between the homogenous fluid flowing in inter-particle region and the fluid flowing in the 

porous spherical particles. For the interface between these two regions, the conditions of 

continuity of velocity and interfacial stress are applied as below [120, 207, 208]: 

η ωv v  ( 5.5) 

ω
η

ωη ω






    
    

      

u vu v

y x y x
 ( 5.6) 

ω
η

ωη ω






    
    

      

w vw v

y z y z
 ( 5.7) 
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    
    

       





 ( 5.8) 

ω

η ω  p p  ( 5.9) 

where u , v and w are the x, y and z direction velocity components, respectively.  

Numerical method, mesh independency analysis and validation 

The CFD code ANSYS FLUENT 17.1 is used to solve the governing equations using the 

finite volume method [209]. The 3D computational domain is discretised using tetrahedral 

cells with meshing refinement near the η–ω interface due to the presence of large velocity 

gradients. Figure  5.2 shows the meshing of the computational domain depicted in Figure  5.1a 

for SC packing arrangement. The pressure–velocity coupling is resolved by the SIMPLE 

algorithm, and the convection terms are discretised using the second order upwind scheme 

[210].  
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Figure  5.2. Meshing of the computational domain for SC packing arrangement. 

Mesh independency analysis has been performed to ensure the results do not depend on 

the selected spatial discretisation. The total number of mesh elements for the dual-scale 

porous structures are varied from about 20,000 to 300,000. Velocity at different locations as 

well as the pressure drop per unit length of the packed bed are selected as the parameters to 

examine the grid independency. For instance, Figure  5.3 shows the values of pressure drop 

per unit length of the packed bed with SC arrangement in terms of number of mesh elements 

for the case of Rep=5 and 
11

ω 10K m
2
. Increasing the mesh elements to >200,000 affects 

the value of pressure gradient by less than 3%. 

In order to show that the solver is consistent in fluid flow problem for conjugate fluid–

porous domains, the numerical results obtained from current study is compared with the 

experimental ones reported by Leong et al. [125] for porous graphite foam. For validation, 

the conditions are kept similar to those mentioned in [125]. As seen in Figure  5.4, there is a 

good agreement between the results, which indicates that the solver is consistent for such 

problem. 
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Figure  5.3. Mesh independency analysis for packed bed with SC arrangement. 

(a) 

 

(b) 

 

Figure  5.4. validation of the numerical method: (a) schematic diagram of the domain and (b) comparison of 

numerical and experimental results for pressure drop in terms of inlet velocity for graphite foam [125]. 
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To validate the numerical method, the values of pressure drop calculated in this study for 

packed beds with solid particles are compared with those reported by Yang et al. [56] for 

different packing arrangements and Reynolds numbers. The results are presented in 

Table  5.2. There is a good agreement between the results showing the validity of the 

numerical method. 

Table  5.2. Comparison of pressure drop for different packing arrangements. 

Packing arrangement 
Yang et al. [56] Current simulation Error (%) 

Δp/Δx (Pa/m) Δp/Δx (Pa/m) Δp/Δx (Pa/m) 

SC (Re=100) 8.32 8.63 3.7 

SC (Re=5000) 301.42 308.63 2.4 

BCC (Re=100) 39.89 41.07 2.9 

BCC (Re=5000) 1057.77 1088.84 2.9 

FCC (Re=100) 102.52 99.24 3.2 

FCC (Re=5000) 2456.09 2531.06 3.1 

Velocity field solution 

Figure  5.5 illustrates the velocity fields for the SC unit cell for two different values of the 

particle Reynolds numbers Rep and the ω-region permeability ωK . With decreasing ωK  at 

fixed Rep, the fraction of the fluid flowing through the ω-region decreases. For example, at 

Rep=5, the fraction of the fluid flowing through the ω-region decreases from 13.9 to 3.16% 

for the permeability decreasing from ωK =10
-9 

to 10
-11

 m
2
, respectively. This effect is due to a 

higher pressure drop within the ω-region for lower ωK . In addition, by decreasing the value 

of ωK  at fixed Rep, stagnation zones are formed near the contact region between the spheres, 

resulting in vortex structures (see grey circles in Figure  5.5b and Figure  5.5d). Such vortex 

patterns were also observed in the study performed by Yang et al. [56] for packed bed of 

solid spherical particles. The pore-level velocity fields for BCC and FCC packing 

arrangements shown in Figure  5.1b and Figure  5.1c are also solved numerically, but they are 

not shown here for brevity. 
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(a) (c) 

  
(b) (d) 

Figure  5.5. Pore-level velocity field for SC packing arrangement at (a) Rep=5 and
9

ω 10K m
2
, (b) Rep=5 and

11

ω 10K m
2
, (c) Rep=50 and

9

ω 10K m
2
, and (d) Rep=50 and

11

ω 10K m
2
. 

5.1.3. Solution of the closure problems 

The calculated velocity fields for three selected dual-scale porous structures are now used to 

solve the closure problems. ANSYS Fluent 17.1 is applied [209]. The closure problems have 

the form of advection–diffusion equations with integral source terms. Therefore, user defined 

scalars (UDSs) are defined in ANSYS Fluent for the transport equation of each closure 

variables. For instance, in Closure problem I, the steady-state boundary value problem with 

two variables, ηηb and ηωb , are coupled through the inter-region flux terms, i.e. ηηc  and ωηc . 

The inter-region flux terms are computed via user defined functions (UDFs) applied to 

UDSs. This enables one to integrate the inter-region flux terms over the η–ω interface in Eqs. 

( 4.68) and ( 4.69). Analogous procedures are applied to solve Closure problems II and III.  

In the last row of the Table  5.1, the parameter  s f ω
k k  has been defined which is the 

ratio of solid to fluid thermal conductivity in ω-region. This parameter is presented by rk . As 

mentioned, the fluid flowing in the domain is air with a known value of thermal conductivity, 

which is assumed constant due to the assumption of reasonably small temperature range. 

Therefore, the thermal conductivity of the η-region is the same as that of the air, since η-

region (the inter-particle region) is a homogenous region where only the fluid exists. 

Although the LTE assumption has been made within the ω-region, we need to set a value for 
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the thermal conductivity of the solid phase in ω-region in order to define the effective 

thermal conductivity of the ω-region, i.e. ωK . Since only one working fluid has been 

considered in this study, the parameter rk has been introduced to analyse the effect of ω-

region thermal conductivity. 

Figure  5.6 shows the fields of the closure variables  ηη z
b  and  ηω z

b , for example for SC 

packing arrangement, which are obtained using the solution of Closure problem I. Two 

different values for both parameters of ωK  and rk  are taken into account in the process of 

solving the closure problems in order to be able to investigate their effect on the results. It 

can be observed that at a given Rep and ωK , increasing the value of rk  leads to a more 

uniform distribution of closure variables within the ω-region. This observation is explained 

by the fact that for higher rk , the ω-region effective thermal conductivity becomes greater in 

comparison with that of the η-region. Therefore, the closure variable can diffuse more 

uniformly in the ω-region (for instance, compare Figure  5.6a and Figure  5.6b). At a given 

value of Rep and rk , two observations can be made by decreasing the permeability of the ω-

region. Firstly, the contour lines of the closure variable in the ω-region become more vertical 

(for instance, compare Figure  5.6e and Figure  5.6g). This is due to the fact that as the value 

of ωK  decreases, less fluid passes through the ω-region. Thus, the convective term becomes 

less dominant compared to the conductive term. Therefore, the closure variable transfers in 

the ω-region mostly due to diffusion. Secondly, when the value of ωK  is lower, the closure 

variable in the η-region is convected more to the downstream in the flow direction (for 

instance, compare Figure  5.6e and Figure  5.6g). Such an observation can be explained by 

looking at Figure 3 in which it was shown that when ωK  decreases, more fluid passes through 

the inter-particle region (η-region). This makes the convection term more dominant in the η-

region. Another point that can be observed in Figure 4 is that at a given value of ωK  and rk , 

increasing the value of Rep from 5 to 50, significantly changes the contour pattern of the 

closure variables in both η- and ω-region (for instance, compare Figure  5.6a and 

Figure  5.6e). At Rep=5, the contour pattern is almost symmetrical to the middle xy-plane. In 

contrast, at Rep=50, the observed pattern is totally asymmetric. At higher values of Rep, the 
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effect of convection becomes more significant compared to conduction, which causes the 

closure variables to be convected more in the flow direction. The closure problems are also 

solved for BCC and FCC packing arrangements with the conditions provided in Table  5.2. 

However, the solutions of the closure problems for BCC and FCC packing arrangements are 

not shown here for brevity. 
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(a) Rep=5, 
9

ω 10K m
2 
and rk =10 (e) Rep=50, 

9

ω 10K m
2 
and rk =10 

(b) Rep=5, 
9

ω 10K m
2 
and rk =100 (f) Rep=50, 

9

ω 10K m
2 
and rk =100 

(c) Rep=5, 
11

ω 10K m
2 
and rk =10 (g) Rep=50, 

11

ω 10K m
2 
and rk =10 

(d) Rep=5, 
11

ω 10K m
2 
and rk =100 (h) Rep=50, 

11

ω 10K m
2 
and rk =100 

Figure  5.6. Closure variables  ηη z
b (m) and  ηω z

b (m) at different values of Rep, ωK and rk  for the SC packing 

arrangement. 

Now that the closure problems are solved and the closure variables fields are obtained within 

the unit cell, the effective coefficients—which are functions of the closure variables—can be 

determined. Table  5.3 lists the effective coefficients of the dual-scale porous medium 

consisting of a packed bed of porous spherical particles with the SC packing arrangement 

calculated using the solution of the closure problems at different values of of Rep, rk and ωK . 
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Table  5.3. Effective coefficients of the dual-scale porous medium consisting of a packed bed of porous spherical 

particles calculated from numerical solution of closure problems. 

Coefficient 

Rep=5 Rep=50 
9

ω 10K m
2
 11

ω 10K m
2
 9

ω 10K m
2
 11

ω 10K m
2
 

rk =10 
rk =100

 
rk =10 

rk =100 
rk =10 

rk =100 
rk =10 

rk =100 

   ηη ηzz zz
k k  0.707 0.339 0.707 0.339 0.707 0.339 0.707 0.339 

   ωω ωzz zz
k k  1.272 0.189 1.272 0.189 1.272 0.189 1.272 0.189 

   ηω ηzz zz
k k  0.031 0.087 0.037 0.119 0.032 0.097 0.061 0.190 

   ωη ω zzzz
k k  0.078 0.027 0.064 0.020 0.075 0.025 0.039 0.013 

   ηη ηz zz
u k  

(1/m) 

2.031 

×10
-3

 

2.166 

×10
-3

 

2.749 

×10
-4

 

3.204 

×10
-5

 

9.655 

×10
-4

 

1.009 

×10
-3

 

6.054 

×10
-6

 

8.470 

×10
-7

 

   ωω ωz zz
u k  

(1/m) 
0.015 0.019 

2.219 

×10
-3

 

2.735 

×10
-4

 

7.254 

×10
-3

 

9.892 

×10
-3

 

1.040 

×10
-4

 

1.414 

×10
-5

 

   η ηz zz
d k  

(1/m) 

1.404 

×10
-6

 

1.403 

×10
-6

 

5.131 

×10
-6

 

4.439 

×10
-5

 

3.245 

×10
-6

 

3.234 

×10
-6

 

6.037 

×10
-6

 

5.092 

×10
-5

 

   ω ωz zz
d k  

(m
-1

) 

4.019 

×10
-7

 

3.544 

×10
-7

 

6.945 

×10
-7

 

4.885 

×10
-6

 

6.067 

×10
-7

 

6.540 

×10
-7

 

1.045 

×10
-6

 

7.911 

×10
-6

 

 η
zz

k  

(m
-2

) 

2.937 

×10
-4

 

2.472 

×10
-4

 

1.188 

×10
-4

 

1.116 

×10
-4

 

5.537 

×10
-3

 

3.915 

×10
-3

 

1.959 

×10
-3

 

1.585 

×10
-3

 

 

These effective coefficients can be applied in the up-scaled two-equation model of heat 

transfer for the given dual-scale porous structure. Using the effective coefficients makes it 

possible for the users intending to perform numerical simulation at level C to save 

computational resources instead of solving the energy equations at level B, Eqs. ( 4.5) to 

( 4.8). For instance, the users intending to perform parametric study in a solar thermochemical 

reactor, they can employ the two-equation model at the reactor level along with the 

calculated effective coefficients for the reacting dual-scale porous medium [219–221]. 

 Two-equation model verification 5.2.

In this section, the fidelity of the two-equation model with the effective coefficients is 

investigated. For this purpose, pore-level simulations at level B are performed for the chosen 

packed beds of porous particles. The procedure of performing pore-level simulations for fluid 

flow at level B is similar to that of the Darcy-level simulations introduced in Chapter  3. 
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Traditional mass and momentum conservation equations, Eqs. ( 3.1) and ( 3.2), are solved for 

the inter-particle region (blue regions in Figure  5.7a). The volume-averaged equations for 

mass and momentum, Eqs. ( 3.3) and ( 3.4), are solved to model the fluid flow within the 

porous particles (yellow regions in Figure  5.7a). Note that only the Darcy term is considered 

in volume-averaged momentum equation. For heat transfer at level B, Eqs. ( 4.5)–( 4.8) are 

solved. 

A homogenised medium, shown in Figure  5.7b, is considered for the up-scaled volume-

averaged model with the effective coefficients. For this case, the volume-averaged equations 

for mass and momentum, Eqs. ( 3.3) and ( 3.4), are solved to model the fluid flow in the whole 

homogenised dual-scale packed bed (yellow regions in Figure  5.7b). Only Darcy term is 

considered in volume-averaged momentum equation. The effective permeability of the 

homogenised medium is calculated using the results of the Darcy-level simulations, similar 

to the procedure performed in Section  3.4. For heat transfer in the homogenised medium, the 

two-equation volume-averaged model presented in Eqs. ( 4.93) and ( 4.100) are solved. For 

the effective coefficients defined in Eqs. ( 4.94)–( 4.99) and Eqs. ( 4.101)–( 4.106), the values 

listed Table  5.3 are considered. 

Note that the inlet and outlet blocks are specified before and after the dual-scale porous 

blocks to minimise the boundary effects in the simulations. In the inlet and outlet blocks, the 

traditional mass and momentum and energy conservation equations are solved. Comparing 

the results of pore-level simulations for the SC, BCC and FCC packing arrangements with 

those of the two-equation model with effective coefficients enables us to demonstrate the 

capability of the up-scaled two-equation model to predict the heat transfer in dual-scale 

porous media. 

Table  5.4 presents the parameters related to the cases of pore-level simulations at level B 

and up-scaled homogeneous two-equation model. Other parameters are exactly the same as 

the ones listed in Table  5.1. 
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(a) 

 

(b) 

 
Figure  5.7. Computational domain for the solution of heat transfer for (a) pore-level at level B for different 

cases of SC, BCC and FCC packing arrangements and (b) up-scaled homogenised model at Level C. 

Table  5.4. Parameters related to the cases of pore-level simulations at level B and up-scaled homogeneous two-

equation model. 

Parameter SC BCC FCC 

dp 2rp=1mm 2rp=1mm 2rp=1mm 

lSC =dp – – 

lBCC – =2dp/√3 – 

lFCC – – =2dp/√2 

Li =dp =dp =dp 

Lp =20lSC =20lBCC =20lFCC 

Lo =3dp =3dp =3dp 

Hp =10lSC =10lBCC =10lFCC 
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ANSYS Fluent 17.1 [209] is used to solve the conservation equations for both cases of 

pore-level simulations at level B and up-scaled two-equation models. Mesh independency 

analysis has also been performed for both cases to ensure the results are not changing with 

mesh refinement. The required number of mesh elements for the pore-level simulations for 

the cases of SC, BCC, and FCC packing arrangements are 5.19×10
6
, 7.09×10

6
 and 9.11×10

6
, 

respectively. These values are, respectively, 133,350, 150,210, and 169,450 for the up-scaled 

homogenised cases. Figure  5.8 shows the meshing of the computational domain for 

performing pore-level simulations for SC packing arrangement depicted in Figure  5.7. 

Figure  5.9 illustrates the velocity profile for a line located in the middle of the dual-

porous packed bed with SC packing arrangement at Rep=5, 9

ω 10K m
2
 for two cases of 

pore-level simulations at level B and homogenised model. 

 

Figure  5.8. Meshing of the computational domain for performing pore-level simulations for the SC packing 

arrangement. 



86 

 

 

Figure  5.9. Velocity magnitude for a line located in the middle of the dual-porous packed bed with SC packing 

arrangement at Rep=5, 
9

ω 10K m
2
 for two cases of pore-level at level B and homogenised case. 

Figure  5.10 depicts the steady-state pore-level and up-scaled temperature fields for three 

cases. When comparing the temperature fields obtained using the results of pore-level 

simulations and up-scaled homogenised model, similar trends can be observed. This 

qualitatively shows the fidelity of the volume-averaged two-equation model with the 

effective coefficients in predicting the pore-level results. This fidelity has been obtained by 

using much less computational resources. Compare the number of mesh elements for pore-

level simulations and up-scaled model. By comparing the results of up-scaled homogenised 

model to the pore-level simulations, the maximum point to point relative error is reported to 

be approximately 1.1%, mostly occurring at the vicinity of the wall with constant heat flux. 
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pore-level                                                            up-scaled 

 

(a) 

 

(b) 

 

(c) 

Figure  5.10. Steady-state pore-level and up-scaled temperature fields for (a) SC at Rep=5, 
9

ω 10K  m
2
, 

r 10k  , 
w
q =300 W/m

2
, (b) BCC at Rep=50, 

11

ω 10K  m
2
, r 100k  , 

w
q =1800 W/m

2
, and (c) FCC at Rep=5, 

11

ω 10K  m
2
, r 100k  , 

w
q =500 W/m

2
. 
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Three control points P1, P2, and P3 are placed at selected locations of the domain showed 

in Figure  5.7. The temperature of the control points are calculated over time in order to 

quantitatively analyse the accuracy of the results of the homogenised model compared to 

those of the pore-level simulations at level B. For the case of SC packing arrangement, the 

coordinates of the control points P1, P2 and P3 are  SC SC0,7 ,7l l ,  SC SC SC0.25 ,8.5 ,17.5l l l , 

and  SC SC SC0.5 ,4 ,13.5l l l , respectively. The origin of the Cartesian coordinate system is in 

the leading edge of the dual-scale porous zone (see Figure  5.7). 

Figure  5.11 shows the transient temperature calculated using the results of pore-level 

simulations and the up-scaled model for the case of SC at Rep=5, ωK =10
-9

, rk =10, 
w
q  =300 

W/m
2
 at the control points. Although the trend of temperature variation in terms of time is 

similar for all the control points, the transient temperature obtained using the up-scaled 

model seems to reach steady state faster than that of the pore-level simulations. For instance, 

for the control point P2, the temperature obtained using the homogenised model reaches 

steady-state after approximately 200 s. In contrast, the temperature obtained using the pore-

level simulations at level B only starts to reach steady-state after 400 s. This can be attributed 

to the fact that for the up-scaled homogeneous model, we force the effective coefficients for 

the whole dual-porous domain. As shown in the procedure of calculating the effective 

coefficients in Section  5.1, the periodic unit cell with fully developed flow field was 

considered as the input for the closure problem solution (Section  5.1.2). However, in the 

pore-level simulations, it takes more time and length for the fluid flow and heat transfer to 

fully develop. Consequently, the temperature obtained using the results of pore-level 

simulations takes longer to reach steady state compared to the up-scaled model. However, the 

most important conclusion from comparing the results of pore-level simulations and the up-

scaled model is that the two-equation homogenised model provides similar trends with 

appropriate fidelity and lower computational cost. 
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(a) (b) 

 

(c) 

Figure  5.11. Transient temperature obtained using pore-level simulations and up-scaled model for the case of 

SC at Rep=5, ωK =10
-9

, rk =10, 
w
q =300 W/m

2 
at (a) P1, (b) P2, and (c) P3. 

To obtain the effective coefficients to be used in the homogenised case, the closure 

problems are needed to be solved individually for each selected REV. This increases the 

computational time required for the homogenised case. Thus, the values of the effective 

coefficients are case-dependent. Every time the REV changes, the closure problems are 

solved for that specific case. However, the closure problems are only solved for a small 

selected REV (shown in Figure  5.1) requiring low computational time. Therefore, the overall 

computational time required for solving the closure problems, calculating the effective 
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properties, and solving the up-scaled homogenised case is still much lower than that of 

performing the pore-level simulations. For instance, the pore-level simulation for the case of 

SC arrangement with 5.19×10
6
 mesh elements converged in less than 1.2 CPU hours. In 

contrast, the solution of the closure problems for the SC unit cell was completed in less than 

0.18 CPU hours, and the up-scaled homogenised simulation converged in less than 0.22 CPU 

hours. Therefore, if the calculation time of the effective properties from the solution of the 

closure problems is neglected, the overall computational time is reduced by approximately 

67%. Thus, for a given dual-scale porous media, the closure problems are solved only once, 

while the up-scaled problem will be solved many times in the application level. This enables 

performing parametric studies by saving a great deal of computational resources. This is the 

advantage of the up-scaled models compared to the pore-level simulations. 

 Summary 5.3.

In this chapter, the closure problems introduced in Section  4.5 were numerically solved for a 

specific case of dual-scale porous structure. The medium consists of a packed bed of porous 

spherical particles. The effective coefficients appearing in the two-equation model of heat 

transfer in dual-porosity media are determined using the solutions of the closure problems. 

The procedure and results of analysing fluid flow in dual-scale porous media presented in 

Chapter  3 were used to model the velocity field in the dual-scale porous structure. Finally, 

“numerical experiment” was performed to qualitatively and quantitatively analyse the 

accuracy of the numerical results obtained using the up-scaled two-equation model in 

comparison with those of the pore-level simulations at level B. It was observed that the 

volume-averaged two-equation model with effective coefficients is well capable of 

estimating the results of pore-level simulations using much less computational resources. 

For the theoretical analysis of heat transfer in dual-scale porous media, LTE was assumed 

within the micro-porous region and LTNE was assumed between the micro- and macro-

pores. These assumptions were justified based on application of dual-scale porous media in 

high-temperature solar thermochemistry. However, in other applications such as 

hydrogeology and petroleum engineering, the characteristic length-scales of the two regions 

can be different but comparable. Therefore, the applicability of the proposed mathematical 

model needs to be considered in the specific applications. Addressing this problem is beyond 

the scope of this thesis. 
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Chapter 6 

Conclusions and outlook 

 

6. Conclusions and outlook 

This dissertation was motivated by the need for understanding and analysing transport 

phenomena in dual-scale porous media appear and used in many applications such as 

hydrogeology, petroleum engineering, chemical reactors, and in particular, energy 

technologies in high-temperature thermochemistry. The main objective of this thesis is to 

theoretically formulate and numerically demonstrate the fluid flow and heat transfer 

phenomena in dual-scale porous media. 

To investigate the flow process, numerical simulations, at the pore level and Darcy level, 

were performed on fluid flow in a dual-scale porous medium consisting of packed bed of 

porous spherical particles. The effect of changing the porosity of the porous particles was 

analysed on the flow behaviour in the dual-scale porous medium. It was observed that the 

size of the throats between the intra-particle pores considerably affects the fluid flow patterns 

at the inter- and intra-particle regions as well as the region between them. The permeability 

and Forchheimer coefficient of the packed bed featuring dual-scale porosity were calculated 

using the results of direct pore-level simulations and Darcy-level simulations. It was 

observed that the Darcy-level simulations overestimate the pressure drop in the dual-scale 

porous medium compared to the DPLS, particularly when the porosity of the porous particles 

is higher. However, Darcy-level simulations can provide acceptably accurate results using 

much less computational resources compared to DPLS. For Darcy-level simulations, the 

average of error in predicting effective flow properties compared to DPLS was 

approximately 7%.  

To analyse the energy transport phenomena in dual-scale porous media, a theoretical 

approach was presented by applying volume-averaging method to the convective–conductive 
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energy conservation equation to derive the large-scale equations with effective coefficients. 

The closure problems were introduced along with the closure variables to establish the closed 

form of the two-equation model for heat transfer of dual-scale porous media. Such effort 

makes it possible for the users intending to perform numerical simulation at the application 

level, such as reactor level, to conveniently use the up-scaled equations along with the 

effective coefficients to model the heat transfer in the dual-scale porous media. The closure 

problems were numerically solved for a specific case of dual-scale porous structure 

consisting of a packed bed of porous spherical particles. The effective coefficients appearing 

in the two-equation model of heat transfer in dual-scale porous media were determined using 

the solution of the closure problems. The velocity field in the dual-scale porous structure was 

calculated using the solution of the fluid flow simulations in dual-scale porous medium. 

Finally, “numerical experiment” was performed to qualitatively and quantitatively analyse 

the accuracy of the numerical results obtained using the up-scaled model in comparison with 

those of the pore-level simulations. It was observed that the two-equation volume-averaged 

model with effective coefficients is well capable of estimating the pore-level results using 

much less computational resources. 

Idealised ordered dual-scale porous structures were used to perform direct pore-level 

simulations. It has been shown in the literature that the heat and mass transfer phenomena in 

ordered porous structures may differ from the realistic and practical random porous 

structures. For instance, assuming models with ordered arrangement of particles in packed 

beds underestimate the hydraulic losses compared to randomly packed bed of particles [56, 

126]. However, the REVs of realistic and practical dual-scale porous media (Figure  1.2) are 

much larger in size and more complex in geometry. Thus, considering the current 

computational resources, performing direct pore-level simulations of heat transfer and fluid 

flow in realistic dual-scale porous structures is a formidable task. This requires very large 

number of mesh elements and sophisticated meshing techniques, in particular for small-scale 

pores and the regions in the vicinity of the large- and small-scale pores. This issue can be 

considered in future studies. 

Further investigations are required in future to fully understand and model different 

modes of transport phenomena in dual-scale porous media. Different modes of transport such 

as diffusion, dispersion, fluid flow, and different modes of heat transfer (conduction, 
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convection and radiation) can occur simultaneously in dual-scale porous media. Thus, in 

future studies, the effective coefficients are needed to be defined by considering other modes 

of transport. For instance, Klinkenberg’s effect and Knudsen diffusion can occur for gas flow 

in dual-scale porous structures at high temperatures and low pressures. When the order of gas 

molecular mean free path is comparable to that of the average pore size, gas slippage and 

free-molecule flow becomes important. In such cases, the real permeability of a porous 

medium is different from the apparent permeability [222, 223]. This problem is beyond the 

scope of this thesis, and can be further investigated in future studies. 

For the theoretical analysis of heat transfer in dual-scale porous media, LTE was assumed 

within the micro-porous region and LTNE was assumed between the micro- and macro-

pores. These assumptions were justified based on conditions typical to dual-scale porous 

media in high-temperature solar thermochemical applications. In other applications, such as 

hydrogeology and petroleum engineering, the characteristic length-scales of the two regions 

can be different but comparable. Therefore, the applicability of the proposed mathematical 

model needs to be considered for specific applications.  
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