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Precise wave-function engineering with magnetic resonance
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Controlling quantum fluids at their fundamental length scale will yield superlative quantum simulators,
precision sensors, and spintronic devices. This scale is typically below the optical diffraction limit, precluding
precise wave-function engineering using optical potentials alone. We present a protocol to rapidly control the
phase and density of a quantum fluid down to the healing length scale using strong time-dependent coupling
between internal states of the fluid in a magnetic field gradient. We demonstrate this protocol by simulating the
creation of a single stationary soliton and double soliton states in a Bose-Einstein condensate with control over
the individual soliton positions and trajectories, using experimentally feasible parameters. Such states are yet to
be realized experimentally, and are a path towards engineering soliton gases and exotic topological excitations.
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I. INTRODUCTION

Precision quantum engineering is essential for quantum
simulation and emulation [1–4], topological quantum com-
puting [5,6], spintronics [7,8], and quantum metrology [9–13].
Engineering an appropriate system Hamiltonian is only part of
the challenge. It is equally critical to prepare the desired initial
wave function with high fidelity, and highly desirable to be
able to apply coherent unitary operations to that wave function.
Ideally, these controls would engineer spatial features at the
smallest length scale of the system and complete more rapidly
than the fastest dynamics of the uncontrolled fluid; in this
paper we show how to achieve this degree of rapid, precision
wave-function engineering. Typical approaches fail to achieve
this fidelity; optical fields cannot be used to engineer wave
functions on length scales smaller than the optical wavelength
λ [14–17], while adiabatic relaxation is necessarily slower than
the fundamental system time scale [18].

Our approach uses strong time-dependent coupling between
internal states to control the wave function rapidly, with
spatial resolution provided by a magnetic field gradient and
independent of the optical fields. We call this magnetic
resonance control (MRC). Our exemplar quantum fluid is a
pseudospin-1/2 Bose-Einstein condensate (BEC) comprised
of Zeeman states which are coupled using magnetic dipole
transitions. However, MRC is generally applicable to any spa-
tially extended quantum system with internal states, provided
the splitting can be made spatially dependent and the states
admit a time-dependent coupling. Such systems include Fermi
gases [19], atoms in optical lattices [20–22], and 3He films
[23].

Optical approaches to wave-function engineering of BECs
have included using off-resonant lasers to induce a local phase
shift and engineer a soliton [14,15], and transferring angular
momentum from a Laguerre-Gaussian beam to engineer a
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vortex [24]. The resolution of these techniques has been
limited to 2 μm by the optics used [14,15] and can never
imprint structures finer than the optical diffraction limit,
even with superlative optics. Structures engineered using
these techniques have been coarser than the healing length
ξ = 1/

√
8πna, the shortest distance over which density

perturbations exist in a stationary state. The healing length is
ξ ∼ 270 nm for a peak number density n ∼ 1014 atoms/cm3

and s-wave scattering length a = 5.3 nm. As an alternative to
optical wave-function engineering, inverting a trapping poten-
tial adiabatically has produced vortices [18] and skyrmions
[25]. While these approaches are not inherently diffraction
limited, the experimental apparatus limits these schemes to
creating only one type of topological defect, and they must
be performed slowly on the system time scale. An optically
induced magnetic resonance technique was used to create the
first vortex in a condensate [26] and an unstable soliton in a
condensate [27], which we discuss in detail later.

The sharpest stable structure supported by a single-
component condensate is a stationary dark soliton, hereafter
a black soliton: a π phase step across a density zero of width
of order ξ . We use the creation of a single black soliton as
a stringent test of our MRC protocol, as a black soliton can
only be engineered using a protocol that manipulates both
the phase and density of the macroscopic wave function with
healing length resolution. Phase engineering alone results in
the rapid flow of quantum fluid at the site of the phase gradient
as the overly sharp soliton relaxes to the stable solution. This
manifests as the emission of supersonic density peaks [14],
which we avoid by engineering loss at the solition phase
singularity to match the targeted state. Density engineering can
create a diverging group of gray solitons through matter wave
interference [28–31]. First, we describe the protocol used to
create a single black soliton in the context of a pseudospin-1/2
condensate. Then we simulate engineering a single black
soliton in a 87Rb condensate, with experimentally relevant
parameters. Finally, we show an extension to this protocol
that creates multiple solitons with controlled positions and
trajectories.

2469-9926/2017/96(1)/013612(8) 013612-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevA.96.013612


P. B. WIGLEY et al. PHYSICAL REVIEW A 96, 013612 (2017)

(a) (b)

(c) (d)

FIG. 1. MRC protocol applied to a pseudospin-1/2 condensate,
showing the position-dependent level splitting, spin state, phases
arg [ψ↓,↑(z)], and densities |ψ↓,↑(z)|2. (a) Initial wave function: The
condensate begins in state |↓〉 with uniform phase. (b) First pulse: A
magnetic gradient is applied, and a HS pulse transfers the left side
of the condensate to state |↑〉 with slice sharpness δz. The phase of
|↓〉 (blue, solid line) acquired during the first pulse is dominated by
the gradient, with the shallower phase variation of |↑〉 (red, dashed
line) owing to the spin superposition during the pulse. (c) Phase
accumulation: The magnetic gradient is removed, and a uniform π

phase difference between the two spin components is allowed to
accumulate. (d) Second pulse: The magnetic gradient is inverted and a
second pulse transfers the left side back to |↓〉, imprinting a phase step
of π onto this component. The finite sharpness δz of the transferred
slice carves a notch in the density |ψ↓(z)|2, filled by residual |↑〉
population. MRC enables independent control of the width of the
density notch and the height of the phase step.

II. MODEL SCHEME

Consider a condensate described by a two-component
macroscopic wave function [ψ↓(z,t),ψ↑(z,t)]T initially in
the spin-down state [ψ↑(z,0) = 0] with uniform phase
arg [ψ↓(z,0)] = 0 [Fig. 1(a)]. The first stage of MRC is to
transfer the population of the left side of the condensate to
the excited state |↑〉 [Fig. 1(b)]. This is achieved with the
application of a magnetic field gradient dB/dz which spatially
varies the energy splitting between |↓〉 and |↑〉 such that an
adiabatic coupling pulse can address a spatial subset of the
condensate, as per magnetic resonance imaging [32]. Once
the left side of the condensate is in |↑〉, it accumulates a
phase relative to the right side [Fig. 1(c)]. After the requisite
phase shift of π has accumulated, the magnetic field gradient
is inverted, and a second time-reversed adiabatic pulse is
applied, returning the left side of the condensate to the |↓〉

state [Fig. 1(d)]. This writes the desired π phase step into the
wave function ψ↓(z,t). By inverting the gradient during the
second pulse, no net impulse is induced by this Stern-Gerlach
force over the duration of the protocol; discussed in detail in
Sec. IV.

Our MRC protocol also carves a density notch into ψ↓(z,t)
at the location of the phase step; we can independently control
the width of this notch and the accumulated phase step, thereby
achieving simultaneous phase and density engineering. This
∼ δz wide density notch in ψ↓(z,t) is formed because a finite
duration coupling pulse results in a finite edge sharpness δz

of the transferred slice, leaving some population in |↑〉 at
the edge of the slice after the second coupling pulse. The
sharpness is controlled by choosing the shape of the coupling
pulse, discussed in Sec. III. Rapid density control (faster than
the motional dynamics inherent to the system in the absence of
coupling) can only be achieved by local removal of population.
To create an unfilled soliton, the residual |↑〉 population is
removed using a state-selective transfer to an untrapped state
[33]. Provided that δz ∼ ξ and the phase step is π , a single
black soliton is created in the scalar condensate.

III. ADIABATIC PULSES

To address one side of the condensate, we choose a
hyperbolic secant coupling pulse [32], which is an adiabatic
sweep with a time-dependent Rabi frequency and detuning

�(t) = �0 sech [β(t − tp/2)], (1)

	(t) = 	0 tanh [β(t − tp/2)] + 	1, (2)

defined over the interval of the pulse duration 0 � t � tp
with amplitudes �0 and 	0, and sweep rate β. The detuning
offset 	1 sets the center position of the transferred slice. The
magnetic field gradient required to address a slice thickness 	z

is dB/dz = 2	0/(γ	z) where γ is the gyromagnetic ratio. To
effectively engineer a black soliton in a particular condensate
the pulse parameters must be optimized.

A. Optimal pulse parameters for magnetic resonance control

Optimizing the pulse parameters is best understood if 	0, β,
and tp are replaced with dimensionless parameters: the normal-
ized pulse bandwidth μ = 	0/�0, adiabaticity � = �0/μβ,
and truncation α = sech (βtp/2) [or initial relative amplitude
�(t = 0)/�0 of the pulse].

Together with the description of the MRC protocol time
sequence [(1) gradient and pulse; (2) short free evolution with
neither gradient nor rf; (3) countergradient and counterpulse],
this fully describes the magnetic and rf environment of the
quantum fluid during the protocol, although we note that the
final “blow away” microwave- or optical-pulse is needed to
remove the excited state population and finalize the density
engineering. However, this removal pulse does not require
careful optimization, needing only to be intense enough to
remove the excited population in a time short compared to
the spin healing time. In contrast, the parameter optimization
for the rf pulse sequence does require carefully constrained
optimization: in particular, we seek the lowest peak Rabi
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frequency �0 and the shallowest magnetic field gradient
dB/dz required to produce the desired soliton profile.

The optimization process relies on a relevant measure of
success, chosen here to be the resolution of the spatially de-
pendent transfer, R ≡ 	z/δz, where 	z is the slice thickness
and δz is the slice sharpness: taken to be the full width at half
maximum (FWHM) and the 10% – 90% rise distance of the
population transfer, respectively. Engineering a black-soliton
in a condensate of healing length ξ and Thomas-Fermi radius
zTF requires a dimensionless resolution of R � 2zTF/5ξ .1 A
resolution greater than this results in sound wave emission
from the expanding soliton, while R � 2zTF/5ξ causes a
degeneration into multiple solitons. This ratio is completely
determined by the condensate parameters, i.e., trap frequen-
cies, atom number, and scattering length. These parameters
also determine the healing time tξ = √

2Mξ 2/h̄, the time in
which a sound wave crosses a healing length. This is the
shortest time in which the finest features of a condensate evolve
due to mean-field interactions. If the pulse sequence duration
is kept short compared to tξ , it may be assumed that the order
parameter of the condensate behaves like a stationary spin,
whereby the internal dynamics (population transfer amongst
Zeeman states) dominate the mean-field dynamics and the
heuristics below apply.

1. Adiabatic-limited resolution for stationary spins

The MRC protocol relies on selectively transferring popu-
lation from one Zeeman state to another.

In the limit of an infinitely long hyperbolic secant pulse
applied to stationary spin-1/2 particles, there exists an analytic
expression for the fractional population transferred from the
spin-down state |↓〉 to the spin-up state |↑〉 [32]

P↑,final = ρ+1(z)

ρ(z)
= cosh(π�μ2) − cosh(π�μ

√
μ2 − 1)

cosh(π�μ2) + cosh(π�dμ2)
,

(3)

where d = 	z/	0 is the normalized detuning offset. This
expression can be used to estimate the resolution R and the
pulse fidelity, which we take to be the maximum fractional
population transferred to the final Zeeman state after applica-
tion of the pulse. To this end, Eq. (3) can be inverted to find the
normalized detuning offset for a given fractional population
transferred to the spin-up state

d(P↑,final) = 1

π�μ2
cosh−1

[(
P −1

↑,final − 1
)

cosh(π�μ2)

−P −1
↑,final cosh(π�μ

√
μ2 − 1)

]
. (4)

1A black-soliton in an otherwise homogeneous condensate of
density n0 has a profile given by n(z) = n0 tanh2 (z/

√
2ξ ), with a

corresponding FWHM of 2
√

2 tanh−1 (1/
√

2)ξ 	 5ξ/2. The FWHM
of the density modulation resulting from the MRC protcol is ≈ 4δz/5,
thus requiring a single-pulse slice sharpness of δz ≈ 3ξ . We set the
slice thickness 	z � 6zTF/5 to ensure one side of the pulse is outside
the condensate, resulting in the quoted target resolution estimate of
R � 2zTF/5ξ .

The resolution in the limit of an infinitely long pulse is then

Radiabatic(μ,�) = 	z

δz
= 2d(0.5)

d(0.9) − d(0.1)
. (5)

The pulse fidelity is found by setting d = 0 in Eq. (3), i.e., the
hyperbolic secant pulse transfers population most efficiently
when the frequency sweep crosses resonance simultaneously
with the maximum coupling amplitude;

P↑,adiabatic ≡ max
d

(P↑,final)

= 1 − cosh2
(

1
2π�μ

√
μ2 − 1

)
sech2

(
1
2π�μ2

)
≈ 1 − e−π�/2 . (6)

The approximation in Eq. (6) is accurate to within 1% for
μ,� > 2 (and is exact in the limit of μ → ∞), and thus �

serves as a good adiabaticity parameter, analogous to that
in the Landau-Zener formula. This population, left behind
in the initial state by the finite rate of the sweep, does not
participate in the MRC protocol and so reduces the fidelity
of the engineered wave function by producing an almost
uniform background of residual fluid. It is therefore desirable
to minimize this fraction to a specified level, equivalent to
choosing a large enough � for the desired adiabaticity of the
pulse.

2. Effect of finite-duration pulses

Equations (3) to (6) apply strictly to infinitely long pulses;
yet in any experimental scenario the hyperbolic secant pulses
are of finite duration, i.e., they are truncated. Truncating
the hyperbolic secant pulse to have a duration tp results in
nonadiabatic, off-resonant Rabi oscillations at the beginning
and end of the pulse. Approximating the coupling at the bounds
of the sweep to be that of an unmodulated off-resonant pulse
(which is reasonable as both the frequency and amplitude
modulation of the hyperbolic secant pulse are slowest here),
the off-resonant oscillations in P↓,final are given by

P↓,asymptotic ≡ �(t = tp)2

�(t = tp)2 + 	(t = tp)2
(7)

= α2

α2 + μ2(d + √
1 − α2)2

. (8)

The residual off-resonant Rabi oscillations manifest as a
spatially varying “roughness” of the engineered wave function
(relative to the adiabatic limited shape described in the
previous subsection). To ensure that the resonant pulse fidelity
is not limited by this effect we require P↓,adiabatic � P↓,asymptotic

at d = 0, resulting in

α <
μ√

eπ�/2 + μ2 − 1
. (9)

This strictly nonadiabatic coupling does not only perturb the
resonant pulse fidelity, but also lowers the resolution of the
pulse if α is not chosen to be sufficiently low. Predicting
how small α needs to be so as not to lower the achieved
resolution below the adiabatically limited value in Eq. (5) is
nontrivial. We find that the resolution limit imparted by finite
pulse duration is related to the width of the curve given by
Eq. (7) as a function of normalized detuning d (a Lorentzian
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with a FWHM of 2α/μ). The resolution with finite duration
pulses is Rasymptotic, which is sufficiently close to Radiabatic when

α � μ

ηR
, (10)

where η is a design parameter setting the tolerance. We find that
η ≈ 30 typically achieves a pulse truncation limited resolution
Rasymptotic within 1% of Radiabatic. This criterion is much stricter
than the requirement that P↓,adiabatic � P↓,asymptotic, and thus
we use it to choose the pulse truncation α. We now consider
how these specifications constrain the optimization of the
parameters of the MRC protocol.

3. Estimating the optimal adiabatic sweep parameters

The first step of the MRC protocol is an adiabatic sweep
that transfers one spatial half of the condensate to the spin-up
state. Here we assume that the quantum fluid does not move
during the protocol; a reasonable approximation provided the
pulse sequence is completed faster than the healing time.

The steps below design an adiabatic sweep with the required
resolution R and resonant fidelity P↑,adiabatic. We keep the
design “dimensionless” at first with detunings in units of Rabi
frequency, and connect to the experimental parameters later.

(1) Given a desired resonant fidelity (1 − P↓,adiabatic),
the adiabaticity parameter is well-approximated by
� ≈ −(2/π ) ln P↓,adiabatic. In many experiments a fidelity of
99% would be considered adequate, and choosing � = 3
exceeds this requirement.

(2) The normalized pulse bandwidth μ is then obtained
from Radiabatic ≈ √

2�μ2, which approximates Eq. (5) to
within 1% for � � 3, μ � 1. This relation implies that a larger
� and correspondingly smaller μ (or vice versa) would yield
the same resolution, and this is correct. However, the required
effective pulse area �0tp ∝ �μ becomes larger, so it is better
to pick the smallest � consistent with the desired fidelity and
choose a μ that achieves the resolution R required to write the
soliton in question.

(3) For a given design parameter η, the maximum per-
missible pulse truncation is determined by Eq. (10), α =
1/(

√
2ημ�).

This fixes all of the independent dimensionless parameters
of the hyperbolic secant pulse. These determine the experi-
mentally relevant quantities as follows:

(i) Steps 1 to 3 above constrain the minimum permissible
pulse area

(�0tp)min = 2�μ cosh−1(α−1). (11)

For a given condensate, we require that tp < tξ /4 for the
quantum fluid to remain stationary during the pulse sequence,
and this sets the required peak Rabi frequency �0.

(ii) The pulse bandwidth is then determined via 	0 =
μ�0, with μ given by Step 2 above.

(iii) The sweep rate is then determined via β =
�2

0/(	0�) = �0/(μ�), with � given by Step 1 above.
(iv) The magnetic field gradient must furnish the band-

width of the sweep across the full spatial extent of the slice,
which sets the required gradient via γ |dB/dz| 	z = 2	0.
Since 	0 = μ�0 and �0 is given by Eq. (11), and taking 	z =
6zTF/5, we can alternatively express the required gradient in

terms of the healing length alone;∣∣∣∣dB

dz

∣∣∣∣ = 8h̄ cosh−1(α−1)

3γMξ 3
. (12)

We note that the heuristic method above serves as a guide
to estimate the optimal hyperbolic secant pulse parameters for
a given condensate, and illustrates the effect of the dimension-
less parameters �, μ, and α; their relationship to each other;
and how they determine the experimental parameters such
as peak Rabi frequency and field gradient. In practice these
parameters are modified slightly upon solving the forward
problem: numerical propagation of the Gross-Pitaevskii equa-
tion (GPE), discussed in the next section. Indeed, experimental
application may require real-time optimization methods to
account for variations from the simulated condensate [34].

4. Gradient-induced motion

The field gradient that furnishes spatially dependent mag-
netic resonance also accelerates the different spin components
during the pulses (akin to the Stern-Gerlach effect). In addition
to the self-interaction of the quantum fluid, this effect can also
modify the engineered wave function in a way not encapsulated
by the above heuristics. The spin component with projection
mh̄ will experience an acceleration along z of

aSG = − h̄γm

M

dB

dz
(13)

and will move a distance δzSG = 1
2aSGt2

p during each pulse.
For the amplitude of this motion to be kept below one healing
length, |zSG| < ξ (and recalling that tp � tξ /4), one requires
that the gradient ∣∣∣∣dB

dz

∣∣∣∣ <
16h̄

γMξ 3
. (14)

This upper bound for the gradient is often close to the
required gradient in Eq. (12), further motivating a careful
optimization via simulation of the GPE. We note that by
carefully choosing the direction of both the applied gradient
and the resonant position of the hyperbolic secant sweep, this
effect can actually serve to increase the resolution achieved
relative to the estimates above.

Thus, to determine optimal parameters for the MRC
scheme, choose an adiabaticity � so that the population left
behind in the initial state is negligible; � = 3 ensures more
than 99% transfer at the slice center. A pulse bandwidth μ =
2−1/4(R/�)1/2 achieves the needed resolution R. A truncation
of α = 1/(40 �μ) gives low abruptness at the start and end
of the sweep for order 1% difference in resolution achieved.
The experimental parameters then follow by fixing the pulse
duration tp < tξ /4, where the healing time tξ = ξ/c and c is
the speed of sound in the condensate.. Finally, optimization in
simulation rapidly converges on the small adjustments needed
in parameters, and fixes the interpulse time.

IV. QUASI-ONE-DIMENSIONAL GROSS-PITAEVSKII
EQUATION WITH MAGNETIC RESONANCE

To demonstrate the MRC protocol, we simulate a coupled
psuedospin-1/2 BEC in a magnetic field gradient.
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The condensate has an elongated geometry, residing in a
cylindrically symmetric potential with radial and axial trap
frequencies ωr � ωz. A soliton in such a condensate will
remain stable for several trap periods [35]. As the salient
dynamics occur in the axial direction (z, the direction of
weakest confinement), we use a quasi-one-dimensional (1D)
GPE to reduce the number of simulated spatial dimensions,
applying a Thomas-Fermi ansatz to the density along the
radial direction [36]. This is demonstrably more faithful to
experimental reality than a strictly one-dimensional GPE,
encapsulating the finite radial extent of the condensate; for
example, the latter predicts a parabolic single component
ground state, which differs to that observed in an elongated
condensate due to the lower density at the axial extent of
the cloud. In the elongated “cigar-shaped” regime under
consideration, this method reproduces the results of a full
three-dimensional GPE simulation without the computational
expense.

A cylindrically symmetric two-component BEC has a
spinor order parameter

�(r,z) =
(

ψ↑(r,z)

ψ↓(r,z)

)
. (15)

Applying the ansatz of [36], the wave function of each
component is

ψi(r,z) = �⊥,i(r,χi(z))fi(z) . (16)

where �⊥(r,χi(z)) encapsulates the radial dependence of the
condensate density for each component. These are taken to be
Gaussian profiles, with axially dependent radial scaling factors
σ↓(z) and σ↑(z);

�⊥,i(r,σi(z)) = 1√
πarσi(z)

exp

(
− r2

arσi(z)2

)
, (17)

where ar = √
h̄/(Mωr ) is the harmonic oscialltor unit length

in the radial direction with trapping frequency ωr . The fields
are normalized such that

∫ |ψi(r,z)|2 dV = ∫ ∞
−∞ |fi(z)|2 dz =

Ni , the number of atoms in each of the i = |↓〉 or |↑〉 states.
Thus ni(r,z) ≡ |ψi(r,z)|2 is the three-dimensional atomic
density with units of atoms/m3 and ρi(z) ≡ |fi(z)|2 is the
linear density of each component with units of atoms/m.
From the fields fi(z) and axially dependent scaling factors
σi(z) we can calculate experimentally relevant quantities such
as the peak atomic density n0, the average density 〈n〉, and the
column density ñ(y,z) = ∫ ∞

−∞ n(r =
√

x2 + y2,z) dx.
Components of the psuedospinor f = (f↓,f↑)T obey the

coupled quasi-1D GPEs

ih̄
∂f↓
∂t

=
(

− h̄2

2M

∂2

∂z2
+ V + E⊥,↓ + g↓↓η↓↓ρ↓

+ g↓↑η↓↑ρ↑ + 	

2

)
f↓ + �

2
f↑ , (18)

ih̄
∂f↑
∂t

=
(

− h̄2

2M

∂2

∂z2
+ V + E⊥,↑ + g↑↑η↑↑ρ↑

+ g↓↑η↓↑ρ↓ − 	

2

)
f↑ + �

2
f↓ , (19)

where M is the atomic mass, V = Mω2
zz

2/2 is the spin-
independent external potential along the axial direction with
angular trapping frequency ωz, gij = 4πh̄2aij /M describes
collisional interactions (with aii and ai �=j the intrastate and
interstate s-wave scattering lengths, respectively), E⊥,i(z) =
h̄ωr (1 + σ 4

i )/(2σ 2
i ) is the transverse mode energy of each

component, and ηij (z) are interaction scaling factors (with
units of m−2) given by

η−1
ij (z) = πa2

r [σi(z)2 + σj (z)2] . (20)

The z-dependent radial scaling factors σi(z) at any given
time are determined by a set of auxiliary simultaneous
equations arising from the Lagrangian formulation of the
quasi-1D GPE [36]

σ 4
i = 1 + 2aiiρi + 8aijρj

σ 4
i(

σ 2
i + σ 2

j

)2 ; i �= j . (21)

The Hamiltonian for linear coupling between the states |↓〉
and |↑〉 is

Hc = h̄

2

(
	 �

� −	

)
, (22)

where � is the Rabi frequency for transitions between the two
states.

We work in the frame rotating at the instantaneous
radiation frequency ω, for which the detuning 	(z,t) =
ω(t) − γB(z,t) has spatial dependence via the magnetic field
strength B(z,t) = B(z = 0,t) + Bq(t)z. Here, Bq = dB/dz

is the magnetic field gradient, and γ = μB |gF |/h̄ is the
gyromagnetic ratio for the hyperfine ground state of 87Rb.

The detuning can alternatively be expressed as 	(z,t) =
	(t) − γBq(t)z where 	(t) = ω(t) − γB(z = 0,t) is the de-
tuning at z = 0. The modulation concomitant to the hyperbolic
secant pulse is encapsulated in 	(t), and can be affected by
changing either the radiation frequency ω and/or the bias
magnetic field B(z = 0).

V. NUMERICAL SIMULATION

To simulate MRC for an experimentally relevant system
we solve the GPE above for a condensate consisting of 104

87Rb atoms with two spin states |↑〉 and |↓〉. The simulated
condensate is trapped in a harmonic potential with axial
frequency fz = 20 Hz and radial frequency fr = 1200 Hz,
which can be realized, for example, with the optical dipole
potential of a 1064- nm laser beam at a power of 20 mW
focused to a 10.5- μm waist [37]. In this trap, the condensate
has ξ = 150 nm and Thomas-Fermi radius zTF = 39.6 μm. A
black soliton in this condensate has a FWHM of 375 nm.

All numerical simulations utilize XMDS2 [38] with a 4096
point spatial grid and an adaptive Runge-Kutta timestep
(ARK45). The number of spatial points was sufficient to
resolve the soliton and ensure the simulation was grid
independent.

A single black soliton was engineered in the condensate by
choosing the pulse parameters detailed in Fig. 2. Each pulse
addressed a slice of thickness 	z = 1.2zTF and had a slice
sharpness of δz = 674.0 nm. The resolution of each pulse was
thus R = 70.4, sufficient to produce a single black soliton (cf.
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FIG. 2. A single black soliton is engineered using the pulse pa-
rameters �0/2π = 3.00 MHz, μ = 3.87, � = 3.86, and α = 0.0104,
resulting in a single pulse duration of tp = 8.35 μs (cf. tξ = 42 μs).
A gradient of |dB/dz| = 6992.66 G/cm was applied during the
two pulses. (a) The coupling and (b)–(c) the densities |ψ↓,↑(z)|2,
respectively, during the protocol. (d) The density and phase of the
condensate at the conclusion of the protocol. A π phase discontinuity
was formed by applying a detuning of 	φ/2π = 490.0 kHz during
the wait time of tφ = 1.0 μs between pulses. The notch in density |ψ |2
has a FWHM of ∼550 nm. (e) The total density of the condensate
over five trap periods, demonstrating stationary evolution of the black
soliton. We note that the first hyperbolic secant pulse forms a spin
domain wall [39,40].

2zTF/5ξ = 105.6). Each pulse required a detuning offset of
|	1| = μ�0 to position the right edge of the slice at z = 0;
without this offset, a soliton would be formed at each side
of the coupled slice. The slice thickness 	z � zTF ensures
that the outer edge of the slice is beyond the extent of the
condensate.

If no relative phase evolution occurred during the pulses
(i.e., in the limit of a very short pulse) then the time tφ and
detuning 	φ between the pulses to effect a relative phase of
π between the |↑,↓〉 states would be related by 	φtφ = π .
However, the nonnegligible relative phase acquired during
each pulse is corrected for by adjusting 	φtφ to generate the
requisite total phase discontinuity of π immediately after the
MRC protocol completes.

As shown in Fig. 2(d), the protocol successfully engineered
both a π phase step and a narrow, dark notch in density
|ψ↓|2, filled by residual population in |↑〉. To create a single-
component soliton we set the populations in |↑〉 to zero after

the pulse sequence. We quantify the fidelity by the overlap of
the engineered wave function with the target wave function.
We find a normalized overlap of 0.976 immediately after the
blow-away pulse. The protocol induces a small slosh of the
condensate in the trap, which causes the overlap to oscillate
at the trap frequency with a mean value of 0.981. However,
the soliton remains almost stationary over more than two trap
periods [Fig. 2(e)], demonstrating that the protocol indeed
produces a single black soliton. The soliton is tolerant to
variations of the pulse parameters, e.g., a ±1% variation of
the magnetic field gradient used in Fig. 2 increases the soliton
width by 1%, and decreases the mean overlap over five trap
periods by <2 × 10−4, i.e., the change in the soliton stability
over this interval is imperceptible.

Immediately after the pulse sequence low-amplitude sound
waves develop on either side of the soliton, which we attribute
to small imperfections in the prepared soliton state.

A variation of an hyperbolic secant pulse [41], designed to
achieve the same pulse resolution in a shorter time, may further
minimize sound generation. We emphasize that the weak sound
emission we observe is a much smaller perturbation of the
condensate than the superfluid shockwave that is unavoidably
created by optical phase imprinting methods.

The peak Rabi frequency used in our simulations corre-
sponds to an oscillating magnetic field amplitude of 4.3 G.

This coupling strength, and the field gradients required,
are readily achieved in chip trap experiments where current
elements are at most millimetres removed from the quantum
fluid [42–44], but may be demanding for some free-space ap-
paratuses where coils and antennas are more than a centimetre
away.

VI. EXTENSION TO MULTIPLE SOLITONS

Finally, we demonstrate the versatility of MRC by en-
gineering double soliton states in the condensate. Multiple
stationary soliton states and their anomalous modes are an
analytic continuation of the energy eigenstates of the linear
Schrödinger equation with harmonic potential, comprised of
Hermite-Gauss polynomials [31,45]. Nonstationary multiple
dark solitons have been created using phase imprinting
methods [14,46,47], and matter wave interference [29]. We
show that MRC provides the precision control needed to
create tightly bound or near stationary double solitons, and the
extension to more than two solitons is immediate. The phase
of a double soliton forms a top-hat function; such a function
could be used as a base unit for constructing more complex
atom-optical phase structures such as matter-wave analogs of
lenses or mirrors.

As stated previously, our MRC protocol creates a soliton at
each edge of the coupled slice. By simply decreasing the slice
thickness, the outer edge is brought within the condensate and
two solitons are formed. To ensure the slice sharpness remains
fixed (preserving the width of the engineered density nodes)
we decrease the slice thickness by decreasing the range of the
detuning sweep 	0, rather than increasing the magnetic field
gradient. Hence we decrease the normalized pulse bandwidth
μ, while proportionally increasing the adiabaticity �; all other
parameters remain identical to the single soliton example.
Two solitons are created asymmetrically about the trap center
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FIG. 3. The MRC protocol can create two solitons by simply
decreasing the width of the transferred slice using 	0. By varying
the offset |	1|, the position of the solitons can be precisely
controlled. (a) Two solitons initially located at z = −6.6 μm and
z = −8.1 μm, formed using μ = 0.12, � = 124.8, and an offset
of |	1|/(2π ) = 3.60 MHz, exhibit in-phase oscillations. (b) If we
instead use μ = 0.659, � = 22.69, and |	1|/(2π ) = 1.98 MHz, the
two solitons are formed at z = 0.0 μm and z = −8.1 μm and oscillate
asymmetrically. All other parameters are the same as outlined in
Fig. 2.

[Fig. 3(a)], and periodically exchange all their momentum so
that one is stationary while the other oscillates in the trap.
With a different initial separation and mean position, the two
solitons can be made to oscillate in phase; this is the lowest
anomalous mode of the double soliton state [Fig. 3(b)]. Such

a double soliton state has never been experimentally realized
in a quantum fluid.

VII. CONCLUSION

Magnetic resonance control enables one-dimensional con-
trol of both the density and phase of the condensate wave
function at the healing length and healing time scales. We
simulate the creation of a single black soliton: a state that
has not yet been created in a condensate. We numerically
demonstrate the versatility of MRC, showing it can create dou-
ble soliton states merely by decreasing the bandwidth swept
out by the adiabatic hyperbolic secant pulse. We anticipate
creating a train, or “gas,” of solitons using multiple hyperbolic
secant pulses, with the same control over their individual
trajectories demonstrated above. Our results establish a path
towards magnetic resonance control in higher dimensions,
whereby the direction of the magnetic field gradient would
be modulated in direct analogy with magnetic resonance
imaging, which is fundamentally a one-dimensional technique.
Higher-dimensional wave-function control using MRC could
be used to engineer exotic topological excitations such as spin
knots in the polar order of a quantum fluid [48].
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