
International Journal of Computer Vision manuscript No.

Discriminatively Learned Hierarchical Rank Pooling Networks

Basura Fernando · Stephen Gould

Received: date / Accepted: date

Abstract Rank pooling is a temporal encoding method that
summarizes the dynamics of a video sequence to a single
vector which has shown good results in human action recog-
nition in prior work. In this work, we present novel temporal
encoding methods for action and activity classification by
extending the unsupervised rank pooling temporal encoding
method in two ways.

First, we present discriminative rank pooling in which
the shared weights of our video representation and the pa-
rameters of the action classifiers are estimated jointly for
a given training dataset of labelled vector sequences using
a bilevel optimization formulation of the learning problem.
When the frame level features vectors are obtained from a
convolutional neural network (CNN), we rank pool the net-
work activations and jointly estimate all parameters of the
model, including CNN filters and fully-connected weights,
in an end-to-end manner which we coined as end-to-end
trainable rank pooled CNN. Importantly, this model can make
use of any existing convolutional neural network architec-
ture (e.g., AlexNet or VGG) without modification or intro-
duction of additional parameters.

Then, we extend rank pooling to a high capacity video
representation, called hierarchical rank pooling. Hierarchi-
cal rank pooling consists of a network of rank pooling func-
tions, which encode temporal semantics over arbitrary long
video clips based on rich frame level features. By stacking
non-linear feature functions and temporal sub-sequence en-
coders one on top of the other, we build a high capacity en-
coding network of the dynamic behaviour of the video. The
resulting video representation is a fixed-length feature vec-

ACRV, Research School of Engineering
The Australian National University
Canberra, Australia
Tel.: +61-2612-53973
E-mail: basura.fernando@anu.edu.au

Fig. 1: Illustration of hierarchical rank pooling for encoding
the temporal dynamics of a video sequence.

tor describing the entire video clip that can be used as input
to standard machine learning classifiers.

We demonstrate our approach on the task of action and
activity recognition. We present a detailed analysis of our
approach against competing methods and explore variants
such as hierarchy depth and choice of non-linear feature
function. Obtained results are comparable to state-of-the-art
methods on three important activity recognition benchmarks
with classification performance of 76.7% mAP on Holly-
wood2, 69.4% on HMDB51, and 93.6% on UCF101.

Keywords rank pooling · action recognition · activity
recognition · convolutional neural networks

1 Introduction

Representation learning from sequence data has many appli-
cations including action and activity recognition from videos
[50], gesture recognition [6], music classification from au-
dio clips [46], and gene regulatory network analysis from
gene expressions [55]. In this paper we focus on activity and

ar
X

iv
:1

70
5.

10
42

0v
1

 [
cs

.C
V

]
 3

0
M

ay
 2

01
7

2 Fernando and Gould

action recognition in videos, which is important for many
real life applications including human computer interaction,
sports analytic, and elderly monitoring and healthcare. Neu-
ral network-based supervised learning of representations from
sequence data has many advantages compared to hand-crafted
feature engineering. However, capturing the discriminative
behaviour of sequence data is a very challenging problem;
especially when neural network-based supervised learning
is used, which can overfit to irrelevant temporal signals. In
video sequence classification, and especially in action recog-
nition, a key challenge is to obtain discriminative video rep-
resentations that generalize beyond the training data. More-
over, a good video representation should be invariant to the
speed of the human actions and should be able to capture
long term time evolution information, i.e., the temporal dy-
namics. In action recognition a key challenge is to extract
and represent high-level motion patterns, dynamics, and evo-
lution of appearance of videos. One can argue that end-to-
end learning of video representations are the key to success-
ful human action recognition. However, it is extremely hard
problem due to massive amount of video data that is required
to learn such end-to-end video representations. A further
challenge is to encode dynamics efficiently and effectively
from variable length sequences. This calls for novel spatio-
temporal neural network architectures.

Recent success in action and activity recognition has been
achieved by modelling evolving temporal dynamics in video
sequences [4,20,18,35,61,71]. Some methods use linear rank-
ing machines to capture first order dynamics [20,27]. Other
methods encode temporal information using RNN-LSTMs
on video sequences [61,71,72], but at the cost of many more
model parameters. To further advance activity recognition it
is beneficial to exploit temporal information at multiple lev-
els of granularity in a hierarchical manner and thereby cap-
ture more complex dynamics of the input sequences [15,41,
59]. As frame based features improve, e.g., from a convolu-
tional neural network (CNN), it is important to exploit in-
formation not only in the spatial domain but also in the tem-
poral domain. Several recent methods have obtained signifi-
cant improvements in image categorisation and object detec-
tion using very deep CNN architectures [57]. Motivated by
these deep hierarchies [15,41,59,57], we argue that learning
a temporal encoding at a single level is not sufficient to in-
terpret and understand video sequences, and that a temporal
hierarchy is needed.

In addition, we argue that end-to-end learning of video
representations are necessary for reliable human action recog-
nition. In recent years CNNs have become very popular for
automatically learning representations from large collections
of static images. Many tasks in computer vision, such as im-
age classification, image segmentation and object detection,
have benefited from such automatic representation learning
[38,23]. However, it is unclear how one may extend these

highly successful CNNs to sequence data; especially, when
the intended task requires capturing dynamics of video se-
quences (e.g., action and activity recognition). Indeed, cap-
turing the discriminative dynamics of a video sequence re-
mains an open problem. Some authors have proposed to use
recurrent neural networks (RNNs) [15] or extensions, such
as long short term memory (LSTM) networks [61], to clas-
sify video sequences. However, CNN-RNN/LSTM models
introduce a large number of additional parameters to capture
sequence information. Consequently, these methods need much
more training data. For sequence data such as videos, obtain-
ing labelled training data is significantly more costly than
obtaining labels for static images. This is reflected in the
size of datasets used in action and activity recognition re-
search today. Even though there are datasets that consist of
millions of labelled images (e.g., ImageNet [11]), the largest
fully labelled action recognition dataset, UCF101, consists
of barely more than 13,000 videos [60]. Some notable ef-
forts to create large action recognition datasets include the
Sports-1M [35], the YouTube-8M [1] and the ActivityNet
dataset [58]. The limitation of Sports-1M and YouTube-8M
is that they are constructed from weakly labelled human an-
notations and sometimes annotations are very noisy. Fur-
thermore, ActivityNet only consist of 20,000 high quality
annotated videos, which is insufficient for learning good video
representations. Despite recent efforts in building good ac-
tion recognition datasets [36], it is highly desirable, there-
fore, to develop frameworks that can learn discriminative
dynamics from video data without the cost of additional
training data or model complexity.

Perhaps the most straightforward CNN-based method
for encoding video sequence data is to apply temporal max
pooling or temporal average pooling over the video frames.
However, these methods do not capture any valuable time
varying information of the video sequences [35]. In fact, an
arbitrary reshuffling of the frames would produce an identi-
cal video representation under these pooling schemes. Rank-
pooling [20,18], on the other hand, attempts to encode time
varying information by learning a linear ranking machine,
one for each video, to produce a chronological ordering of
the video’s frames based on their appearance (i.e., the hand-
crafted or CNN features). The parameters of the ranking
machine (i.e., fit linear model) are then used as the video
representation. However, unlike max and average pooling,
it was previously unclear how the CNN parameters can be
fine-tuned to give a more discriminative representation when
rank-pooling is used since there is no closed-form formula
for the rank-pooling operation and the derivative of its input
arguments with respect to the rank-pool output not obvious.

The original rank pooling method of Fernando et al. [20,
18] obtained good activity recognition performance using
hand-crafted features. Given a sequence of video frames, the
rank pooling method returns a vector of parameters encod-

Discriminatively Learned Hierarchical Rank Pooling Networks 3

ing the dynamics of that sequence. The vector of parameters
is derived from the solution of a linear ranking SVM opti-
mization problem applied to the entire video sequence, i.e.,
at a single level. We extend that work in two important direc-
tions that facilitates the use of richer CNN-based features to
describe the input frames and allows the processing of more
complex video sequences.

First, we show how to learn discriminative dynamics of
video sequences or vector sequences using rank pooling-
based temporal pooling. We show how the parameters of
the activity classifier, shared parameters of video represen-
tations, and the CNN features themselves can all be learned
jointly using a principled optimization framework. A key
technical challenge, however, is that the optimization prob-
lem contains rank pooling as a subproblem—itself a non-
trivial optimization problem. This leads to a large-scale bilevel
optimization problem [2] with convex inner-problem, which
we propose to solve by stochastic gradient descent. The re-
sult is a higher capacity model than Fernando et al. [20,18],
which is tuned to produce features that are discriminative for
the task at-hand. Concisely, we learn discriminative dynam-
ics during learning by propagating back the errors from the
final classification layer to learn both video representation
and a good classifier.

Second, we propose a hierarchical rank-pooling scheme
that encodes a video sequence at multiple levels. The origi-
nal video sequence is divided into multiple overlapping video
segments. At the lowest level, we encode each video seg-
ment using rank pooling to produce a sequence of descrip-
tors, one for each segment, which captures the dynamics of
the small video segments (see Figure 1). We then take the
resulting sequence, divide that into multiple subsequences,
and apply rank pooling to each of these next-level subse-
quences. By recursively applying rank pooling on the ob-
tained segment descriptors from the previous layer, we cap-
ture higher-order, non-linear, and more complex dynamics
as we move up the levels of the hierarchy. The final rep-
resentation of the video is obtained by encoding the top-
level dynamic sequence using yet one more rank pooling.
This strategy allows us to encode more complicated activi-
ties thanks to the higher capacity of the model. In summary,
our proposed hierarchical rank pooling model consists of a
feed forward network starting with a frame-based CNN and
followed by a series of point-wise non-linear operations and
rank pooling operations over subsequences as illustrated in
Figure 3.

Our main contributions are then: (1) a novel discrimi-
native dynamics learning framework in which we learn dis-
criminative frame-based CNN features for the task at-hand
in an end-to-end manner or joint learning of parameters of
video representation using rank pooled discriminative video
representation, and the classifier parameters, (2) a novel tem-
poral encoding method called hierarchical rank pooling.

Our proposed method is useful for encoding dynami-
cally evolving frame-based CNN features, and we are able
to show significant improvements over other effective tem-
poral encoding methods.

This paper is an extension of our two recent conference
papers [19,21]. In this journal version we provide a broad
overview of the action recognition progress and extend the
related work section. Here we unify the learning of discrim-
inative rank pooling and full end-to-end parameter learning
using the same bilevel optimization framework. Some addi-
tional experiments and analysis are also included. The rest
of the paper is organised as follows. Related work is dis-
cussed in Section 2 followed by a brief background to rank
pooling and some preliminaries in Section 3. We present our
discriminative networks in Section 4 and discuss how the re-
sulting representation can be used to classify videos. In Sec-
tion 5 we show how all the parameters of the discriminative
networks can be learned. Then in Section 6, we present our
hierarchical rank pooling method. In Section 7, we provide
extensive experiments evaluating various aspects of our pro-
posed methods. We conclude the paper in Section 8 with a
summary of our main contributions and discussion of future
directions.

2 Related Work

In the literature, temporal information of video sequences is
encoded using different techniques. Fisher encoding [49] of
spatial temporal features is commonly used in prior state-
of-the-art works [68] while Jain et al. [30] used VLAD en-
coding [31] for action recognition over motion descriptors.
Temporal max pooling and sum pooling are used with bag-
of-features [67] as well as CNN features [52]. Temporal fu-
sion methods such as late fusion or early fusion are used
in [35] as a temporal encoding method in the context of
CNN architectures. In contrast, we rely on principled rank-
pooling to encode temporal information inside CNNs and
therefore our method is capable capturing dynamics of video
sequences.

Temporal information can also be encoded using 3D con-
volution operators [32,64] on fixed size temporal segments.
However, as recently demonstrated by Tran et al. [64], such
approaches rely on very large video collections to learn mean-
ingful 3D-representations. This is due to the massive amount
of parameters used in 3D convolutions. Sun et al. [62] pro-
pose to factorize 3D convolutions into spatial 2D convo-
lutions followed by 1D temporal convolutions to ease the
training. Moreover, it is not clear how these methods can
capture long-term dynamics as 3D convolutions are applied
only on short video clips. In contrast, our method does not
introduce any additional parameters to existing 2D CNN ar-
chitectures and capable of learning and capturing long term
temporal dynamics.

4 Fernando and Gould

Recently, recurrent neural networks are gaining popu-
larity for sequence encoding, sequence generation and se-
quence classification [28,63]. Long-short term memory (LSTM)
based approaches may use the hidden state of the encoder
as a video representation [61]. Derivative of the state of the
RNN is modelled in differential RNN (dRNN) to capture the
dynamics of video sequences [66]. A CNN feature based
LSTM model for action recognition is presented in [71].
Typically, unsupervised recurrent neural networks are trained
in a probabilistic manner to maximize the likelihood of gen-
erating the next element of the sequence. By construction
our hierarchical rank pooling method is unsupervised and
does not rely on very large number of training samples as in
recurrent neural networks as our method does not have any
parameters to learn. Moreover, our hierarchical rank pooling
has a clear objective in capturing dynamics of sequences in-
dependent of other sequences and has the capacity to capture
complex dynamic signals.

Hierarchical methods have also been used in activity recog-
nition [15,44,59]. A CRF-based hierarchical sequence sum-
marization method is presented in [59]; a hierarchical recur-
rent neural network for skeleton based action recognition is
presented in [15]; and a hierarchical action proposal based
mid-level representation is presented in [41]. Recently, VLAD
for Deep Dynamics (VLAD3), that accounts for different set
of video dynamics is presented in [44]. It also captures short-
term dynamics with deep convolutional neural net-work fea-
tures, relying on linear dynamic systems (LDS) to model
medium-range dynamics. To account for long-range inho-
mogeneous dynamics, a VLAD descriptor is derived for the
linear dynamic systems and pooled over the whole video, to
arrive at the final VLAD3 representation. In contrast to these
methods, our method captures different set of mid-level dy-
namics as well as dynamics of the entire video using rank
pooling principle.

Long term temporal dynamics are also modelled using
Beta Process Hidden Markov Models (BP-HMM [22]). Us-
ing a beta process prior, these approaches discover a set of
latent dynamical behaviours that are shared among multiple
time series. The size of the set and the sharing pattern are
both inferred from data. Some notable extensions of this ap-
proach are used in video analysis and action recognition [54,
29]. Compared to these methods, not only is our framework
capable of capturing long term dynamics, it is also capable
of capturing dynamics at multiple levels of granularity while
being able to learn discriminative dynamics.

Recently, two stream models [56] have gained popular-
ity for action recognition. In these methods, a temporal stream
is obtained by using optical flow and spatial stream is ob-
tained by RGB frame data and finally the information is
fused [17]. Moreover, trajectory-pooled deep-convolutional
descriptor (TDD) also uses two stream network architecture
where convolutional feature maps are pooled from the local

ConvNet responses over the spatio-temporal tubes centered
at the improved trajectories [69]. Our method presented in
this paper is complimentary to these two stream architec-
tures. For example, our hierarchical temporal encoding as
well as the end-to-end trainable rank pooled CNN can be
applied over both spatial and temporal streams.

Rank pooling is also used for temporal encoding at rep-
resentation level [20,18] or at image level leading to dy-
namic images [4]. However, we are the first to extend rank
pooling to a high capacity temporal encoding. Furthermore,
we are the first to demonstrate an end-to-end trainable CNN-
based rank pool operator.

Our end-to-end learning algorithm introduces a bilevel
optimization method for encoding temporal dynamics of video
sequences using convolutional neural networks. Bilevel op-
timization [2,25] is a large and active research field derived
from the study of non-cooperative games with much work
focusing on efficient techniques for solving non-smooth prob-
lems [47] or studying replacement of the lower level prob-
lem with necessary conditions for optimality [10]. It has re-
cently gained interest in the machine learning community in
the context of hyperparameter learning [37,12] and in the
computer vision community in the context of image denois-
ing [13,40]. Unlike these works we take a gradient-based
approach, which the structure of our problem admits. We
also address the problem of encoding and classification of
temporal sequences, in particular action and activity recog-
nition in video.

Recently, several end-to-end video classification and ac-
tion recognition method were introduced in the literature
[32,35,56]. Compare to other end-to-end video representa-
tion learning methods our end-to-end learning has two ad-
vantages. First, our temporal pooling is based on rank pool-
ing and hence captures the dynamics of long video sequences.
Second, it does not introduce any new parameters to exist-
ing image classification architectures such as AlexNet [38].
Ji et al. [32] introduces an end-to-end 3D convolution method
that can be only applied for a fixed length videos. Karpa-
thy et al. [35] used several fusion architectures. Very large
Sports-1M dataset was used for training which consist of
more than million YouTube videos of sports activities. Un-
fortunately, authors found that operating on individual video
frames, performs similarly to the networks, whose input is
a stack of frames. This indicates that the architectures pro-
posed in [35] are not able to learnt spatio-temporal features
or capture dynamics of videos. Simonyan et al. [56] also
propose an end-to-end architecture which only operates at
frame-level and finally fuse classifier scores per video.

3 Preliminaries

In this section we introduce the notation used in this paper
and provide background on the rank pooling method [20,

Discriminatively Learned Hierarchical Rank Pooling Networks 5

18], which our work extends. Given a training dataset of
video-label pairs D = {(X (0),y)}, the goal in action classifi-
cation is to learn both parameters of the classifier and video
representation such that the error on the training set is min-
imized. Let X (0) = 〈x(0)1 , . . . ,x(0)J 〉 be the (ordered) sequence
of input RGB video frames.

Feature extraction function ψ0(): Let us define a feature
extraction function that takes an input frame and returns a
fixed-length feature vector by ψ0 : x(0)t 7→ x(1)t . This opera-
tion transforms a sequence of RGB frames X (0) into a se-
quence of feature vectors denoted by X (1) = 〈x(1)1 , . . . ,x(1)J 〉.
Sometimes, to simplify the notation, we denote a sequence
of vectors just by X = 〈x1, . . . ,xJ〉. Each of the elements x(1)t

in the sequence X (1) is a vector, i.e., x(1)t ∈RD. For example,
the vector x(1)t can be the activations from the last fully con-
nected layer of a CNN which is obtained from a RGB video
sequence at frame t. This frame-based feature extractor can
be parametrized ψ0(x

(0)
t ;θ), where for example, θ are the

parameters of a trainable CNN.

Non-linear operator ψ(): Let us assume that each video
is processed by a feature extractor and then a sequence of
vectors is obtained by applying a non-linear transformation.
Let us denote a point-wise non-linear operator by ψ() and
the non-linear transformation is obtained by vt = ψ(xt) or a
parametrised non-linear transform is obtained by

vt = ψ(Wxt) (1)

where W ∈ RD×D. Let us denote the obtained sequence of
vectors by V = 〈v1, . . . ,vJ〉 where each vt ∈ RD.

Temporal encoding function φ(): A compact video repre-
sentation is needed to classify a variable-length video se-
quence into one of the activity classes. As such, a temporal
encoding function that operates over a sequence of vectors is
defined by φ(V), which maps the video sequence V (or sub-
sequence thereof) into a fixed-length feature vector, u ∈RD.
The goal of temporal encoding is to encapsulate valuable
dynamic information in V into a single D-dimensional vec-
tor u = φ(V). In general we can write the temporal encoding
function as an optimization problem over a sequence V as

φ(V) ∈ argmin
u

f (V,u) (2)

where f (·, ·) is some measure of how well the sequence is
described by each representation u and we seek the best rep-
resentation. Standard supervised machine learning classifi-
cation techniques learned on the set of training videos can
then be applied to these u vectors.

Typical temporal encoding functions include sufficient
statistics calculations or simple pooling operations, such as

max or average (avg). For example, avg. pooling can be
written as the following optimization problem in Equation 3.

avg(V) = argmin
u

{
1
2

J

∑
t=1
‖u− vt‖2

}
(3)

Rank pooling: The max and avg pooling operators do not
capture the dynamic of a video sequence. More sophisti-
cated, temporal encoders such as the rank-pool operator,
attempts to capture temporal dynamics [20,18]. The sequence
encoder φ(·) of rank pooling [20,18] captures time vary-
ing information of the entire sequence using a single linear
surrogate function ζ parametrised by u ∈ RD. The function
ζ ranks frames of the video V = 〈v1, . . . ,vJ〉 based on the
chronology based on their feature representation. Ideally, the
ranking function satisfies the constraint

ζ (vta)< ζ (vtb) ⇐⇒ ta < tb (4)

such that the ranking function should learn to order frames
chronologically. In the linear case this boils down to find-
ing a parameter vector u such that ζ (v;u) = uT v satisfies
Equation 4. In rank pooling [20,18] this is done by training
a linear ranking machine such as RankSVM [34] on V . The
learned parameters of RankSVM, i.e., u, are then used as
the temporal encoding of the video. Since the ranking func-
tion encapsulates ordering information and the parameters
lie in the same feature space, the ranking function captures
the evolution of information in the sequence V [20,18].

Rank pooling can be viewed as a function that estimates
the parameters u in a point-wise manner such that it maps
feature vectors vt to time t. Such a mapping clearly satisfies
the order constraints of Equation 4. The idea of rank pooling
is to parameterize ζ and then find the parameters u? that
best represents the sequence V . Due to availability of fast
implementations, we use Support Vector Regression (SVR)
[45] to solve this problem. Given a sequence of length J, the
SVR parameters are given by

u?∈ argmin
u

{
1
2
‖u‖2 +

C
2

J

∑
t=1

[
|t−u>vt |− ε

]2

≥0

}
(5)

where [·]≥0 = max{·,0} projects onto the positive reals.
The advantage of stability and robustness in modelling

dynamics is discussed in [18]. As the SVR objective has
some theoretical guarantees on the generalization and sta-
bility [5] the obtained temporal representation u? is robust to
small perturbed versions of the input. Therefore, the above
SVR objective is advantageous for modelling dynamics. We
use the parameter u?, returned by SVR, as the temporal en-
coding vector of the video sequence.

6 Fernando and Gould

3.1 overview

One of the limitations of rank pooling method presented in
[20,18] is that obtained temporal representation u is not dis-
criminative as the classifier and the underlying frame repre-
sentation is obtained independently. In this work we extend
the work of Fernando et al. [20,18]. First, we show a learn-
ing framework for discriminative temporal encoding using
rank pooling in section 4. Given a collection of labelled
videos, we show how to learn frame representation, tempo-
ral representation for the video and the classifier jointly. In
this case, the temporal representation is obtained by rank-pool
operator. We also learn a discriminative rank pooling opera-
tor when a set of labelled sequences of vectors are provided
as the input. In this case, we learn the classifier parameters
and the discriminative temporal representation jointly. Pa-
rameter learning of these discriminative models is explained
in section 5. Second, we show hierarchical rank-pooling, a
new hierarchical temporal encoding scheme which extends
the rank-pool operator in section 6. To learn discrimina-
tive hierarchical representation, one can stack discrimina-
tive rank pooling network over the hierarchical rank pool-
ing network. In experiments, we demonstrate how to com-
bine hierarchical rank pooling with discriminative learning
framework to obtain good results for action recognition (sec-
tion 7.2).

4 Discriminative video representations with
rank-pooling networks

In this section, we introduce our proposed trainable rank
pooling network based video representation framework. We
consider two scenarios to learn discriminative video rep-
resentations using rank-pool operator. In both cases, the
temporal encoding of frame level feature vectors is obtained
with rank pooling.

1. In the first scenario, the input to our algorithm is a set of
labelled row RGB videos D = {(X (0),y)}. Then our aim
is to learn parametrized feature extractor (a CNN [38]
feature extractor which is denote by vt = ψ0(x

(0)
t ;θ)),

the temporal video representation (u) and the action clas-
sifiers jointly. In this case θ is the set of parameters in a
trainable CNN.

2. In the second scenario, input to our algorithm is a set
of labelled sequences of vectors obtained from video se-
quences. We aim to learn a parameterized non-linear op-
eration denoted by Equation (1) and the classifier param-
eters jointly. The W matrix is shared across all sequences
from all classes.

Next, we provide more details about these two models.
First, we discuss our end-to-end video representation and
classification model in Section 4.1. Then in Section 4.2, we

introduce the discriminative rank-pool operator that oper-
ates over a sequences of vectors.

4.1 End-to-end trainable rank pooled CNN

In the first scenario, the input to our framework is a se-
quence of raw RGB videos with action category labels D =

{(X (0),y)}. We assume that each video frame in the input
sequence is encoded by a CNN network [38] ψ0(·;θ) which
is parameterized by θ and that the resulting sequence of fea-
tures V = 〈. . . ,vt , . . .〉 is encoded using rank pooling (the
temporal encoder φ) by solving the objective function in
Equation (5). The model we propose can be summarized by
the following network equation:

X (0) =
〈

x(0)t

〉
ψ0(·;θ)7−→ 〈vt〉

φ7−→ u
hβ7−→ ŷ (6)

where the feed-forward pass of the network go from a video
sequence X (0) to predicted label ŷ. The final layer is our pre-
diction function (a soft-max classifier) hβ parameterized by
β . Therefore, the probability of a label y given the input se-
quence X (0) can be written as

P(y | X (0);β ,θ) =
exp(β>y u)

∑c exp(β>c u)
(7)

where we have used u to denote the final video encoding.
Importantly, u is a function of both the input video sequence
X (0) and the network parameters θ . Here the predictor func-
tion hβ (u) takes the highest probability (most likely) y over
the discrete set of labels and β = {βy} are the learned pa-
rameters of the model.

The detailed network architecture is shown in Figure 2.
We use a CNN architecture similar to CaffeNet [33] with the
addition of a temporal pooling layer. In our experiments we
use the final activation layers of the CNN as the frame level
features and then apply the temporal pooling (rank-pool
operator) as shown in Figure 2. During training, our objec-
tive is to learn the parameters β and θ . During inference
we fix θ and β to their learned values; θ is used to obtain
the frame representation of the video that is used to obtain
u via temporal encoding and which is then classified (using
parameters θ) into an estimated action class for the video.

4.2 Discriminative rank pooling

In this section, we discuss the second model where the in-
put to the feature extractor is a sequence of vectors instead
of sequence of RGB frames. We present a method to learn
dynamics of any vector sequence in a discriminative manner
using rank-pool operator as the temporal encoder. In this
instance, the parameterized non-linear operation as in Equa-
tion (1) is applied over the feature vectors of the sequence

Discriminatively Learned Hierarchical Rank Pooling Networks 7

Fig. 2: The CNN network architecture used for learning end-
to-end temporal representations of videos. Network takes
a sequence of frames from a video as inputs and feed for-
ward till the end of the temporal pooling layer. At the tem-
poral polling layer, the sequence of vectors are encoded by
rank-pooling operator to produce fixed length video repre-
sentation. This fixed length vector is feed to the next layer
in the network. Note that this network does not introduce
any new parameters to network architectures. During back-
propagation, the gradients are feed backwards through the
rank-pooling operator to the rest of the CNN network.

X = 〈x1, . . . ,xt , . . .xJ〉. The function ψ is a non-linear fea-
ture function such as ReLU [38]. The discriminative rank
pooling network can be summarized as follows:

X = 〈xt〉
ψ(·;W)7−→ 〈vt〉

φ7−→ u
hβ7−→ ŷ (8)

where hβ is the soft-max classifier parameterized by β . Sim-
ilar to Section 4.1, our aim is to jointly learn the non-linear
transformation parameter W of ψ(·;W) along with the clas-
sifier parameters denoted by β .

5 Learning the parameters of rank pooling networks

Now we have presented our two video representation models
in the previous section, we discuss how to learn the param-
eters in this section. First, we formulate the overall learning
problem in Section 5.1 and then we show how to learn the
parameters with stochastic gradient descent in Section 5.2.
Then we compute the gradient function of our two mod-
els in Section 5.3 and Section 5.4 respectively. Finally, we
discuss some optimization difficulties and solutions in Sec-
tion 5.5.

5.1 Optimization problem

The learning problem can be described as follows. Given
a training dataset of video-label pairs D = {(X (0),y)} (or
D = {(X ,y)}), our goal is to learn both parameters of the
classifier and video representation θ (or W) such that the
error on the training set is minimized. Let ∆(·, ·) be a loss

function. For example, when using the soft-max classifier a
typical choice would be the cross-entropy loss

∆(y,hβ (u)) =− logP(y | X (0)) (9)

where P(· | ·) is defined by Equation (7).
We jointly estimate the parameters of the feature extrac-

tors (θ or W) and prediction function (β) by minimizing the
regularized empirical risk. Formally, our learning problem
for end-to-end trainable rank pooled CNN is

minimizeθ ,β ∑(X(0),y)∈D ∆
(
y, hβ (uX)

)
+R(θ ,β)

subject to uX ∈ argminu f (V,u;θ)
(10)

where R(·, ·, ·) is some regularization function, typically the
`2-norm of the parameters, and the function f (·) encapsu-
lates the temporal encoding of the video sequence using rank
pooling temporal encoder φ by solving (5). The vector uX
then represents the output of the rank pooling operator. It
should be noted that the learning problem for discriminative
rank pooling of Section 4.2 is similar to the Equation (10).

Equation 10 is an instance of a bilevel optimization prob-
lem, which have recently been explored in the context of
support vector machine (SVM) hyper-parameter learning [37]
but whose history goes back to the 1950s [2]. Here an upper
level problem is solved subject to constraints enforced by
a lower level problem. A number of solution methods have
been proposed for bilevel optimization problems. Given our
interest in learning video representations, which is large-
scale, gradient-based techniques are most appropriate to learn
the parameters.

5.2 Learning with stochastic gradient descent

We are now left with the task of tuning the parameters θ

or W to learn a discriminative video representation in order
to improve the action recognition performance. One such
approach is to learn the classifier parameters and feature
encoding parameters jointly via stochastic gradient descent
(SGD). However, this requires back propagation of gradients
through the network. When the temporal encoding function
φ can be evaluated in closed-form (e.g., max or avg pooling)
to obtain the temporal encoding vector uX , we can substitute
the constraints in Equation 10 directly into the objective and
use (sub-)gradient descent to solve for (locally or globally)
optimal parameters. However, when rank pooling is used for
temporal encoding the situation is not as simple. Recall that
the rank pooling operator is itself an optimization problem,
which takes an arbitrary long sequence of feature vectors
and returns a fixed-length vector that preserves temporal in-
formation. In this instance, the gradient of an argmin func-
tion is required. Fortunately, when the lower level objective
is twice differentiable we can compute the gradient of the
argmin function as other authors have also observed [47,14,
12]. We repeat the key result here for completeness.

8 Fernando and Gould

Lemma 1 [53] Let f :R×Rn→R be a continuous function
with first and second derivatives.
Let g(x) = argminy∈Rn f (x,y). Then

g′(x) =− fYY (x,g(x))−1 fXY (x,g(x)).

where fYY
.
= ∇2

yy f (x,y) ∈ Rn×n and fXY
.
= ∂

∂x ∇y f (x,y) ∈
Rn.

Proof We have:

fY (x,g(x))
.
= ∇Y f (x,y)|y=g(x) = 0 (11)

d
dx

fY (x,g(x)) = 0 (12)

∴ fXY (x,g(x))+ fYY (x,g(x))g′(x) = 0 (13)
d
dx

g(x) =− fYY (x,g(x))
−1 fXY (x,g(x)) (14)

ut

Interestingly, replacing argmin with argmax in the above
lemma yields the same gradient, which follows from the
proof that only requires that g(x) be a stationary point. So
the result holds for both argmin and argmax optimization
problems.

Using Lemma 1 we can compute the gradient of the rank
pooling temporal encoding function with respect to a param-
eterized representation of the feature vectors. We only con-
sider the case of a single scalar parameter θ . The extension
to a vector of parameters can be done elementwise.

Corollary 1 Let θ ∈ R be a parameter and let 〈vt〉 be a
sequence where the vt are functions of θ . Define f (θ ,u)
to be the objective of the rank pooling optimization prob-
lem Equation 5. That is,

f (θ ,u) =
1
2
‖u‖2 +

C
2

J

∑
t=1

[
|t−u>vt |− ε

]2

≥0
.

And let u? = argminu f (θ ,u). Then

du?

dθ
=

(
I +C ∑

et 6=0
vtv>t

)−1(
C ∑

et 6=0
et

dvt

dθ
−u?>

dvt

dθ
vt

)
where

et
.
=

u?>vt − t− ε, if u?>vt − t ≥ ε

u?>vt − t + ε, if t−u?>vt ≥ ε

0, otherwise.

Proof Follows from Lemma 1 with

fU (θ ,u?) = u?−C
J

∑
t=1

etvt (15)

fUU (θ ,u?) = I +C ∑
et 6=0

vtv>t (16)

fθU (θ ,u?) =−C ∑
et 6=0

et
dvt

dθ
+u?>

dvt

dθ
vt (17)

ut

In the subsections below we discuss the specifics of learn-
ing the parameters of our two parametric discriminative mod-
els (θ and W).

5.3 Learning the parameter of end-to-end trainable rank
pooled CNN

Now we present how to learn the parameters of the CNN
(θ) and the classifier parameters. Consider again the learn-
ing problem defined in Equation 10. The derivative with re-
spect to β , which only appears in the upper-level problem, is
straightforward and well known. Using the result of Corol-
lary 1, we compute du(i)

dθ
for each training example and hence

the gradient of the objective via the chain rule.We then use
stochastic gradient descent (SGD) to learn all parameters
jointly.

Consider a single scalar weight update in the CNN. Then,
again using Lemma 1 we have

du(i)

dθ
=

(
I +C ∑

et 6=0
vtv>t

)−1

(
C ∑

et 6=0
etψ

′
0(xt ;θ)−u>ψ

′
0(xt ;θ)vt

)
(18)

Here ψ ′0(xt ;θ) is the derivative of the element feature func-
tion. In the context of CNN-based features for encoding video
frames the derivative can be computed by back-propagation
through the network. Note that the rank-pool objective
function is convex and allows us to solve it efficiently. How-
ever, it does include a set of non-differentiable points but
we did not find this to cause any practical problems during
optimization.

5.4 Learning the parameter W of discriminative rank
pooling

Recall, in discriminative rank pooling network model, the
sequence of vectors X is processed by optimizing Equation 5
to get u, where vt = ψ(Wxt). Objective is to learn the clas-
sifier parameters and the parameter W jointly. The deriva-
tive with respect to classifier parameter β , which only ap-
pears in the upper-level problem, is straightforward and well
known. However, the partial derivative w.r.t. W is more chal-
lenging since u is a complicated function of W defined by
Equation 5, which involves solving an argmin optimization
problem as before. Thus we have to differentiate through the
argmin function of the rank pooling problem using Lemma 1.

Discriminatively Learned Hierarchical Rank Pooling Networks 9

Recall, we have vt = ψ(Wxt) where ψ(·) acts element-
wise. From Lemma 1 we have for parameter Wi j

∂u
∂Wi j

=

(
I +C ∑

et 6=0
vtv>t

)−1(
C ∑

et 6=0
et

∂vt

∂Wi j
−u>

∂vt

∂Wi j
vt

)
(19)

where the k-th element of ∂vt
∂Wi j

is

(
∂vt

∂Wi j

)
k
=

{
ψ ′(Wxt)[k]xt[j], if k = i

0, otherwise.
(20)

Here the subscript [i] denotes the i-th element of the associ-
ated vector.

5.5 Optimization difficulties

One of the main difficulties for learning the parameters of
high-dimensional temporal encoding functions (such as those
based on CNN features) is that the gradient update in Equa-
tion 18 requires the inversion of the Hessian matrix fUU =

(I+C ∑et 6=0 vtv>t). One solution is to use a diagonal approxi-
mation of the Hessian, which is trivial to invert. For instance
let us compute the gradient of discriminative rank pooling
model using the diagonal approximation. Considering the
derivative of the k-th element of u and approximating the
inverse of the first term in Equation 19 by its diagonal, we
have

∂uk

∂Wi j
=

(
1

1+C ∑et 6=0 v2
t[k]

)
×(

C ∑
et 6=0

(
[[i = k]]et −uivt[k]

)
ψ
′
i (Wxt)xt[j]

)
(21)

Now we have by the chain rule,

∂

∂Wi j
logP(y | X) =

(
∇u logP(y | X)

)> ∂u
∂Wi j

(22)

=

(
βy−∑

c
P(c | X)βc

)>
∂u

∂Wi j
(23)

Let 1 be the all-ones vector, let Kt =
∂vt
∂W where (Kt)[i j]

.
=

∂vt[i]
∂Wi j

and let β̂ denote ∇u logP(y | X) scaled by the inverse
diagonal hessian, i.e.,

β̂[i] =
βy[i]−∑c P(c | X)βc[i]

1+C ∑et 6=0 v2
t[i]

(24)

Then we can write Equation 23 more compactly as

∂

∂Wi j
logP(y | X) = ∑

et 6=0

(
β̂[i]et −uiβ̂

>vt

)
Kt[i j] (25)

and the (matrix) gradient with respect to all parameters as

∇W logP(y | X) =C ∑
et 6=0

etKt � (β̂1T)− stKt � (u1T) (26)

where � is the Hadamard product and st
.
= β̂>vt .

An alternative, for temporal encoding functions with cer-
tain structure like ours, namely where the hessian can be
expressed as a diagonal plus the sum of rank-one matrices,
the inverse can be computed efficiently using the Sherman-
Morrison formula [24],

Lemma 2 [24] Let H = I+∑
n
i=1 uiv>i ∈Rp×p be invertible.

Define H0 = I and Hm =Hm−1+umv>m for m= 1, . . . ,n. Then

H−1
m = H−1

m−1−
H−1

m−1umv>mH−1
m−1

1+ v>mH−1
m−1um

(27)

whenever v>mH−1
m−1um 6=−1.

Proof Follows from repeated application of the Sherman-
Morrison formula.

Since each update in Equation 27 can be performed in
O(p2) the inverse of H can be computed in O(np2), which is
acceptable for many applications. Our experiments include
results onbtained by both the diagonal approximation and
full inverse.

6 HRP: Hierarchical rank pooling

In this section we present our hierarchical rank pooling (HRP)
network for video classification. HRP is an unsupervised
temporal encoding network which allows us to obtain high
capacity temporal encoding.

Even with a rich feature representation of each frame in
a video sequence, such as derived from a deep convolutional
neural network (CNN) model [38], the shallow rank pooling
method [20,18] may not be able to adequately model the dy-
namics of complex activities over long sequences. As such,
we propose a more powerful yet simple scheme for encoding
the dynamics of rich features of complex video sequences.
Motivated by the success of hierarchical encoding of deep
neural networks [38,23], we extend rank pooling operator
to encode dynamics of a sequence at multiple levels in a hi-
erarchical manner. Moreover, at each stage, we apply a non-
linear feature transformation to capture complex dynamical
behaviour. We call this method the hierarchical rank pool-
ing.

Our main idea is to perform rank pooling on sub-sequences
of the video. Each invocation of rank pooling provides a
fixed-length feature vector that describes the sub-sequence.
Importantly, the feature vectors capture the evolution of frames
within each sub-sequence. By construction, the sub-sequences
themselves are ordered. As such, we can apply rank pooling

10 Fernando and Gould

Fig. 3: Two layer network of hierarchical rank pooling with
window size three (M` = 3) and stride one (S` = 1).

over the generated sequence of feature vectors to obtain a
higher-level representation. This process is repeated to ob-
tain dynamic representations at multiple levels for a given
video sequence until we obtain a final encoding. To make
this hierarchical encoding even more powerful, we apply
a point-wise non-linear operation on the input to the rank
pooling function. An illustration of the approach is shown
in Figure 3.

We assume CNN features are extracted from a fixed CNN.
Using a slight change in the notation we denote this by x(1)t =

ψ0(x
(0)
t ;θ) where the θ is fixed. In unsupervised hierarchi-

cal rank pooling method, we extract feature vectors from
each of the frame resulting a sequence of vectors denoted
by

X (1) = 〈ψ0(x
(0)
1), . . . ,ψ0(x

(0))
J 〉. (28)

We then apply a non-linear transformation ψ to each feature
vector to obtain a transformed sequence

X̃ (1) = 〈ψ(x(1)1), . . . ,ψ(x(1)J)〉. (29)

Next, applying rank pooling-based temporal encoding φ to
sub-sequences of X̃ (1), we obtain a new sequence X (2) of
feature vectors describing each video sub-sequence. The pro-
cess of going from X (1) to X (2) constitutes the first layer of
the temporal hierarchy. We now extend the process through
additional rank pooling layers, which we formalize by the
following definition. Indeed, in our implementation the tem-
poral encoding function φ is rank-pool operator.

Definition 2 (Rank Pooling Layer) Let X (`)= 〈x(`)1 , . . . ,x(`)J`
〉

be a sequence of J` feature vectors. Let M` be the window
size and S` be a stride. For t ∈ {1,S`+1,2S`+1, . . .} define
transformed sub-sequences X̃ (`)

t = 〈ψ`(x
(`)
t), . . . ,ψ`(x

(`)
t+M`−1)〉,

where ψ`(·) is a point-wise non-linear transformation. Then
the output of the `-th rank pooling layer is a sequence X (`+1)=

〈. . . ,x(`+1)
t , . . .〉 where x(`+1)

t = φ(X̃ (`)
t) is a temporal en-

coding of the transformed sub-sequence X̃ (`)
t obtained by

rank-pool operator.

Each successive layer in our rank pooling hierarchy cap-
tures the dynamics of the previous layer. The entire hierar-
chy can be viewed as applying a stack of non-linear rank-
ing functions on the input video sequence and shares some
conceptual similarities with deep neural networks. A simple
illustration of a two-layer hierarchical rank pooling network
is shown in Figure 3. By varying the stride and window size
for each layer, we control the depth of the rank pooling hi-
erarchy. There is no technical reason to limit the number of
layers.

To obtain the final vector representation x(L+1), we con-
struct the sequence for the final layer X (L), and encode the
whole sequence X (L) with rank-pool operator φ(X̃ (L)). In
other words, the last layer in our hierarchy produces a sin-
gle temporal encoding of last output sequence X̃ (L) using
rank-pool operator. We use this final feature vector x(L+1)

of the video as its representation, which is then classified by
a SVM classifier.

6.1 Capturing non-linear dynamics with non-linear feature
transformations

Usually, video sequence data contains complex dynamic in-
formation that cannot be captured simply using linear meth-
ods such as linear SVR. We believe that the dynamics cap-
tured by standard SVR objective reflects only linear dynam-
ics as the SVR function is linear. To obtain non-linear dy-
namics, one option is to use non-linear feature maps and
transform the input features by a non-linear operation. Here
we transform the input vectors xt by a non-linear opera-
tion ψ(xt) before applying SVR based rank pooling (Equa-
tion (5)). In the literature, Signed Square Root (SSR) and
Chi-square feature mappings are used to obtain good re-
sults. Neural networks employ sigmoid and hyperbolic tan-
gent functions to model non-linearity. The advantage of SSR
is exploited by Fisher vector-based object recognition as well
as in activity recognition [20,68]. When CNN features are
used to represent frames, we suggest to consider positive ac-
tivations separately from the negative activations. Typically
the rectification applied in CNN architectures keeps only the
positive activations, i.e., ψ(x) =max{0,x}. However, we ar-
gue that negative activations may also contain some useful

Discriminatively Learned Hierarchical Rank Pooling Networks 11

information and should be considered. Therefore, we pro-
pose to use the following non-linear function on the activa-
tions of fully connected layers of the CNN architecture. We
call this operation the sign expansion root (SER).

ψ(x) =
(√

max{0,x},
√

max{0,−x}
)

(30)

This operation doubles the size of the features space allow-
ing us to capture important non-linear information, one for
positives and the other for negatives. The square-root oper-
ation takes care of projecting features to a some unknown
non-linear feature space.

So far in this Section 6, we have described how to repre-
sent a video by a fixed-length descriptor using hierarchical
rank pooling in an unsupervised manner. These descriptors
can be used to learn an SVM classifier for activity recogni-
tion. The forward pass algorithm for hierarchical rank pool-
ing is shown in Algorithm 1.

Algorithm 1: Hierarchical Rank Pooling Forward
Pass.

1: extract CNN features, X (1) = 〈x(1)1 ,x(1)2 , . . . ,x(1)J 〉
2: for each rank pooling layer, `= 1 : L−1 do
3: generate transformed sub-sequences X̃ (`)

t as 〈ψ(x(`)t)〉
4: rank pool each sub-sequence, x(`+1)

t = φ(X̃ (`)
t)

5: construct X (`+1) as 〈. . . ,x(`+1)
t , . . .〉

6: end for
7: get video representation as x(L+1) = φ(X̃ (L))

7 Experiments

We evaluate proposed methods using four activity and ac-
tion recognition datasets. We follow exactly the same ex-
perimental settings per dataset, using the same training and
test splits as described in the literature. Now we give some
details of these datasets (also see Figure 4).
HMDB51 dataset [39] is a generic action classification dataset
consists of 6,766 video clips divided into 51 action classes.
Videos and actions of this dataset are challenging due to
various kinds of camera motions, viewpoints, video qual-
ity and occlusions. Following the literature, we use a one-
vs-all multi-class classification strategy and report the mean
classification accuracy over three standard splits provided
by Kuehne et al. [39].

Hollywood2 dataset is created by Laptev et al. [43] using 69
different Hollywood movies that include 12 human action
classes. It contains 1,707 video clips in which 823 clips are
dedicated for training and 884 clips for testing. The perfor-
mance is measured by average precision. The mean average

precision (mAP) is reported over all classes, as in [43].

UCF101 dataset [60] is an action recognition dataset of re-
alistic action videos, collected from YouTube, consists of
101 action categories. It has 13,320 videos from 101 di-
verse action categories. The videos of this dataset is chal-
lenging which contains large variations in camera motion,
object appearance and pose, object scale, viewpoint, clut-
tered background and illumination conditions. It is one of
the most challenging data set to date. It consist of three
splits, in which we report the classification performance over
all three splits as done in the literature.

UCF-sports dataset [51] consists of a set of short video clips
depicting actions collected from various sports. The clips
were typically sourced from footage on broadcast television
channels such as the BBC and ESPN. The video collection
represents a natural pool of actions featured in a wide range
of scenes and viewpoints. The dataset includes a total of 150
sequences of resolution 720×480 pixels. Classification per-
formance is measured using mean per-class accuracy. We
use provided train-test splits for training and testing.

The rest of the experimental section is organised as fol-
lows. First in Section 7.1 we provide a detailed evaluation
of hierarchical rank pooling. Then in Section 7.2, we eval-
uate the impact of discriminative rank pooling. Section 7.3
is dedicated to provide a detailed evaluation of end-to-end
trainable rank pooled CNNs. Finally, we compare with some
state-of-the-art action recognition methods and position our
contributions in Section 7.4. Implementation of our method
is publicly available1.

7.1 Evaluating hierarchical rank pooling (HRP)

First, we evaluate activity recognition performance using
CNN features and hierarchical rank pooling (HRP) and then
provide some detailed analysis.
Experimental details: We utilize pre-trained CNNs with-
out any fine-tuning. Specifically, for each video we extract
activations from the VGG-16 [57] network’s first fully con-
nected layer (consisting of 4096 values, only from the cen-
tral patch). We represent each video frame by this 4096 di-
mensional vector. Note that at this point, we do not use any
ReLU [38] non-linearity. As a result the frame representa-
tion vector contains both positive and negative components
of the activations.

Unless otherwise specified, we use a window size M`

of 20, with a stride S` of one and a hierarchy depth of two
in all our experiments. We use a constant C = 1 parameter

1 https://bitbucket.org/bfernando/hrp

https://bitbucket.org/bfernando/hrp

12 Fernando and Gould

(a) HMDB51

(b) Hollywood2

(c) UCF101

(d) UCFSports

Fig. 4: Example frames from (a) HMDB51 (b) Hollywood2
(c) UCF101 and (d) UCF-sports datasets from different ac-
tion and activity classes.

METHOD Hollywood2 HMDB51 UCF101
Average pooling 40.9 37.1 69.3
Max pooling 42.4 39.1 72.5
Tempo. pyramid (avg. pool) 46.5 39.1 73.3
Tempo. pyramid (max pool) 48.7 39.8 74.8
LSTM [61] – 42.8 74.5
Rank pooling 44.2 40.9 72.2
Recursive rank pooling 52.5 45.8 75.6
Hierarchical rank pooling 56.8 47.5 78.8
Improvement +8.1 +4.7 +4.0

Table 1: Comparing several temporal pooling methods for
activity recognition using VGG-16’s fc6 features.

for SVR training (Lib-linear [16]) to obtain the rank-pool-
based temporal encoding as recommended in [18]. We test
different non-linear SVM classifiers for the final classifica-
tion always with C = 1000 (LibSVM [8]) as this works well
in practice. It should be noted that ideally, the best results
can be obtained by cross-validation. However, as commonly
done in state-of-the art action recognition methods [68], we
use a fixed C for LibSVM training. In the case of multi-class
classification, we use a one-against-rest approach and select
the class with the highest score. For rank pooling [20,18]
and trajectory extraction [68] (in later experiments) we use
the publicly available code from the authors.

7.1.1 Comparing temporal pooling methods

In this section we compare several temporal pooling meth-
ods using VGG-16 CNN features. We compare our hier-
archical rank pooling with average-pooling, max-pooling,
LSTM [61], two level temporal pyramids with mean pool-
ing, two level temporal pyramids with max pooling, and
vanilla rank pooling [20,18]. To obtain a representation for
average pooling, the average CNN feature activation over all
frames of a video was computed. The max-pooled vector is
obtain by applying the max operation over each dimension
of the CNN feature vectors from all frames of a given video.
We also compare with a variant of hierarchical rank pool-
ing called recursive rank pooling, where the next layer’s se-
quence element at time t denoted by x(`+1)

t is obtained by en-
coding all frames of the previous layer sequence up to time
t, i.e. x(`+1)

t = φ(〈ψ(x(`)1), . . . ,ψ(x(`)t)〉) for t = 2, . . . ,J`.
We compare these base temporal encoding methods on

three datasets and report results in Table 1. Results show
that the rank pooling method is only slightly better than max
pooling or mean pooling when used with VGG16 features.
We believe this is due to the limited capacity of rank pool-
ing [20,18]. Moreover, temporal pyramid seems to outper-
form rank pooling except for HMDB51 dataset. Moreover,
as shown in Table 1, when we extend the rank pooling to
recursive rank pooling, we notice a jump in performance
from 44.2% to 52.5% for Hollywood2 dataset and 40.9%

Discriminatively Learned Hierarchical Rank Pooling Networks 13

(a) Hollywood2 (b) HMDB-51

Fig. 5: Activity recognition performance versus hierarchy
depth on Hollywood2 and HMDB-51.

to 45.8% for HMDB51 dataset. We also see a noticeable
improvement in UCF101 dataset. Hierarchical rank pooling
improves over rank pooling by a significant margin. The re-
sults suggest that it is important to exploit dynamic infor-
mation in a hierarchical manner as it allows complicated se-
quence dynamics of videos to be expressed. To verify this,
we also performed an experiment by varying the depth of
the hierarchical rank pooling and reported results for one to
three layers. Results are shown in Figure 5.

As expected the improvement from depth of one to two
is significant. Interestingly, as we increase the depth of the
hierarchy to three, the improvement is marginal. Perhaps
with only two levels, one can obtain a high capacity dynamic
encoding.

7.1.2 Evaluating the parameters of HRP

Hierarchical rank pooling consists of two more hyper-parameters:
(1) window size (M`), i.e., the size of the video sub-sequences
and (2) stride (S`) of the video sampling. These two param-
eters control how many sub-sequences can be generated at
each layer. In the next experiment we evaluate how perfor-
mance varies with window size and stride. Results are re-
ported in Figure 6(top). The window size does not seem to
make a big impact on the results (1–2%) for some datasets.
However, we experimentally verified that a window size of
20 frames seems to be a reasonable compromise for all ac-
tivity recognition tasks. The trend in Figure 6(bottom) for
the stride is interesting. It shows that the best results are al-
ways obtained by using a small stride. Small strides gener-
ate more encoded sub-sequences capturing more statistical
information.

7.1.3 The effect of non-linear feature maps on HRP

Non-linear feature maps are important for modeling com-
plex dynamics of an input video sequence. In this section
we compare Sign Expansion Root (SER) feature map intro-
duced in Section 6.1 with the Signed Square Root (SSR)

(a) Hollywood2 (b) HMDB-51 (c) UCF101

Fig. 6: Activity recognition performance versus window size
(top) and stride (bottom).

Hierarchical
METHOD Rank pooling rank pooling
Signed square root (SSR) 44.2 50.5
Sign expansion root (SER) 51.0 56.8

Table 2: Effect non-linear feature maps during the training
of rank pooling methods using Hollywood2 dataset.

method, which is commonly used in the literature [49]. Re-
sults are reported in Table 2. As evident in the table, SER
feature map is useful not only for hierarchical rank pooling,
which gives an improvement of 6.3% over SSR, but also for
baseline rank pooling method, which gives an improvement
of 6.8%. This seems to suggest that there is valuable infor-
mation in both positive and negative activations of fully con-
nected layers. Furthermore, this experiment suggests that it
is important to consider positive and activations separately
for activity recognition.

7.1.4 The effect of non-linear kernel SVM on HRP

In this experiment we evaluate several non-linear kernels
that exist in literature and compare their effect when used
with Hierarchical Rank Pooling method. We compare clas-
sification performance using different kernels (1) linear, (2)
linear kernel with SSR, (3) Chi-square kernel, (4) Kernel-
ized SER (5) combination of Chi-square kernel with SER.
Results are reported in Table 3. On all three datasets we
see a common trend. First, the SSR kernel is more effective
than not utilizing any kernel or feature map. Interestingly, on
deep CNN features, Chi-square Kernel is more effective than
SSR. Perhaps this is because the Chi-square kernel utilizes
both negative and positive activations in a separate manner
to some extent. The SER method seems to be the most ef-
fective kernel. Interestingly, applying SER feature map over
Chi-square kernel seems to improve results further. We con-
clude that SER non-linear feature map is effective not only
during the training of rank pooling techniques, but also for
action classification specially when used with CNN activa-

14 Fernando and Gould

Hollywood2 HMDB51 UCF101
KERNEL TYPE (mAP %) (%) (%)
Linear 45.1 40.0 66.7
Signed square root (SSR) 48.6 42.8 72.0
Chi-square kernel 50.6 44.2 73.8
Sign expansion root (SER) 54.0 46.0 76.6
Chi-square + SER 56.8 47.5 78.8

Table 3: Effect of non-linear SVM kernels on action classi-
fication with hierarchical rank pooling representation.

KERNEL TYPE Avg. pool Max pool Rank pool Ours
Linear 38.1 39.6 33.3 45.1
Signed square root (SSR) 38.6 38.4 35.3 48.6
Chi-square kernel 39.9 41.1 40.8 50.6
Sign expansion root (SER) 39.4 41.0 37.4 54.0
Chi-square + SER 40.9 42.4 44.2 56.8

Table 4: Effect of non-linear kernels on other pooling meth-
ods using Hollywood2 dataset (mAP %).

tion features. Next we also evaluate the effect of non-linear
kernels on final video representations when used with other
pooling methods such as rank pooling, average pooling and
max pooling. Results are reported in Table 4 on Hollywood2
dataset. A similar trend as in the previous table can be ob-
served here. We conclude that our kernalized SER is useful
not only for our hierarchical rank pooling method, but also
for the other considered temporal pooling techniques.

7.1.5 Combining hierarchical rank pooled CNN features
with improved trajectory features

In this experiment we combine hierarchical rank pooled CNN
features with the Improved Dense Trajectory (IDT) features
(MBH, HOG, HOF) [68]. The objective of this experiment
is to show the complimentary nature of IDT and hierarchi-
cal rank pooled CNN features. IDT are encoded with Fisher
vectors [49] at the frame level and then temporally encoded
with rank pooling. Due to the very high dimensional nature
of Fisher vectors, it is not practical to use hierarchical rank
pooling over Fisher vectors. We utilize a Gaussian mixture
model of 256 components to create the Fisher vectors. To
keep the dimensionality manageable, we halve the size of
each descriptor using PCA. This is exactly the same setup
used by Fernando et al. [20,18]. For each dataset we report
results on HOG, HOF and MBH features obtained with the
publicly available code of rank pooling [20,18]. We con-
struct a kernel gram matrix for each feature type (HOG,
HOF, MBH, and CNN) and take the averaging of the kernels
to fuse features. Results are shown in Table 5. Hierarchical
rank pooled (CNN) outperforms trajectory based HOG fea-
tures on all three datasets. Furthermore, on UCF101 dataset,
Hierarchical rank pooled (CNN) outperforms rank pooled
HOF features. Nevertheless, trajectory based MBH features

METHOD Hollywood2 HMDB51 UCF101
RP. (HOG) 53.4 44.1 72.8
RP. (HOF) 64.0 53.7 78.3
RP. (MBH) 65.8 53.9 82.6
RP. (ALL) 68.5 60.0 86.5
RP. (CNN) 44.2 40.9 72.2
RP. (ALL+CNN) 71.4 63.0 88.1
HRP. (CNN) 56.8 47.5 78.8
RP. (ALL)+ HRP (CNN) 74.1 65.0 90.7

Table 5: Combining CNN-based Hierarchical Rank Pool-
ing (HRP) with improved trajectory features encoded with
Fisher vectors and Rank Pooling(RP).

still dominate the best results for an individual feature. The
combination of rank pooled trajectory features (HOG + HOF
+ MBH) with hierarchically rank pooled CNN features gives
a significant improvement. It is interesting to see that the
biggest improvement is obtained in Hollywood2 dataset. On
UCF-101 dataset the combination brings us an improvement
of 4.2% over rank pooled trajectory features. We conclude
that our hierarchical rank pool features are complimentary
to trajectory-based rank pooling.

7.1.6 Combining with trajectory features

We also apply hierarchical rank pooling over improved dense
trajectories which are encoded with the bag-of-words. For
this experiment, we use MBH features and use a dictionary
of size 4096 which is constructed with K-means. Results are
reported in Table 6. As before, both average pooling and

Method UCF101 Acc. (%) HMDB51 Acc. (%)
Average pooling 72.3 45.0
Max pooling 71.5 43.1
Rank pooling 77.5 48.1
Hierarchical rank pooling 82.1 54.2

Table 6: Action classification performance using IDT
(MBH) features encode with BOW (4096 dictionary) using
different temporal pooling methods and SVM classifiers.

max pooling perform worst than the rank pooling method.
Hierarchical rank pooling obtains large improvement over
rank pooling. On HMDB51 dataset, the improvement over
rank pooling is about 6%. HRP obtains an improvement of
4.6% on UCF101 over rank pooling. It is interesting to see
the impact of hierarchical rank pooling over deep features as
well as traditional hand-crafted features such as dense tra-
jectory features and bag-of-words encoding. We conclude
that the hierarchical rank pooling is effective not only on re-
cent deep features, but also with more traditional IDT-based
bag-of-words features.

Discriminatively Learned Hierarchical Rank Pooling Networks 15

Method UCF101 Acc. (%) HMDB51 Acc. (%)
Average pooling 76.5 48.3
Max pooling 78.8 50.2
Rank pooling 81.0 54.7
Hierarchical rank pooling 84.0 57.3

Table 7: Action classification performance using non-fine-
tuned ResNet features [26] using different temporal pooling
methods and SVM classifiers.

7.1.7 The impact of residual network features on HRP

In this experiment, we evaluate the impact of Residual Net-
work Features [26] on action recognition using UCF101 and
HMDB51 datasets. Results for max pooling, average pool-
ing, Rank pooling, and Hierarchical Rank pooling with ResNet
features are shown in Table 7 for UCF101 and HMDB51
datasets. For this analysis, we extract frame level ResNet
features from the output of final pooling layer which has a
dimensionality of 2048. We compare our hierarchical rank
pooling with max pooling method. For rank pooling we ob-
tain classification accuracy of 84.0% only using frame-level
ResNet features on UCF101. This is an improvement of 5.3%
over VGG-16 features. Similarly, for max pooling we ob-
tain 78.8 % which is an improvement of 6.3 % over VGG-
16. Similar trends can be observed for HMDB51 dataset. In
fact, for HMDB51, it seems the improvement from VGG-16
to ResNet features is significant (11.2 % for average pool-
ing, 11.1 % for max pooling, 13.8 % for rank pooling and
9.8 % for hierarchical rank pooling).

In another experiment, we also used publicly available
ResNet-152 networks that are finetuned for RGB stream [17].
Then only using the center crop of UCF101 frames, we ex-
tract 2048 dimensional features per frame and experiment
with several baseline methods. For RNN and LSTM base-
lines, we use Keras [9] with hidden size of 256. We report re-
sults in Table 8. Interestingly, simple RNN and LSTM meth-
ods does not outperform max pooling or the average pooling
results. Rank pooling is better than max pooling while hier-
archical rank pooling is significantly better than rank pool-
ing.

We conclude that ResNet feature [26] are useful for ac-
tion and activity recognition and our proposed hierarchical
rank pooling method is complimentary to both VGG-16 fea-
tures [57] as well as ResNet features.

7.1.8 Confusions with the use of residual network features
and HRP

We also analyse the confusions made by ResNets when pooled
using max operator and hierarchical rank pooling (see Fig-
ure 7). The most confusing category for max pooling is Swing
for Tennis swing (44 times) and Basketball for Basketball-
Dunk (37 times) (–see Figure 8 left). The most confusing

Method UCF101
Simple RNN 74.8
Simple LSTM 75.9
Stacking of two LSTMs 75.3
Average pooling 79.1
Max pooling 81.3
Rank pooling 82.1
Hierarchical rank pooling 85.6

Table 8: Action classification performance using fine-tuned
ResNet-152 features [17] using spatial stream. We use dif-
ferent temporal pooling methods and compare results on
UCF101 dataset.

Fig. 7: The most confused classes for max pooling (left) and
hierarchical rank pooling in the right. Max pooling makes
most confusions.

for hierarchical rank pooling is Cricket-Bowling for Cricket-
Shot which happens only 16 times (–see Figure 8 right).
Generally, from the dynamics point of view, it is very hard
to distinguish Cricket bowling from Cricket-Shot as indeed
the Cricket-Shot just follows after Cricket-bowling. In par-
ticular, in many cases Cricket-bowling can be observed for
Cricket-Shot video clips in UCF101 dataset.

7.1.9 Impact of mid-level pooled features

In this experiment, we evaluate the impact of low-level, learned
mid-level, and higher level features of the hierarchical rank
pooling. We use non-fine-tuned ResNet-150 features [26] as
the frame representation. As before we use a window size
of 20 and stride of 1. After applying three layered hierar-
chical rank pooling, we use the first/second layer mid-level
features as the mid-level sequence representations. We ran-
domly pick a mid-level feature vector to represent the entire
video sequence. To compare, we also pick a single frame
feature to represent a video. Furthermore, we randomly se-
lect 39 frames from each video and apply temporal max
pooling and temporal average pooling as baselines. We eval-
uate the impact of each mid-level feature and position the
results with respect to the highest level hierarchical rank-
pooled feature. We repeat each experiment 10 times and re-
port the mean and standard deviation in Table 9. Clearly,

16 Fernando and Gould

Fig. 8: Some of the most confusing classes for max pooling (left) and hierarchical rank pooling (right) respectively using
ResNet features.

Level HMDB51 Acc. (%)
0 - frame level 38.8 ± 1.1
temporal max pooling (39 frames) 49.2 ± 1.6
temporal avg. pooling (39 frames) 46.9 ± 0.5
1st layer mid-level feature 41.9 ± 1.4
2nd layer mid-level feature 47.5 ± 0.6
3rd layer Hierarchical rank pooling 57.4

Table 9: The impact of low-level, mid-level, and highest
level sequence representation using hierarchical rank pool-
ing method.

frame level feature performs the worst. This is expected. In-
terestingly, using just a single random frame, we are able to
obtain a mean classification accuracy of 38.8 %. First layer
mid-level feature is better than frame level representation
which obtains 41.9 %. The second layer mid-level feature
is even better which obtains 47.5 %. This is an indication
of the impact of mid-level dynamics. Note that the tempo-
ral resolution of the first layer feature is 20 frames while the
second layer mid-level feature has a resolution of 39 frames.
Most interestingly, the highest level features obtain 57.4 %
which is significant. However, the highest level feature has
the full temporal resolution. These results suggest that in-
deed, the hierarchical rank pooling is capable of capturing
low-level, mid-level and higher level dynamics. The high-
est level temporal dynamics captured by HRP improves the
activity recognition performance significantly.

7.2 The effect of discriminative rank pooling

In this experiment, we use discriminative rank pooling in
the final layer of the hierarchical rank pooling network. In
this case we first construct the sequence for the final layer
X (L) and apply SSR feature map. Then we feed forward
this sequence through the parameterized non-linear trans-
form ψ(Wx(L)t), temporal encoder φ(X̃ (L)), and apply the
classifier to get a classification score. During training we
propagate errors back to the parametric non-linear transfor-

METHOD HMDB51 UCF101
Rank pooling 40.9 72.2
Hierarchical rank pooling 47.5 78.8
Discriminative hierarchical rank pooling 49.9 ± 0.08 81.4 ± 0.04

Table 10: Effect of learning discriminative dynamics for
hierarchical rank pooling on the HMDB51 and UCF101
dataset.

mation layer ψ(·) and perform a parameter update. We im-
plement this optimization in a GPU.

We use MatConvNet [65] with stochastic gradient de-
scent with variable learning rate starting at 10−3 and de-
creased to 10−5 in a logarithmic manner over epochs. We
also use a momentum term of 0.9 and a weight decay of
0.0005. Our layer is implemented in matlab with GPU sup-
port. We evaluate the effect of this method only on the largest
datasets, the HMDB51 and UCF101. We first construct the
first layer sequence using hierarchical rank pooling. Then
we learn the parameters W using the labelled video data
while keeping the CNN parameters fixed. We initialize the
W matrix to the identity and the classifier parameters to
those obtained from the linear SVM classifier. Results are
reported in Table 10. We improve results by 2.4% and 2.6%
over hierarchical rank pooling and a significant improve-
ment of 9.0% and 9.2% over rank pooling using HMDB51
and UCF101 datasets respectively. During test time, we pro-
cess a video at 120 frames per second.

7.3 Comparing the effect of end-to-end trainable rank
pooled CNN.

In this section we evaluate the effectiveness of end-to-end
video representation learning with rank-pooling introduced
in section 4.1. Due to the computational complexity, we only
use moderate (Hollywood2) and small scale (UCF sports)
action recognition dataset for evaluation. We compare our
end-to-end training of the rank-pooling network against the
following baseline methods.

Discriminatively Learned Hierarchical Rank Pooling Networks 17

Method Acc. (%)
Average pooling + svm 67.1
Max pooling + svm 66.0
Rank pooling + svm 66.4
Average pooled-cnn-end-to-end 70.4
Max pooled-cnn-end-to-end 71.2
Frame-level fine-tuning 69.8
Frame-level fine-tuning + Rank pooling 72.9
Rank-pooled-cnn-end-to-end 87.1

Table 11: Classification accuracies for action recognition on
the ten-class UCF-sports dataset [51] using end-to-end video
representation learning with rank pooling.

avg pooling + svm: We extract FC7 feature activations
from the pre-trained Caffe reference model [33] using Mat-
ConvNet [65] for each frame of the video. Then we apply
temporal average pooling to obtain a fixed-length feature
vector per video (4096 dimensional). Afterwards, we use a
linear SVM classifier (LibSVM) to train and test action and
activity categories.

max pooling + svm: Similar to the above baseline, we
extract FC7 feature activations for each frame of the video
and then apply temporal max pooling to obtain a fixed-length
feature vector per video. Again we use a linear SVM classi-
fier to predict action and activity categories.

rank pooling + svm: We extract FC7 feature activations
for each frame of the video. We then apply time varying
mean vectors to smooth the signal as recommended by [20],
and L2-normalize all frame features. Next, we apply the
rank-pooling operator to obtain a video representation using
publicly available code [20]. We use a linear SVM classifier
applied on the L2-normalized representation to classify each
video.

frame-level fine-tuning (fn): We fine-tune the Caffe ref-
erence model on the frame data considering each frame as an
instance from the respective action category. Then we sum
the classifier scores from each frame belonging to a video to
obtain the final prediction.

frame-level fine-tuning + rank-pooling (fn+rankpool):
We use the pre-trained model as before and fine-tune the
Caffe reference model on the frame data considering each
frame as an instance from the respective action category. Af-
terwards, we extract FC7 features from each video (frames).
Then we encode temporal information of fine-tuned FC7
video data using rank-pooling. Afterwards, we use soft-max
classifier to classify videos.

end-to-end baselines: We also compare our method with
end-to-end trained max and average pooling variants. Here
the pre-trained CNN parameters were fine-tuned using the
classification loss.

The first five baselines can all be viewed as variants of
the CNN-base temporal pooling architecture of Figure 2.

The differences being the pooling operation and whether
end-to-end training is applied.

We compare the baseline methods against our rank-pooled
CNN-based temporal architecture where training is done end-
to-end. We do not sub-sample videos to generate fixed-length
clips as typically done in the literature (e.g., [56,64]). In-
stead, we consider the entire video during training as well as
testing. We use stochastic gradient descent method without
batch updates (i.e., each batch consists of a single video).
We initialize the network with the Caffe reference model
and use a variable learning rate starting from 0.01 down
to 0.0001 over 60 epochs. We also use a weight decay of
0.0005 on an L2-regularizer over the model parameters. We
explore two variants of the learning algorithm. In the first
variant we use the diagonal approximation to the rank-pool
gradient during the back-propagation. In the second vari-
ant we use the full gradient update, which requires comput-
ing the inverse of matrices per video (see Section 5.5). For
the UCF-sports dataset we use the cross-entropy loss for all
CNN-based methods (including the baselines). Whereas for
the Hollywood2 dataset, where performance is measured by
mAP (as is common practice for this dataset), we use the
hinge-loss.

Results for experiments on the UCF-sports dataset are
reported in Table 11. Let us make several observations. First,
the performance of max, average and rank-pooling are sim-
ilar when CNN activation features are used without end-to-
end learning. Perhaps increasing the capacity of the model to
better capture video dynamics (say, using a non-linear SVM)
may improve results perhaps a future work. Second, end-
to-end training helps all three pooling methods. However,
the improvement obtained by end-to-end training of rank-
pooling is about 21%, significantly higher than the other
two pooling approaches. Moreover, the performance using
the diagonal approximation is 87.0% which is very close to
the full gradient based approach. This suggests that the diag-
onal approximation is driving the parameters in a desirable
direction and may be sufficient for a stochastic gradient-
based method. Last, and perhaps most interesting, is that us-
ing state-of-the-art improved trajectory [68] features (MBH,
HOG, HOG) and Fisher vectors [49] with rank-pooling [20]
obtains 87.2% on this dataset. This result is comparable with
the results obtained with our method using end-to-end fea-
ture learning. Note, however, that the dimensionality of the
feature vectors for the state-of-the-art method are extremely
high (over 50,000 dimensional) compared to our 4,096 di-
mensional feature representation.

We now evaluate activity recognition performance on
the Hollywood2 dataset. Results are reported in Table 12
as average precision performance for each class and we take
the mean average precision (mAP) to compare methods. As
before, for this task, the best results are obtained by end-to-
end training using rank-pooling for temporal encoding. The

18 Fernando and Gould

class avg+svm max+svm rankpool+svm avg+cnn max+cnn fn fn+rankpool rankpool+cnn
AnswerPhone 23.6 19.5 35.3 29.9 28.0 27.4 34.3 25.0
DriveCar 60.9 50.8 40.6 55.6 48.6 48.1 50.4 56.9
Eat 19.7 22.0 16.7 27.8 22.0 21.1 23.1 24.2
FightPerson 45.6 28.3 28.1 26.6 17.6 18.4 20.4 30.4
GetOutCar 39.5 29.2 28.1 48.9 43.8 43.1 45.3 55.5
HandShake 28.3 24.4 34.2 38.4 40.0 39.4 39.5 32.0
HugPerson 30.2 23.9 22.1 25.9 26.6 26.1 30.3 33.2
Kiss 38.2 27.5 36.8 50.6 45.7 44.9 45.6 54.2
Run 55.2 53.0 39.4 59.6 52.5 52.4 52.9 61.0
SitDown 30.0 28.8 32.1 30.6 30.0 29.7 34.4 39.6
SitUp 23.0 20.2 18.7 23.8 26.4 24.1 25.1 25.4
StandUp 34.6 32.4 39.9 37.4 34.8 34.4 34.8 49.9
mAP 35.7 30.0 31.0 37.9 34.7 34.1 36.3 40.6

Table 12: Classification performance in average precision for activity recognition on the Hollywood2 dataset [43] using
end-to-end video representation learning with rank pooling.

improvement over non-end-to-end rank pooling is 9.6 mAP.
One may ask whether this performance could be achieved
without end-to-end training but just fine-tuning the frame-
level features. Simple frame-level fine-tuning obtains only
34.1 mAP (see Table 12 with the column denoted by fn)
while frame-level fine-tuning + rank-pooling obtains 36.3
mAP (see Table 12 with the column denoted by fn+rankpool).
Our end-to-end method obtains better results (40.6 mAP)
compared to frame-level fine-tuning and fine-tuning with
rank-pooling.

7.4 Comparing to the state-of-the-art

In this section we position our paper with respect to the cur-
rent state-of-the-art performance in action recognition using
standard datasets. We perform a series of experiments us-
ing hierarchical rank pooled deep cnn features for UCF101
and HMDB51 datasets. We use two types of cnn features,
one extracted from VGG-16-CNN architecture and the other
extracted from ResNet architecture. We also experimented
with discriminative hierarchical rank pooling. To further im-
prove results, we use rank pooled [18] improved dense tra-
jectory features (IDT) [68] and optical-flow-based [7] deep
features for UCF101 and HMDB51 datasets. It should be
emphasized, we choose parameters for hierarchical rank pool-
ing based on the prior experimental results reported in Fig-
ures 5 and 6 for each dataset, i.e., without use of any grid
search. As in [20,27] we use data augmentation only for
Hollywood2 and HMDB51. Results are reported in the fol-
lowing Table 13.

When ResNet (RGB) features are combined with IDT,
our hrp-based method obtains staggering 93.1% on UCF101.
Furthermore, if we add optical flow-based features (similar
to RGB-based hierarchical rank pooling), we obtain 93.6%
classification performance on UCF101 dataset. Only using
ResNet-based RGB data and Optical Flow data, hierarchical
rank pooling with default settings obtains 90.6% on UCF101.

Similarly, on HMDB51 dataset, hierarchical rank pooled ResNet
(RGB + Optical-flow) features obtains 63.1%. When we com-
bine that with IDT features, for HMDB51 dataset we obtain
69.4 % which is par with the state-of-the art for this dataset.
On Hollywood2 dataset, hierarchical rank pooled VGG-16
features are combined with IDT to obtain state-of-the art
76.7 mAP. This is a significant improvement over rank pool-
ing [20] method.

Because, different methods used different information
such as optical flow features, different motion representa-
tions, different object models and trajectory-based features,
it is difficult to compare methods in a purely fair manner us-
ing the published results alone. However, from these results
obtained in Table 13, we conclude that our sequence encod-
ing method and end-to-end learning method are complimen-
tary to existing techniques and video data and features.

8 Conclusion

In this paper we extend the rank pooling method in two
ways. First, we introduce an effective, clean, and princi-
pled temporal encoding method based on the discriminative
rank pooling framework which can be applied over vector
sequences or convolutional neural network-based video se-
quences for action classification tasks. Our temporal pool-
ing layer can sit above any CNN architecture and through a
bilevel optimization formulation admits end-to-end learning
of all model parameters. We demonstrated that this end-to-
end learning significantly improves performance over a tra-
ditional rank-pooling approach by 21% on the UCF-sports
dataset and 9.6 mAP on the Hollywood2 dataset.

Secondly, we presented a novel temporal encoding method
called hierarchical rank pooling which consists of a network
of non-linear operations and rank pooling layers. The ob-
tained video representation has high capacity and capability
of capturing informative dynamics of rich frame-based fea-
ture representations. We also presented a principled way to

Discriminatively Learned Hierarchical Rank Pooling Networks 19

Method Feature Holly.2 HMDB51 UCF101
hrp ResNet (RGB+Opt.Flow) + IDT – 69.4 93.6
hrp ResNet (RGB) + IDT – 68.9 93.1
dhrp VGG-16 (RGB) + IDT – 68.1 91.4
hrp VGG-16 (RGB) + IDT 76.7 66.9 91.2
hrp ResNet(RGB+Opt.Flow) – 63.1 90.6
Zha et al. [72] VGG-19 (RGB)+IDT 89.6
Ng et al. [71] GoogLeNet (RGB + Opt.FLow) 88.6
Simonyan et al. [56] CNN-M-2048 (RGB + Opt.FLow) 59.4 88.0
Wang et al. [69] CNN-M-2048 (RGB + Opt.FLow) + IDT 65.9 91.5
Feichtenhofer et al. [17] VGG-16 (RGB+Opt.Flow) + IDT 69.2 93.5

Methods without CNN features
Lan et al. [42] IDT 68.0 65.4 89.1
Fernando et al. [20] IDT 73.7 63.7
Hoai et al. [27] IDT 73.6 60.8
Peng et al. [48] IDT 66.8
Wu et al. [70] IDT 56.4 84.2
Wang et al. [68] IDT 64.3 57.2

Table 13: Comparison with the state-of-the-art methods.

learn non-linear dynamics using a stack consisting of para-
metric non-linear activation layers, rank pooling layers, dis-
criminative rank pooling layer and, a soft-max classifier which
we coined discriminative hierarchical rank pooling. We demon-
strated substantial performance improvement over other tem-
poral encoding and pooling methods such as max pooling,
rank pooling, temporal pyramids, and LSTMs. Combining
our method with features from the literature, we obtained
good results on the Hollywood2, HMDB51 and UCF101
datasets.

One of the limitations of our rank pooling-based end-
to-end learning is the computational complexity. Especially,
the gradient computation of the rank-pooling operator is com-
putationally expensive which limits applicability of end-to-
end learning on very large datasets. One solution is to sim-
plify the gradient computation or relax the constraints of the
learning objective function as shown in prior work [4,3]. If
one wants to use discriminative rank pooling inside hierar-
chical rank pooling networks, then perhaps one can find a
strategy to reuse the gradient computation of the neighbour-
ing subsequences. These are possible solutions to make the
back-propagation faster in our proposed framework.

We believe that the framework proposed in this paper
will open the way for embedding other traditional optimiza-
tion methods as subroutines inside CNN architectures. Our
work also suggests a number of interesting future research
directions. First, it would be interesting to explore more ex-
pressive variants of rank-pooling such as through kernaliza-
tion. Second, our framework could be adapted to other se-
quence classification tasks (e.g., speech recognition) and we
conjecture that as for video classification there may be ac-
curacy gains for these other tasks too.

Acknowledgements This research was supported by the Australian
Research Council Centre of Excellence for Robotic Vision (project
number CE140100016).

References

1. Sami Abu-El-Haija, Nisarg Kothari, Joonseok Lee, Paul Natsev,
George Toderici, Balakrishnan Varadarajan, and Sudheendra Vi-
jayanarasimhan. Youtube-8m: A large-scale video classification
benchmark. arXiv preprint arXiv:1609.08675, 2016.

2. Jonathan F. Bard. Practical Bilevel Optimization: Algorithms and
Applications. Kluwer Academic Press, 1998.

3. Hakan Bilen, Basura Fernando, Efstratios Gavves, and Andrea
Vedaldi. Action recognition with dynamic image networks. arXiv
preprint arXiv:1612.00738, 2016.

4. Hakan Bilen, Basura Fernando, Efstratios Gavves, Andrea
Vedaldi, and Stephen Gould. Dynamic image networks for action
recognition. In CVPR, 2016.

5. Olivier Bousquet and André Elisseeff. Stability and generaliza-
tion. JMLR, 2:499–526, 2002.

6. Christoph Bregler. Learning and recognizing human dynamics in
video sequences. In CVPR, pages 568–574. IEEE, 1997.

7. Thomas Brox, Andrés Bruhn, Nils Papenberg, and Joachim We-
ickert. High accuracy optical flow estimation based on a theory
for warping. In ECCV, 2004.

8. Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for sup-
port vector machines. ACM Transactions on Intelligent Systems
and Technology (TIST), 2(3):27, 2011.

9. François Chollet. Keras, 2015.
10. S Dempe and S Franke. On the solution of convex bilevel op-

timization problems. Computational Optimization and Applica-
tions, 63(3):685–703, 2016.

11. J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Ima-
geNet: A large-scale hierarchical image database. In CVPR, 2009.

12. Chuong B. Do, Chuan-Sheng Foo, and Andrew Y. Ng. Efficient
multiple hyperparameter learning for log-linear models. In NIPS,
2007.

13. Justin Domke. Generic methods for optimization-based modeling.
In AISTATS, 2012.

14. Justin Domke. Generic methods for optimization-based modeling.
In AISTATS, 2012.

15. Yong Du, Wei Wang, and Liang Wang. Hierarchical recurrent neu-
ral network for skeleton based action recognition. In CVPR, 2015.

http://arxiv.org/abs/1609.08675
http://arxiv.org/abs/1612.00738

20 Fernando and Gould

16. Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang,
and Chih-Jen Lin. Liblinear: A library for large linear classifica-
tion. Journal of machine learning research, 9(Aug):1871–1874,
2008.

17. Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman. Con-
volutional two-stream network fusion for video action recognition.
In CVPR, June 2016.

18. B. Fernando, E. Gavves, J. Oramas, A. Ghodrati, and T. Tuyte-
laars. Rank pooling for action recognition. TPAMI, PP(99):1–1,
2016.

19. Basura Fernando, Peter Anderson, Marcus Hutter, and Stephen
Gould. Discriminative hierarchical rank pooling for activity recog-
nition. In CVPR, 2016.

20. Basura Fernando, Efstratios Gavves, Jose Oramas, Amir Ghodrati,
and Tinne Tuytelaars. Modeling video evolution for action recog-
nition. In CVPR, 2015.

21. Basura Fernando and Stephen Gould. Learning end-to-end video
classification with rank-pooling. In ICML, 2016.

22. Emily Fox, Michael I Jordan, Erik B Sudderth, and Alan S Will-
sky. Sharing features among dynamical systems with beta pro-
cesses. In NIPS, pages 549–557, 2009.

23. Ross Girshick, Jeff Donahue, Trevor Darrell, and Jagannath Ma-
lik. Rich feature hierarchies for accurate object detection and se-
mantic segmentation. In CVPR, 2014.

24. Gene H. Golub and Charles F. Van Loan. Matrix Computations.
Johns Hopkins University Press, 3 edition, 1996.

25. Stephen Gould, Basura Fernando, Anoop Cherian, Peter Ander-
son, Rodrigo Santa Cruz, and Edison Guo. On differentiating pa-
rameterized argmin and argmax problems with application to bi-
level optimization. arXiv preprint arXiv:1607.05447, 1(1):1, July
2016.

26. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In CVPR, June 2016.

27. Minh Hoai and Andrew Zisserman. Improving human action
recognition using score distribution and ranking. In ACCV, 2014.

28. Sepp Hochreiter and Jürgen Schmidhuber. Long short-term mem-
ory. Neural computation, 9(8):1735–1780, 1997.

29. M. C. Hughes and E. B. Sudderth. Nonparametric discovery of ac-
tivity patterns from video collections. In CVPR Workshops, pages
25–32, June 2012.

30. Mihir Jain, Hervé Jégou, and Patrick Bouthemy. Better exploiting
motion for better action recognition. In CVPR, 2013.

31. Hervé Jégou, Matthijs Douze, Cordelia Schmid, and Patrick Pérez.
Aggregating local descriptors into a compact image representa-
tion. In CVPR, pages 3304–3311. IEEE, 2010.

32. Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu. 3d convolutional
neural networks for human action recognition. PAMI, 35(1):221–
231, 2013.

33. Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev,
Jonathan Long, Ross Girshick, Sergio Guadarrama, and Trevor
Darrell. Caffe: Convolutional architecture for fast feature embed-
ding. In Proceedings of the ACM International Conference on
Multimedia, pages 675–678. ACM, 2014.

34. Thorsten Joachims. Training linear svms in linear time. In
ICKDD, 2006.

35. Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Le-
ung, Rahul Sukthankar, and Li Fei-Fei. Large-scale video classi-
fication with convolutional neural networks. In CVPR, 2014.

36. Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe
Hillier, Sudheendra Vijayanarasimhan, Fabio Viola, Tim Green,
Trevor Back, Paul Natsev, et al. The kinetics human action video
dataset. arXiv preprint arXiv:1705.06950, 2017.

37. Teresa Klatzer and Thomas Pock. Continuous hyper-parameter
learning for support vector machines. In Computer Vision Winter
Workshop (CVWW), 2015.

38. Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Ima-
genet classification with deep convolutional neural networks. In
NIPS, pages 1097–1105, 2012.

39. H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre. Hmdb:
a large video database for human motion recognition. In ICCV,
2011.

40. Karl Kunisch and Thomas Pock. A bilevel optimization approach
for parameter learning in variational models. SIAM Journal on
Imaging Sciences, 6(2):938–983, 2013.

41. Tian Lan, Yuke Zhu, Amir Roshan Zamir, and Silvio Savarese.
Action recognition by hierarchical mid-level action elements. In
ICCV, 2015.

42. Zhengzhong Lan, Ming Lin, Xuanchong Li, Alex G. Hauptmann,
and Bhiksha Raj. Beyond gaussian pyramid: Multi-skip feature
stacking for action recognition. In CVPR, 2015.

43. Ivan Laptev, Marcin Marszalek, Cordelia Schmid, and Benjamin
Rozenfeld. Learning realistic human actions from movies. In
CVPR, 2008.

44. Yingwei Li, Weixin Li, Vijay Mahadevan, and Nuno Vasconcelos.
Vlad3: Encoding dynamics of deep features for action recognition.
In CVPR, 2016.

45. Tie-Yan Liu. Learning to rank for information retrieval. Founda-
tions and Trends in Information Retrieval, 3(3):225–331, 2009.

46. Lie Lu, Hong-Jiang Zhang, and Hao Jiang. Content analysis
for audio classification and segmentation. IEEE Transactions on
speech and audio processing, 10(7):504–516, 2002.

47. P. Ochs, R. Ranftl, T. Brox, and T. Pock. Bilevel optimization with
nonsmooth lower level problems. In International Conference on
Scale Space and Variational Methods in Computer Vision (SSVM),
pages 654–665, 2015.

48. X. Peng, C. Zou, Y. Qiao, and Q. Peng. Action recognition with
stacked fisher vectors. In ECCV, 2014.

49. Florent Perronnin, Yan Liu, Jorge Sánchez, and Hervé Poirier.
Large-scale image retrieval with compressed fisher vectors. In
CVPR, 2010.

50. Ronald Poppe. A survey on vision-based human action recogni-
tion. Image and vision computing, 28(6):976–990, 2010.

51. Mikel D Rodriguez, Javed Ahmed, and Mubarak Shah. Action
mach a spatio-temporal maximum average correlation height filter
for action recognition. In CVPR, 2008.

52. Michael S. Ryoo, Brandon Rothrock, and Larry Matthies. Pooled
motion features for first-person videos. In CVPR, June 2015.

53. Kegan G. G. Samuel and Marshall F. Tappen. Learning optimized
MAP estimates in continuously-valued MRF models. In CVPR,
2009.

54. Ozan Sener, Amir R Zamir, Silvio Savarese, and Ashutosh Sax-
ena. Unsupervised semantic parsing of video collections. In ICCV,
pages 4480–4488, 2015.

55. Kazuo Shinozaki, Kazuko Yamaguchi-Shinozaki, and Motoaki
Seki. Regulatory network of gene expression in the drought and
cold stress responses. Current opinion in plant biology, 6(5):410–
417, 2003.

56. Karen Simonyan and Andrew Zisserman. Two-stream convolu-
tional networks for action recognition in videos. In NIPS, pages
568–576, 2014.

57. Karen Simonyan and Andrew Zisserman. Very deep convolu-
tional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 1(1):1, 2014.

58. Cees Snoek, Bernard Ghanem, and Juan Carlos Niebles. The ac-
tivitynet large scale activity recognition challenge, 2016.

59. Yale Song, Louis-Philippe Morency, and Randall Davis. Action
recognition by hierarchical sequence summarization. In CVPR,
2013.

60. Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah.
Ucf101: A dataset of 101 human actions classes from videos in
the wild. arXiv preprint arXiv:1212.0402, 1(1):1, 2012.

61. Nitish Srivastava, Elman Mansimov, and Ruslan Salakhutdinov.
Unsupervised learning of video representations using lstms. arXiv
preprint arXiv:1502.04681, 1(1):1, 2015.

http://arxiv.org/abs/1607.05447
http://arxiv.org/abs/1705.06950
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1212.0402
http://arxiv.org/abs/1502.04681

Discriminatively Learned Hierarchical Rank Pooling Networks 21

62. Lin Sun, Kui Jia, Dit-Yan Yeung, and Bertram E. Shi. Human
action recognition using factorized spatio-temporal convolutional
networks. In The IEEE International Conference on Computer
Vision (ICCV), December 2015.

63. Ilya Sutskever, Oriol Vinyals, and Quoc VV Le. Sequence to se-
quence learning with neural networks. In NIPS, pages 3104–3112,
2014.

64. Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and
Manohar Paluri. Learning spatiotemporal features with 3d convo-
lutional networks. In ICCV, 2015.

65. A. Vedaldi and K. Lenc. Matconvnet – convolutional neural net-
works for matlab. In Proceeding of the ACM Int. Conf. on Multi-
media, 2015.

66. Vivek Veeriah, Naifan Zhuang, and Guo-Jun Qi. Differential re-
current neural networks for action recognition. In The IEEE Inter-
national Conference on Computer Vision (ICCV), December 2015.

67. Heng Wang, Alexander Kläser, Cordelia Schmid, and Cheng-Lin
Liu. Dense trajectories and motion boundary descriptors for action
recognition. IJCV, 103:60–79, 2013.

68. Heng Wang and Cordelia Schmid. Action recognition with im-
proved trajectories. In ICCV, 2013.

69. Limin Wang, Yu Qiao, and Xiaoou Tang. Action recognition with
trajectory-pooled deep-convolutional descriptors. In CVPR, pages
4305–4314, 2015.

70. Jianxin Wu, Yu Zhang, and Weiyao Lin. Towards good practices
for action video encoding. In CVPR, 2014.

71. Joe Yue-Hei Ng, Matthew Hausknecht, Sudheendra Vijaya-
narasimhan, Oriol Vinyals, Rajat Monga, and George Toderici.
Beyond short snippets: Deep networks for video classification. In
CVPR, 2015.

72. Shengxin Zha, Florian Luisier, Walter Andrews, Nitish Srivastava,
and Ruslan Salakhutdinov. Exploiting image-trained CNN archi-
tectures for unconstrained video classification. In BMVC, 2015.

	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Discriminative video representations with rank-pooling networks
	5 Learning the parameters of rank pooling networks
	6 HRP: Hierarchical rank pooling
	7 Experiments
	8 Conclusion

