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Aim The diversification of the Australian avifauna has been greatly influenced by
prominent historical and modern barriers to dispersal. The aims of this study are
characterizdghe patterns oflivergence in population pairs of meliphagoid biedsoss
adjacenttransition zones andcharacterizenow well morphometricdivergence, habitat
association. anthxonomic or species ranking can predict genetic divergence.

L ocation Northern Queensland, Australia

Methods Genetic divergence betwegrarental populations on either side of theee
biogeographical barriers corresponding to three clusters of hybrid zoness
characterizedn 27 speciescomplexesof meliphagoid birdsising onemitochondrial, 23
autosomalyl2 Z chromosorteei collected from a sequence capture systéfithin each
species® we characterizethorphometric divergence using wing, bill and tail
measurements from museum samples. Lastly, we evaluated the predictive pthese of
morphometric measurements on genetic rdjgace

Results, Population pairs on either side aftransition zone depict a wide range of
genomieg=and morphometric divergence. For some systems, species exhibiting
morphometricdivergence show little to no genomic divergence while, converstigy
species, exhibiting little to nanorphometric divergence may show clear genomic
divergence Speciesrank is shown to be the strongest predictor for genetic divergence
habitat is the next strongest predictor amagorphometric divergences the weakest
predctor.

Main Conclusions The variation in divergence levels of population paafirms that
transitionszones are ideal natural experiments to study the speciation process. In
particular,transitionzones allow understaimdy of howgenomic divergencaccumulates
during.speciation. Additionally, standirgpeciesrank classifications mostly prove to be
robust after genetic characterization. Laste discordance between morphometric and
genetic divergence suggesither noamorphometricphenotypictraits used to designate
speciesgranksuch as song or plumag®aay play amore important role in predicting

genetic'divergence.
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I ntroduction

Understandinghe accumulation of genomic divergence throughout the speciation
process is a growing endeavoin evolutionarybiology (Wu, 2001; Nosil & Feder,
2012). Hybrid zones have proven to be a rich field fpeciationquestions as they
providea test for the degree ofproductive isolation in natutgy allowing the study of
patterns-ofintrogression among different genomic regions as influenced by sed@ction
stochasticprocess¢Bayseur, 2010; Abbott al., 2013; Kronforstet al., 2013; Larson
Andrés, Bogdanowicz &Harrison 2013). Additionally, variation in divergence and
degreeeof introgressionamongthe differentDNA classes(autosome, sex chromosome
and mitechondria) has provided insightarthe role of different types of selection in
specific cases o$peciation(Huang & Rabosky, 2015; Lavretsky al., 2015). Hybrid
zonesprovide great utility in studying the landscape of genomic divergence and its
potential implications in phenotypic divergence and, ultimately, speciélbegren et
al., 2012yPoelstrat al., 2014)

If “hybrid zones provide a rich field in understanding the echanisms
underpinning speciation and evolutiotmen ‘suture zonés provide an even stronger
arengfercomparativeesearctio study these mechanisms. “Suture zones” are defined as
geographicclustering of multiple hybrid zones, contact zones and phylogeographic
breaks(Remington, 1968; Swenson & Howard, 2004, 20(&)ture zones are often
formedwhen populati@of multiple unrelated species experience periodsubftlivision
andisolation due ta sharedarrierwhich eventuallybreaks down, resulting imultiple
cases|of secondary contgBtemngton, 1968; Swenson, 2006). Comparative studies of
multiple hybrid zones, ashey relateto speciation, often focuen related taxa with
spatially.separatedhybrid zonegHendry,Bolnick, Berner, & Peichel, 2009; Kronforstt
al., 2013; Supm@, Papa, Hines, McMillan, & Counterma2015) By contrast, sture
zones_provide a unique, natural experiment to study the accumulation of divergence and
onset ofireproductive isolation in a shared environmental s€ttliogitz et al., 2009;
DasmahapatteElias, Hill, Hoffman, & Mallet, 2010; Singhal & Moritz, 2013; Weir
Faccio, PulidoSantacruz, Barrer&uzman & Aleixo, 2015).

Studies characterizing genontivergence between populations @ther side of
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a suture zone have shown that divergence times teradybetween these edistributed
population pairs (Dolman & Joseph, 2012; Singhal & Moritz, 2013; Winger & Bates,
2015) This variationeadsto the hypothesis that although these populations experience
broadlysimilar climatic histories resulting igeographicallyco-distributed breaks, the

timing and,degree of divergence tends to be unique to each population pair. In turn, the
variation in.g@omic divergence between population pairs has also resulted in variation in
outcomesof hybridization and resulting reproductive isolation in secondary contact
(Singhal'&Moritz, 2013)

Phenotypic characterization within suture zohas also shown a wide variety in
divergencesfrom cryptically diverging lineages to morphologically distinct popukti
(Winger‘& Bates, 2015)Additionally, degree of phenotypic divergence doesalways
coincide with genomic divgence.Two opposing examples of thisean Andearsuture
zonein_the Marafon Valley, Perwhere plumage divergencen birds correlatesvith
genomic_divergence (Winger & Bates, 20Mereasin a suture zone in the Wet
TropicsyAustralia skink population pairBave variable levels of genetic divergence with
no morphological divergencéMoritz et al., 2009) Comparative studies of the
relationship between genetic and phenotypic divergence help elucidate how these
measures are either independently or jointly influenced by selection, drift and
evolutionary history.

The Australian avifaungrovides an excellent resource for suture zone studies
Many zones of contact and hybridization @aeen charderized using phenotypic traits
such asmerphology, plumagandsong character&racraft, 1986; Ford, 1987; Schodde
& Mason, 1999) Basedon geographic clustering of 7987 hybrid zonesFord (1987)
identified 11 important biogeographic barriers where tipké hybrid zones seem to
cluster_Though the clustering of hybrid zones suggests putative suture zones, we will
refer to these clusters broadly as “transition zones” since the classification as “suture
zones” hasnot been formalized by Ford or othets. this study we focus on the
environmentally heterogenemuegion of northern Queenslamdthere multiple barriers
andclusters of hybrid zondsave been proposed. Thisgion’s hybridzones are situated
on three adjacent bioge@ghic barriers: the TorresiaBarrier ( Normanby Barrier of
Ford 1986, 1980r “Laura Basin’of Bryant& Krosch, 2016) the BurdekinGap(Keast,
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1961; Galbraith, 1969nd the Einasleigh Uplands (also refen@ds the Burdekihynd
Divide; Fig. 1; Keast 1961; Schodd& Mason 1999. The Torresian Barrier (TB) and
the Burdekin @Gp (BG) are lowland barriersf dry countryhabitatsthat influence species
associated with more mesic rdorest habitats. The TBeparates Cape York Peninsula’s
(CYP) rainforest elements from those of the Wet Tropics redgsme Bryan® Krosch
2016 for discussion). The B&eparateshe rain foress of the We Tropics regiorfrom
those ofthe subtropical raiforests further southBoth barriers have been argued to have
been more‘prominent in driperiods during the Pleistoce(feord, 1987) The Einasleigh
Uplands (EU is an upland barriefocated between TB andBG. Part of the Great
Dividing Range the EU separates the lowlands of Cape York Peninsula and central
coastal"Queenslan@ollectivey, the transition region encompassing thésee barriers
occupiesan intermediate climatic space between the northern and southern, @sges
bioclimatic examinationshows Fig. 1). Ford (1986, 1987) identified 91, 69 and 20
isolates, and discontinuities for bifduna across the TEBG and EU respectively and
noted thatithe TB and@®@are among a handfalf areas in Australiavhere the greatest
numbers of‘contacts coincide.

Qf the bird species influenced by these barriers feoeis on species from the
Australasian endemic superfamilyeliphagoidea (Gardneffrueman, EbertJoseph &
Magrath 2010 = Infraorder Meliphagidessensu Cracraft 2014 Most are wholly or
partially_insectivoroussmall passerine birdgheir ecologysharedclimatic history and
geographicalanges are the main benefits of focusing on a particular clade instead of a
broadersampling of all bird specigsdditionally, they pan variable habitat types from
mangroves andhin foress, to drier eucalypt woodlands (Schodde & Mason, 1999).

In this study we sample multiple contacs three taxonomic levelsyithin
subspecies,, betweesulspeciesand between speciefhereafter “species rank” for
brevity).acroess thisheterogeneous regioithis regionis occupied by30 meliphagoid
taxon_pairs comprisin@5 species whose ranges extend through the barrieréivend
speciespairs whose rangdsut these barrie@able 1) Our main aim is to characterize
divergence amontiie DNA classe relation tospecies rankitself based ophenotypic
divergencesensu Schodde& Mason 1999), morphometridivergence and habitaiVe
hypothesize that levels of divergence would also be variable for tizesstionzones.
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154 We address the following questiofl§ how dogenomic andnorphometricdivergence

155 vary through a transitiomone? and2) how well do morphometricdivergence, habitat

156  andspecies rankingredict genetic divergencéastly, we also discuss the significance

157  of our findings with respect to the systematics of the birds themsainebow levelof

158 divergenee across thegsansitionzones comparewith any similar studies

159 Methods

160 Sampling

161 Taxonomic samplingconsisted of 27 out of the 30 meliphagoid species

162 complexes (total of 3®ut of 35species) thabccurin the transitionzone (Table 1)

163  Cissomelaspectoralis, Melithreptus gularis and Meliphaga lewinii were omitted due to

164 insufficient’geographic samplingror each complex, we sampléde individuals from

165 each of theparental populations and putative hybrid zone for mitochondrial sequencing,
166  two individuals per population for nuclear DNA sequencing and a variable number of
167 individuals formorphometricneasurementare was taken to sample broadly through
168 the areayofiinteresTwelve taxa that were not proposed to have hybrid zones were still
169 sanpledacrosshe area of theansitionzoneso that we could test faryptic divergence.

170 Populations on either side of ttransitionzone aranostly sister taxa; the two exceptions

171 are netedin Table 1 (Christidis & Schodde, 1993; Joseph & Moritz, 3t9yari &

172 Joseph, 2011; AnderseNaikatini & Moyle, 2014).

173

174  Geneticsequencing and analysis

175 We:collected mitochondrial and nuclear sequence data to assess levels of genomic
176  divergence. We sequenced the mitochondrial ND2 gene using Sanger sequencing on an
177 ABI 3100, The primers wused for these species were L5204 (5
178 TAACTAAGCTATCGGGCGCAT 3" and H6312 (5

179 CTTATIIAAGGCTTTGAAGGCC 3') (Sorenson,Ast, Dimcheff, Yuri & Mindell,

180 1999) Weused the proteksoding region of NDs it isproposed to be one tie fastest

181 evolvingrgens in the mitochondrial genome and is commonly used in avian studlies

182 comparative study byPachecaet al. (2011)designates ND2 as the mitochondrial gene
183  with the highest substitution rate and a study veitlen more mitochondrial genes by

184 Lerneret al. (2011) designates ND2 as the gene with the second highest substitution rate.
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Both studies agree on the utility of ND2 for shallow levels of divergdfmethe nuclear
genome, we used an array of lram the autosome® = 23) and the Z chromoson(e

= 12;seeTable S11; see Appendix S1 in Supporting Informafiomhe loci were chosen
based _on their predicted location on tiecken genome andith the aim of sampling
many different chromosomes and broadly samptivgZ chromosomgKimball et al.,
2009; Backstronet al., 2010; WangBraun, & Kimbal|l 2012). We prepared genomic
DNA'libraries forsix individuals per species complevp from each parental population
andtwo from the contact zondpllowing Meyer and Kircher (2011). We capturdte
autosomal loci and Z chromosonei using thetarget enrichment methosequence
capture: using PCGRgenerated probesSCPP Pefialbaet al., 2014) and sequenced the
samples‘on‘aingle lane of the lllumina HiSeq 2500.

For theND2 data, we usedeNEIOUS 7.18to anddoubleeheckthe sequences by
eye using the reverse compliment sequerfeor the nuclear data, we mainly used the
existing, data processing pipeline that accompanied the SCPP method
(http://wwwigithub.com/MVZSEQ/SCBPFrom this pipeline the script for recovering
homologous sequences was rewritten to use a clustering method instead of the previous
method.. describedby Pefialbaet al. (2014). First, we downloaded a single reference
sequence petargetlocus from GenBankThen for each individual weusedBLAST
2.2.29+ todeterminewhich assembleaontigis a best reciprocal matdbr that reference
— these _contigs were given an arbitrary scorehofe We then use®LAST, again to
match all"assemblecbntigsbetween individuals. If a contig (ex. conti§)lfrom sample
A was given a score dhreefrom the first iterationthe catig from sample B that best
matches contigA is given an additionadcore ofone In other wads, acontigthatis one
degree separated from the GenBank reference is weighted even Tigheontig with
the highest score for a corresponding locus is t®sen as a reference for that lokrs
that individual (seeFig. SL.2). The alignment of theequencelata was also assessed by
eye andsspurious flankingr aghe entire locus were excluded from the analyses if the
alignment,shows evidence of paralogsesgiuencedJncorrected raw genetic divergence
estimates were calculated using tlape package in RParadis Claude & Strimmer

2004) Average pairwise distances were calculated between the parental populations
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using the ND2 mitochondrial gene aadseparateoncatenated sequence of autosomal
and Z-linked loci.
Morphometrics

The rawmorphometricdata used for this studgre thoseused by Schoddé&
Mason (1999; obtained from the authomsho consistentlymeasured wng, tail and
exposed_bill lengthsising vernier callipersin most individuals included inhe study
(Appendix~S3) Re-analyses here involvetbg-transforming their measuremenasd
plotting principal components. Onliyndividuals frompopuations north of the Torresian
Barrier and south of the Burdek@®ap and so outside of the putative hybrid zonese
used Thesamples were chosen so tmairphometriadivergence will reflect differences
betweenallopatric populations rather than variation in introgression and moriphblog
clines. We used a multivariate analysis of variandANOVA) to test for sexual
dimorphism_and found that some species exhibsiggdificant sexual dimorphismin
those ‘cases,only measurements from males were used to preventdrseen
morphemetric divergence confounding results The Mahalanobis distances were
calculatedusing the principal component variables of PC1 and PC2 between population
clusters,and served apxiesfor morphometriadivergence.
Satistical Analyses

We carried out separate pairwise comparisons of the genetic divergence of the
different DNA classeswith the morphometricdivergence, habitat andpecies rank
Nonparametric tests were used, as genetic divergsidaet have a normal distribution
(ShapireWilk test- ND2: W = 0.713, P = 5.915@6; autosomal: W = 0.911, P = 0.0247;
Z chromosome: W = 0.914, P = 0.028®)e used Spearman’s correlation test to compare
genetic divergence with phenotypic divergence. For comparisons of genetic divergence
with habitat. andspecies rankwe used a Kruskalallis rank sum test. Wihenused an
analysis of variancANOVA) to comparemorphometricdivergence withspecies rank
and habitat. Finally, to assess the contribution of each of the varightgphometric
divergence, habitat and species fatdk genetic divergence we carried out separate
generalized linear models for eddNA class Werana generalized linear modébiLM)
where we systematically addone explanatory variable at a time to see hosh@nged
the corrected Akaike information criterio®[Cc) value of the modelFor proper model
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246  comparisons of AICc valuespeacies complexes with missing data were remoted
247  ensure comparability of data pointd/e ran a GLM for each explanatory variable
248 separately and used model selection within ‘thieMin’ (Burnham & Anderson 2002)
249 package to compare predictive power of the three variables. All statistical analyses were
250 carried out.in the R 3.2 &atistical progranjR Core Team 2015)

251 Results

252  Geneticdivergence through the transition zones

253 Population pairs on either side of thansition zones show a wide range of
254  genetic divergencgd@able 1 Fig. 2) Among the loci tested, the mitochondrial ND2 gene
255  had theshighestepetic divergence betweg@opulationg0.1% to 7.47%; Table Fig. 3.
256  Unsurprisingly, genetic divergence in the nuclear genwareed lessthan that of the
257  mitochondrial genomand rarely exceeded 1% in average-page divergenceOverall,
258 pairwise divergences weoerrelated fomll pairwise comparisons of DNA clagsee Fig.
259  S1.1). Associations in 1lof 18 species complexeshowed consistency between the
260 locationefthe mitochondrial break and the location of the taxonomic break in Sdodde
261  Mason (1999 see Appendix S2. Genetic breaks in species withoaitcorresponding
262 taxonemic break also correspond to one of the three bafriertMyzomela obscura in
263 the IB)*"Most of the incongruencés due to species havingohenotypic butnot a
264  corresponding genetidreak (i.e. Pardalotus rubricatus, P. striatus, Smicrornis
265  brevirostris andStomiopera flava). These cases aside,cyanotis andP. citreogularis are
266 the only™eemplexes where thghenotypic and genetic breaks do nob-occur in
267  geographie’spac@ppendix S2) Pairwise @netic divergence increaswith increasing
268  species rankdespiterankinghaving beerestablished prior tgenetic classification (Fig.
269  3) especially for mitochondrial DNAn{tDNA) and for Zlinked loci (Kruskal\Wallis
270  rank sumtest- df = 2: mtDNA Chi-squared =12.428, P = 0.002;-Enked Chisquared =
271 9.852, P_=.0.007 Post hoc tests reveathatthe trend in increasing divergencgdriven
272 by the_differemce betweerthe “within-specie’ (both “within subspecié¢sand “betwesn
273  subspeci€y and ‘betweerspecies classification (Figure 3)

274 Species associated with raforest and mangrove show similar variation in
275 genetic divergencéut the woodland species tend to have less variation in divergence
276 levels as well as a lowabsolutedivergence (Fig4). However, differences in divergence
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among habitat classes were significant only for mtDNA (Krls$kallis rank sum test; P
= 0.0451, df = 2, Chsquared = 6.20 and are driven by higher mtDNA divergence
across spees from ram forests and mangrosghanthose from woodland habitatBhere

is no significant difference between rain forest and mangasgeciated populations.

Morphometric divergence through the transition zones

Similar to genetic divergence, the exteftmorphometricdivergence is variable
through théransitionzones. Spearman correlation tests betweerergence fodifferent
DNA iclases and morphometric divergenceswithin males show no significant
correlatiops, ND2: p = 0.404, P = 0.137; autosomgh = -0.125, P = 0.656Z
chromosomep = -3.57e2, P = 0.995; Fig. 5). Change morphometricdivergence
shows a gradual increase with increasspgcies rank(see Fig. S1.3).Associations
betweermmorphometriadivergence and the three taxononeeelsare non-significant but
male morphometricdivergenceis significantly associated with habitaANJOVA, P <
0.05 df=r2r Variation inmorphometriaivergence when compared to habitat preference
is mostly driven by thdower difference betweerbirds of woodlads relative tahat for
rain forest or mangrove bird¢Fig. S1.4. Morphometric divergence has varied
assaciations with genetic divergenspecies rankingnd habitat preference.
Predictors of genetic divergence

Results of the generalized linear model are consistent with the above pairwise
comparisons of the divergende the different DNA classes withmorphometric
divergenecespecies rankand habitat associatioAll three DNA classesvere compared
separately but eaghelds the same trendlhe trendgemainwhen nonsister specieare
excluded from the analyses. Genetic divergerscdest predicted by species rank
followed, by, habitat andnorphometricdivergence(Table 2) Adding habitat as an
additional_explanatory variabl® the modelresultsin a poorer fit than a model with
speciesgsanklone tee Table £2).
Discussion

Using three biogeographical barriers with corresponttengsitionzonesn north-
easternAustralia and 3dird species fronthe Meliphagoidea, w exploredthe relative
roles ofspecies rankingnorphometriadivergence and habitat prefereraspredictors of

This article is protected by copyright. All rights reserved



308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338

genetic divergencacross mtDNA, autosomal andlidked nuclear loci A key finding
wasthat currenspecies rankSchodde & Masgnl999)was the best predictor of genetic
divergenceA second key findingvas the lack of correspondence between molecular and
morphological divergence as well as the wide range of variability in divergenite
parental.populations. We also foutitat the levels of divergence differed among the
three DNA (Classes: autosomal chromosomeand mtDNA as expected based on
differences in effective population sizes. Between the two nuclear DNA class&s, the
chromoesemeloci were the most divergentThis lends support tothe role of sex
chromosomes ithe study ofspeciation and the utility of using different marker sources
for recenstructing evolutionary historibadre et al., 2003; Claramunt, 2010; Dhami
JosephyRoshieg& Peters 2015; Lavretskyt al., 2015).

Habitat association was a weaker predictor of genetic divergentdge context
of transitionzones, which may have formed due to changes in connectivity of habitat and
persistence of lineages in refugiangeriermresidents of particular habitats would have
likely experienced shared population historiese greatemitochondrialdivergence of
taxa in“rainforest and mangrove habitats likely reflects the more effective isolation of
taxa by.unsuitable héht relative to the woodland speci&nce the association between
neutral-geneticivergence and habitat anly significant in the mitochondrial DNA, the
DNA class with the lowest effective population size, the correlation woully lides due
to populdion demography and genetic drift. The effects of selection at these early stages
of speeiation would likely be localized to certain nuclear genes that underlie the
phenotypesunder divergent selectiavhich may not yet influence neutral divergence
throughout the nuclear genome (Via, 2012; Poeéstah, 2014).

Next,. morphometricdivergence was the poorest predictudr neutral genetic
divergence., Althoughan unexpected resultthere are manyreasonsas to why
morphometricand genetic divergence may be weakly correlatéidstly, phenotypic
divergence can manifest in differemtorphometric and nemorphometrictraits in
varying'degrees.Overall phenotypic divergenceas used for species rankas vared
contributions from morphology, song, plumage, physiology atheér traitsdepending on
the speciedt thenfollows thatmorphometriadistance alonshould be expected twe a
poor predictor ospeciesrank. Other traits, such as plumage, may be more likely to be
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influenced by diversifying selection and therefore may be better at predictingcgene
divergence (Greene et al., 2000; cf. Lank, 2002) Secondly, hybridization and
introgression camlso decoupléhe two divergence measures. If the phenotypic trait of
interest is under selection wne but notthe other population, the rate at which that
particular.,phenotypic character and neutral genowaciants introgress into the
population will vary (BaldassarreWhite, Karubian & Websteet al., 2014) Lastly,
genomic and phenotypic characters are under the influence of different selective a
stochastic“forceand so will evolve at different rate#t is increasingly evident that
genomic divergence underlying certamajor phenotypic divergence, particularly in
plumage,imay be localized certain parts of the genome whisher genomic regions
move more freely between populatio(RBoelstraet al., 2014; Kipperet al., 2015;
Lamichhaneyet al., 2015) In contrast, longerm isolation between populations can lead
to elevated neutral genomic divergence from driftthetiack of diversifying selectionn
phenotypes in such populations migisultin cryptic lineages

Thexdiscordance we have obserdween genomic and phenotypic divergence
is useful for exploring their individual contributionso promoting speciationThis
discordance is also consistent with other studiesaphometriaivergence irtransition
zoneswhereplumage may have stronger concordance with genetic diverg@rfinger
& Bates, 2015). Although we did not quantify plumage divergence in these systems we
acknowledge that they may play an important roleslmapinggenomic divergence,
especiallysin the context of sexual selection. Certain subspecies breaks that have been
definedsby plumagelifferentiation often do nohave correspondingenetic breaks. In
particular, Pardalotus striatus, P. rubricatus, Malurus melanocephalus (see also Lee &
Edwards, 2008)and Smicrornis brevirostris have been described as having plumage
breaks.in these regioriSchodde & Masan1999)but have not shown genetic breaks in
our data. Alternatively, plumageasedtaxonomic breaks in Gerygone palpebrosa,
Entomyzen™cyanotis and Melithreptus albogularis have corresponding genetic breaks
according,to our data. Systematic quantification of plumage divergence between the
populations through thes¢ransition zones would & valuable in describing its

contributionto genomic divergence and speciation.
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Cryptic lineages

Cryptic lineages are defined as genetically distinct lineages that show little or no
obvious phenotypic divergend@ickford et al., 2007) For example,M. obscura in
eastern Australia is recognized as a single subspddies, harterti, yet it shows
relatively.deep divergence and reciprocal monophylymtDNA at the Torresian Barrier
(Fig. 2).. This species would benefit from a broader biogeographic study, including all of
its populations in Austtea and New Guinea, so that the diversity have observed can
be placedin'a more complete phylogeographic conteX. Bdbogularis, our data affirm
Toon Hughes, & Josepd (2010) earlier finding thatmitochondrial and nuclear genetic
divergences are far deeper than expected in our study region. Clearly, thdifyossibi
cryptic'speciation in this case needs to be examined more closely.

Other, notablesulstructuring is presentvithin the CYP populatios in all
“betweenspecies comparisongFig. 2). These breaks are not geographicalbyngruent
with one another. Theulstructuring in the mitochondrial haplotypes may be an outcome
of immigrantsfrom populationsbeyond the present study zofsee RoshigerHeinsohn,
Adcock; Beerli & Josep2012). Alternatively, localized population structuring may have
formedwwithin the Cape York Peninsulzetween differenthabitat patches Closer
examinationsof these cases are also warranted in light of the multitude of cryptic
lineages revealed in recent wdickford et al., 2007; VodaDapporto, Dinca & Vila
2015; PotterBragg, Peter, Bi & Moritz2016) Most importantly, hese lineages provide
the context, for studying other factors that may influence genetic divergenagotbut
phenotypie‘divergenda the characters measured here
Barrier comparisons

The proximity of the three geographic barrietsdiedhere isnot only unusual in
the literature of speciation asdturezone studies but it also begs the question of whether
the different barriers differentially affect patterns of genomic and phenotygogeince
We reiteratethat the TB and BGare patchef drier lowland habitataffecting the rain
forestswhereas the Elis an uplandoarrieraffecting the woodland habitakhe different
barrier typs and geographiproximity mayresult invariableinfluences on molecular
and phenotypic divergendsetween the three different barrietee populationdeing
influenced by more than one barrier, or a combination of (@ryant & Krosch, 2016)
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The following cases shothe idiosyncratic nature of each barrier’'s effe¢tse Torresian
Barrier has influenced divergence in the r&amest speciesMeliphaga notata and
Microptilotis gracilis but notMalurus amabilis. The Einasleigh Uplands/Burdekitynd
Divide _demarcatedlivergent phenotypic forms dPardalotus rubricatus, Smicrornis
brevirostris, Gerygone olivacea andMelithreptus albogularis but only the latter two have
correspending _genetic divergenckastly, the Burdekin Gap influences populations in
Mal arus“melanocephalus, Entomyzon cyanotis and Sericornis magnirostra but not in
Somioperaflava, Myzomela obscura or Ramsayornis fasciatus.

Differencesin the degree of similarity of the habitats on either side of each of the
barriers: couldalso play a role in facilitating genetic anshorphometricdivergence.
Although genetic divergence is not significantly correlated wittorphometric
divergence,)mitochondrial anchorphometricdivergencesare significantly correlated
with habitat. Differentiation of the habitat on either side of the barriers wuaNeé a
direct “ecological selective pressure onorphometric divergence while genetic
divergenceswould be influenced by both selection and gene Bdferent types of rain
forest elements are discontinuous along the TB and B®. northern rairforests ae
mostlys=ecomposed of lowland to malevation rairforest elements while the southern rain
forests=are a broad mix of subtropical montane faiast element§Webh Tracey &
Williams, 1984). The mangrove elements on either side of theaim@not very
differentiated and are often lumped together though they caresidered fairly
differentiatedsouth of the BGSaengeet al., 1977). On the other hand, woodland habitat
in CYPwareais the most compositionally divergentbeing classified ag monsoonal
group,/while the other two areaare classified into areastern/south coadtgroup
(Cracraft, 1991; CrispLinder & Weston 1995) It is important to note thalifferences
habitat structurerather than differences in plant community composition, may play a key
role in driving divergence in phenotype and genot{Reten Rottenberry & Zuk, 2004,
Seddon;#2005)How habitat structure varies on eittgde of transition zones and it
influence'in divergence would be an important avenue for future studies.

Population pairs across other transition zones often have different levels of
genetic divergencéMoritz et al., 2009; Dasmahapate al., 2010; Singhal & Moritz,
2013; Weiret al., 2015; Bryant & Krosch, 2016; EdwardBotter, Schmitt, Bragg, &
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Moritz, 2016) Edwardset al. (2016) and Singhal & Moritz (2013), in particular,
emphasize idiosyncrasiessequence divergence levels in nearby suture zones situated in
the Carpentarian Barrier and the Wet Tropics respectively. Despite limiting the study to
closely related bird species, this study shows that the northern Queenslaitidriraose
reflect the,same idiosyncratic nature akeotsuture zone studies comparing different
levels ‘of taxonomic distinctness, from within genera or between orders. THhingesu
variation™in" genomic and phenotypic divergence, despite sharing biogeographical
barriers,“likely result from a combination ¢iheagespecific selection, variation in
effective population sizes, gene flow, dispersal capabilities and timing odél init
population=split (Coyne & Orr, 2004; Seehauydsgutlin, & Keller, 2014) The “messy”
nature ‘ofsuture zones lends itself to studying the influence of these different drivers of
genomic and phenotypic divergence while controlling for biogeographical context.
Differential responses ta shareclimatic history likely coupled withpopulation
or lineagespecific habitat and life history traits result in varying levefsgenomic and
phenotypiedivergence. This in turn couldffact the propensityfor hybridization or
introgresgn'when the populatiopairs are in secondary contathis augurs well foithe
use ofstransition and sutureonesin studies of speciatiorAdditionally, suture zones
wouldalso greatly contributéo empirical studiesof “speciationwith-geneflow.”
Recent genomic studies of hybrid zones have begaidly accelerating our understanding
of the speciation proceqg eeteret al., 2008; Ellegreret al., 2012; Poelstrat al., 2014)
The next'step is to explore parallel hybrid zone dynamics in a shared geographic region
in ordersto’”start teasingpart generalgenomic patterns of divergence as opposed to
lineage specifigpatterns Studies exploringhe genomic landscape dafivergence and
introgression using a comparative approach through a suture zone will be an invaluable
contribution for further advancingour understanding of speciation and evolutionary

theory.
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Tablesand Figures

Table 1 Meliphagoidea complexes in northern Queenstartitheir associated habitat,
geographie-barrier and raw genetic divergence measiliepredominant barriers listed
here are derived from Schodde and Mason (1999). The delimitat®haicarrii as a

full species diverged fror8. magnirostris has fluctuated since Schodde and Mason
(1999). For the purpose of this paper, they will be treated as separate gpeGstilis
Schodde & Baverstogk 988; Joseph & Moritz, 1993)- species pair are not sister
speciegNyari & Joseph, 2011).
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% Genetic divergence

Species rank Eastern Queendand Cape York Habitat Barrier
mtDNA Autosome  Z chromosome
Within“stubspecies
Lovely Fairywren Malurus amabilis Rain forest None 0.421 0.208 0.236
Largedilled Gerygone Gerygone magnirostris cairnsensis Mangrove None 0.173 0.482 0.216
HelmetedsFriarbird Philemon bucer oides yorki Woodland None 0.316 0.274 0.171
Noisy Friarbird Philemon corniculatus corniculatus Woodland None 0.348 0.467 0.553
White-gaped Honeyeater Somiopera unicolor Woodland None 0.220 0.281 0.000
Brown.Honeyeater Lichmera indistincta ocularis Woodland None 0.285 0.456 0.146
Bar-breasted.Honeyeater Ramsayor nis fasciatus Woodland None 0.272 0.345 0.259
Brown-backed Honeyeater Ramsayor nis modestus Woodland None 0.658 0.366 0.490
Dusky Honeyeater Myzomela obscura harterti Rain forest None 2.404 0.372 0.763
Betweensstibspecies
) Malurus melanocephal us
Redbacked Fairywren M. m. cruentatus Woodland EBD 1.055 1.103 1.225
melanocephalus
Redbrowed Pardalote Pardalotus rubricatus rubricatus P. r. yorki Woodland EBD 0.181 0.432 0.219
Striated-Pardalote Pardalotus striatus melanocephalus P. s. melvillensis Woodland EBD 0.336 0.258 0.370
Weebill Smicrornis brevirostris brevirostris S b. flavescens Woodland EBD 0.295 0.705 0.533
White-throated Gerygone Gerygone olivacea olivacea G. 0. cinerascens Woodland EBD 0.544 0.632 0.071
Fairy Gerygone Gerygone pal pebrosa flavida G. p. personata Rain forest EBD 0.757 0.514 0.101
Mangrove.Gerygone Gerygone levigaster cantator G. . levigaster Mangrove ALL 0.914 0.884 0.802
Bluefaced Honeyeater Entomyzon cyanotis cyanotis E. c. griseigularus Woodland EBD 0.496 0.262 0.120
Little Friarbird Philemon citreogularis sordidus P. c. citreogularis Woodland BG 0.502 0.536 0.659
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Yellow-spotted Honeyeater Meliphaga notata mixta M. n notata Rain forest B 0.516 0.176 0.195

Graceful Heneyeater Microptilotis gracilisimitatrix M. g gracilis Rain forest B 1.880 1.156 0.900
YellowsHeneyeater Somiopera flava addenda S f. flava Woodland EBD 0.197 0.184 0.000
White-throated Honeyeater ~ Melithreptus albogularis inopinatus M. a. albogularis Woodland EBD 3.139 0.534 0.237

Between species

Largehilled,/ Tropical S beccarii

Sericornis magnirostra ) o Rain forest TB + BG 3.675 1.041 1.000
Scrubwren dubius/minimus
Macleay’s /Tawny-breasted . ) . .
Xanthotis macleayanus X. flaviventer filiger Rain forest B 4.342 0.223 1.447
Honeyeater
) o ) ) G. versicolor
Mangrove/'Varied Honeyeater Gavicalis fasciogularis* ) Mangrove BG 3.562 0.810 1.065
versicolor*
Fuscousr/=Yellowinted ] P. flavescens
Ptilotula fusca Woodland EBD 2.811 0.741 0.957
Honeyeater flavescens
) M. erythrocephala
Scarlet /|Re¢headed Honeyeater Myzomela sanguinolenta* Mangrove B 7.472 0.590 0.847
erythrocephal a*

693

694  Table 2./Thejresults diie generatied linear model& estimate the explanatory power of species rank, habitat and morphometrics in
695 predictingthe divergence measure of each chromosomal type (mtDNA, autosome and Z chromosome). These models comprise all
696 Queensland meliphagoid species in this stidy- degrees of freedom, AlGecorrected Akaike information criterion~ difference

697  betweensthespredictor's AICc value and lowest AICc value.

Lo
DNA class Predictor Intercept df o J AlCc A Weight
likelihood
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Species rank 21.86 4 49.226 -86.5 0.00 0.860
Mitochondria Habitat 13.38 4 47.392 -82.8 3.67 0.137
Morphometrics 238.30 3 41.772 -75.1 11.31 0.003
Species rank 154.10 4 69.722 -127.4 0.00 0.778
Autosome Habitat 169.40 4 68.379 -124.8 2.69 0.203
Morphometrics -50.62 3 64.180 -120.0 7.48 0.018
Species rank 94.16 4 67.077 -122.2 0.00 0.673
Z chromosome _
Habitat 118.00 4 66.293 -120.6 1.57 0.307
Morphometrics 148.20 3 61.779 -115.2 7.00 0.020
698
699 Figures

700  Figure 1liLeftyThe location of all three barriers within Queensland, Australia. The dark regparisithe mountainous Einasleigh
701  Uplands/Burdekirizynd Divide.Right: Principal components analysis usingl&@IBIOCLIM (http://www.worldclim.org/bioclim)

702  variables Assexpected PCLlis loaded mainly withemperature and precipitation.
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713

Figure 2. Networks of relationships among ND2 haplotypes for all study species, spanpamgrdaal populations and thoserh
each putative hybrid zone. The systems are divided based gpeities rankingHash marks represent single mutations between
samplestand the size of the circle reflects number of samples that share that hdjimtypgons from del Hoyo, Elliott, Sargatal,
Christie, & de Juana (2014).

Figure 3:\Genetic divergence of the three chromosomal types (mitochondrial, aaltasdfhchromosompgwere plotted against the
species rankingd_eft: Mitochondrial ND2 sequence divergencBgght: Nuclear sequence divergences divided between autosodal an

Z-linked loci.;The samples used were outsile putative hybrid zones to avoid lower divergence levels resulting from gene fl

Figure 4,.Genetic divergence plotted against habitat preference. The onlyeargragsociation found is between rain forest and

woodland as\well as between mangrove and woodland.

Figure 5. Genetic divergence was plotted against Mahalanobis distances (pmoygbometric divergence). No significant

associations were found for this comparison.
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