A New Metric for Measuring the Security of an
Environment: The Secrecy Pressure

Lorenzo Mucchi, Senior Member, IEEE, Luca Ronga, Senior Member, IEEE, Xiangyun Zhou, Member, IEEE,
Kaibin Huang, Senior Member, IEEE, Yifan Chen, Senior Member, IEEE and Rui Wang

Abstract—Information-theoretical approaches can ensure se-
curity regardless of the computational power of the attackers.
Requirements for the application of this theory are: 1) assuring
an advantage over the eavesdroppers quality of reception and
2) knowing where the eavesdropper is. The traditional metrics
are the secrecy capacity or outage, which are both related to
the quality of the legitimate link against the eavesdropper link.
Qur goal is to define a new metric which is characteristic of the
security of the surface/environment where the legitimate link is
immersed, regardless of the position of the eavesdropping node.

The contribution of this paper is twofold: a) a general
framework for the derivation of the secrecy capacity of a surface,
which takes into account all the parameters that influence the
secrecy capacity, and b) the definition of a new metric to measure
the secrecy of a surface: the secrecy pressure. The metric can be
also visualized as a secrecy map, analogously to weather forecast.
Different application scenarios are shown: from “forbidden zone”
to Gaussian mobility model for the eavesdropper. Moreover, the
secrecy outage probability of a surface is derived. This additional
metric can measure which is the secrecy rate supportable by the
specific environment.

Index Terms—Physical-layer security, secrecy pressure, secrecy
capacity, secrecy outage, security of wireless communications.

I. INTRODUCTION

In wireless networks, transmission between legitimate nodes
can easily be intercepted by an eavesdropper due to the
broadcast nature of the wireless medium. This makes wireless
transmissions highly vulnerable to eavesdropping attacks. Ex-
isting communications systems typically adopt cryptographic
techniques in order to achieve confidential transmission, to
prevent an eavesdropper from interpreting data transmission
between legitimate users.

It is known that encrypted transmission is not perfectly
secure, since the cipher text can still be decrypted by an eaves-
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dropper through a brute-force attack, an exhaustive search of
the encryption key into the cipher text.

To this end, physical-layer security is an emerging alter-
native paradigm to protect wireless communications against
eavesdropping attacks, including brute-force attacks. In fact,
the security of cryptographic techniques is implicitly set into
the practical assumption that the attacker does not have enough
computational power to hack the cipher text in a reasonable
amount of time. Thus, security of encryption algorithm cannot
be measured exactly. On the contrary, information-theoretical
physical-layer security does not need to make any assumption
of the computational power of the attacker, and, in addition,
the security of a communication link can be exactly measured.

Physical-layer security work was pioneered by Shannon
and evolved by Wyner in [1]], where a discrete memoryless
wiretap channel was examined for secure communications
in the presence of an eavesdropper. Perfectly secure data
transmission can be achieved if the channel capacity of the
legitimate link is higher than the eavesdropper link (from
source to eavesdropper). In [2], Wyners results were extended
to Gaussian wiretap channel: a new metric, the secrecy ca-
pacity, was proposed. The secrecy capacity was derived as
the difference between the channel capacity of the legitimate
link and of the eavesdropper link. If the secrecy capacity
is above zero, the legitimate source can adapt the data rate
in order to let the destination decode the information, while
the data overheard by the eavesdropper is too few and noisy
to be decoded. If the secrecy capacity falls below zero, the
transmission from source to destination becomes completely
insecure, and the eavesdropper can succeed in interpreting the
data. In order to improve the security against eavesdropping
attacks, one solution is to reduce the probability of occurrence
of an intercept event through enlarging the secrecy capacity.

As a consequence, there are extensive works aimed at
increasing the secrecy capacity of wireless communications
by exploiting multiple antennas [3|] and/or cooperative relays
[4].

A. Related works

There are some examples in literature of papers attempting
to create a physical region to face the randomness of the
eavesdropper location and/or the amplitude fluctuation due to
fading. All these attempts are basically based on the use of
multiple antennas and beamforming [5] [10] [11]] [12]]. These
works aim at building a region as small as possible where the
message can be considered secure. The region is built by using



beamforming and/or antenna coding between the legitimate
transmitter and receiver, or with the help of friendly surround-
ing nodes (artificial noise injection, jamming). Actually, the
definition of the physical region can differ from paper to paper,
but mainly beamforming or jamming are used in the works
based on information-theoretical parameters, in the form of
antenna arrays [10] or distributed antennas [5].

In [6] secrecy rate maximization and power consumption
minimization for a multiple-inputmultiple-output (MIMO) se-
crecy channel is investigated. A multiantenna cooperative
jammer is employed to improve secret communication in the
presence of a multiantenna eavesdropper. In [[7]], [8] a phase-
shifting array is used to produce security in a given direction
(directional modulation). The resulting signal is direction-
dependent and thus the signal can be purposely distorted in
other directions but the desired one. This approach can be
used to enhance the security of multiuser multi-input multiple
output (MIMO) communication systems when a multiantenna
eavesdropper is present [9].

The metric used to measure the security of the legitimate
link is always the received signal to noise plus interference
ratio (SINR) or the secrecy outage. The metric, such as the se-
crecy outage, is well known in literature and it is related to the
quality of the legitimate link, given the position of transmitter
and receiver, the transmit parameters (power, coding, beam-
forming, etc.), as well as the location of eavesdropping nodes
and interference sources. Other papers based on information-
theoretical security typically use the metrics such as secrecy
capacity or secrecy outage to measure the security level of
the legitimate link by supposing to know the positions and the
channel state information of the eavesdroppers and interferers.
In order to drop out the dependance on the positions of the
eavesdropping or interference node a more general secrecy
metric which is basically a characteristic of the network
topology can be reached by averaging out the secrecy capacity
over all the possible positions of eavesdroppers or interferers
[13] [14]. Anyway, all the above mentioned papers deal with
metrics which express a characteristic of the link, not of the
surface where the link is immersed.

B. Our contribution

The secrecy capacity is a good metric to evaluate how
much is secure a single communication link. But in many
practical scenarios a metric which is related to the specific
environment can be more effective. For this reason we propose
and test here a new metric which bonds the secrecy to the
surface of the environment. We named this metric secrecy
pressure, taking an analogy from the weather forecasting. The
secrecy pressure is defined as the secrecy capacity insisting
over the infinitesimal element of the surface. This metric can
be used for several practical scopes: from deriving the secrecy
of a specific surface/environment, to calculate which is the
optimum transmitting antenna orientation or friendly jammer
position.

The eavesdroppers and interferers are supposed to be spatially distributed
around the legitimate link with a point poisson process (PPP) distribution.

Differently from traditional metrics such as the conventional
secrecy capacity, our metric does not imply to know where Eve
is. To be more clear, in our approach the secrecy capacity is
calculated for each point (z,y) of a surface S. To do this we
suppose that Eve is located in (z,y). Then, we integrate over
x and y along the surface S, thus eliminating the dependence
on the position of the eavesdropper. The integration operation
is, de facto, as taking the average over the space (instead of
time). The resulting metric is the secrecy capacity than the
entire surface S has got. We call this metric secrecy pressure
since it tells how much security insists over a surface S. In
other words, we calculate how much secure is an environment,
given the position of Alice, Bob and (if present) interferers.
It is more practical because 1) we do not have to make any
assumptions on the position of the eavesdropper; 2) the new
metric is a property of the environment, and not of the point
where Eve is located; 3) we calculate a number which gives
an insight on how much secure is the environment were going
to transmit. The closest concept to this new metric is the
network secrecy developed by M. Win et al. [13]]. The network
secrecy is a metric which evaluates the secrecy of an entire
network of nodes (not an environment). Legitimate nodes
and eavesdropping nodes are randomly distributed as Poisson
point processes (PPP). The secrecy capacity is calculated for
each legitimate link, given the position of the eavesdroppers.
The dependence on the eavesdroppers positions is dropped by
averaging out respect to all possible realization of the PPP
distribution of the eavesdropper nodes.

The paper also includes a general framework which eval-
uates the secrecy capacity over a surface. The framework
describes all the parameters affecting the secrecy capacity:
spatial distribution of the nodes (legitimate and interfering)
on a surface, antennas’ orientations and patterns, path loss and
fast fading statistics of the communication links, transmitting
powers. No hypothesis is made over the position of the
eavesdroppers, the metric is calculated over the entire surface,
as the eavesdropper could be in each point of the surface.
Static as well as statistical mobility model are supposed for the
eavesdropper. The results show how the metric can be useful
in giving an immediate insight on the leakage zones in the
surface, and how to adjust the parameters in order to maximize
the secrecy. The optimization problem is here formulated for
the transmitting antenna orientation and for the position of a
friendly jammer.

It is important to highlight that the secrecy pressure does
not need to know the position of the eavesdropper (Eve)
on the surface of interest. Typically the papers in literature
assume to know the position of Eve, which is usually an
unpractical assumption. The secrecy pressure or the secrecy
map parameters are calculated by assuming that Eve can
stay in each point of the surface. If no information about
eavesdropper is known, it could be located in any point of
the surface with equal probability. We did not introduce a
PPP distribution of eavesdropping nodes, although this is a
common approach, since we suppose that Eve can stay in each
point of the surface. Typically, the PPP distribution is used
to calculate how many eavesdroppers are within the range of
the legitimate transmitter, and than average out the secrecy



capacity. Our approach is different, we are interested in a
new metric which is a characteristic of the surface. Anyway,
a PPP distribution for the presence of Eve over the surface
can be easily assumed in our case too. The secrecy pressure
contains all the parameters that can cause a variation of the
secrecy capacity, and thus it can be optimized respect to many
(known) parameters (transmit antenna orientation, interference
node positions or powers, etc.), separately or jointly.

Another known metric in information-theoretical physical-
layer security is the secrecy outage, i.e., the probability that
the secrecy capacity is below a target rate. We have derived
here the secrecy outage probability of a surface (SOPS). In
this case we have supposed that the presence of Eve on the
surface is not perfectly known, but it has an uncertain which
we have modelled as a Gaussian distribution.

The instant fading coefficient of Eve’s channel should be
anyway known or estimated in order to derive the secrecy
pressure instant by instant. This estimation can be relaxed
if the evaluation of the secrecy pressure is done in ergodic
channel. The ergodic secrecy pressure can be a useful tool in
many practical applications.

Practical applications of the propose metric could be tactical
communications: a scenario in which the transmission cannot
surely be overheard in a particular zone of the surface. Another
scenario could be when the information cannot be leaked along
a specific path or street, where the eavesdropper is supposed
to move.

The remainder of this article is organized as follows. Sec.
describes the system model; the framework for the evaluation
of the secrecy capacity over a surface is introduced, including
all the parameters on which it depends, antenna orientation and
pattern, nodes position and power, etc. In Sec. the new
metric called secrecy pressure is defined. Sec. [[V] proposes
the optimization problems, analytical solutions and graphs. In
Sec. [V] some practical application scenarios are considered;
antenna orientation as well as friendly jammer problems are
solved in specific scenarios: from forbidden zone to mobility
of the eavesdropper. In Sec. [VI| the closed-form of the secrecy
outage probability of a surface is derived and discussed.
Sec. concludes the paper.

II. SYSTEM MODEL

Consider a 2D surface S described by Cartesian coordinates
(z,y). Into this space there are the legitimate transmitter
(node ) and receiver (node j), as well as a given number
of interferers I, with k& = 1,---,N; (Fig. [I). For better
comprehension, let’s assume that the space is a geographical
urban area, the transmitter is a base station, the receiver is a
mobile terminal and the interferers are other base stations or
access points. We do not assume any specific position for the
eavesdropper in the space. In fact, we want to derive how the
secrecy is mapped all over the given environment.

A. The scenario

We assume to have a surface S where Alice and Bob are
located and their position is known (Fig. [3). In the environment
S there are also interfering nodes, whose positions are also
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Fig. 1. General scenario. Two legitimate nodes (¢ and j) want to exchange a
confidential message. They are immersed in an environment S together with
interfering nodes Ij. The eavesdropper node can be located anywhere over
the surface.

known. Interfering nodes could be intentional jamming sources
or simply other systems (base stations) radiating in the same
frequency band of the legitimate transmission. To simulate
this scenario, the position of Alice and Bob was chosen
deterministically, while the position of the interfering nodes
were randomly selected, by using a Point Poisson Process
(PPP) distribution. The use of a PPP distribution for interfering
nodes dispersion around a receiver is common in the literature,
when dealing with security of wireless communications. Alice
wants to transmit a confidential message M to Bob. The
legitimate receiver (Bob) tries to recover the message from the
observation vector Zg. The eavesdropper (Eve) can be located
anywhere in the surface S, and tries to recover the message M
by analyzing the observation vector Zg. The wireless channels
from Alice to Bob and to Eve are supposed to be statistically
independent.

B. Channel model

Let us suppose to have two nodes on the surface S, a
transmitting node ¢ with position (x;,y;) and a receiving node
j with position (z;,y;). The channel between node ¢ and node
7 is modeled as

H;j = hij(r,¢)-d;} (1)

where d; ; is the Euclidian distance between the nodes, b is the
path loss exponent and h; ;(7, 1) models the multipath fading
effect, including angular dispersion

hi j(7,%) = Zh

The parameter 7; is the delay of arrival of the [-th path, while
1 is the angle of arrival of the [-th path, i.e., 7 and ¥ are
modeling the time and angular dispersion of the multiple
echoes arriving at the receiver, respectively. The variable
h(l) = a(l)e ¥ denotes the channel coefficient, where a(lj)
is modelled as a stochastic variable with Rayleigh distribution
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Fig. 2. Antenna pattern of the legitimate transmitter (Alice).

with o, representmg the standard deviation of the Rayleigh
distribution, and ﬁ is modeled as a stochastic random
variable with umform distribution in (0, 27). Each link that
connect two nodes on the surface is supposed to have a fading
coefficient which is independent to all others.

C. Received power

Let us suppose that the node ¢ is transmitting with power
P;. The power received by the node j is

(05, 05.) 3)

where G;(0;, ¢; ;) is the antenna pattern gain of the trans-
mitter, ¢; ; is the angle between the x-axis and the segment
connecting node ¢ and j, and 6; is the angle between the z-
axis and the direction of maximum radiation (main lobe) of
i-node’s antenna. Fig. [2] shows the angles mentioned above,
when node i is the legitimate transmitter, called Alice, and
node j is the legitimate receiver, called Bob.

Defining P, ; = PiGy(6;, i j)G;(0;,b;:) we can rewrite
as

P; = Pi|Hi7j|2Gi(6i7¢i,j)G

P; = P, ;|H; ;] 4)

Given the position of node ¢ and j on the surface S, the
angles ¢, ; and ¢; ; are fixed. Then, ]5” = ]51'79- (0:,0;). If, in
addition, the receiving node j has isotropic antenna ¢; = Const
Vj, then Pi,j = ]5,](91)

According to [[19] and [20], the time dispersion of the
multipath at the receiver has an exponential distribution

1

L -m)/on
or

fT(T) =

while the angle dispersion of the multipath at the receiver has
a Laplacian distribution
Fo() = 1 e~ V2(¥—10)/oy

2
P

In order to average out the time and angular dispersion,
the power P; has to be integrated over all possible times and
angles of arrival

P, =P, //m,yrw\ﬁ( Vo()drdy  (5)

D. Aggregate interference

Let us suppose that the /N interfering nodes are distributed
on the surface S following a point Poisson process (PPP)
distribution with density A. The sum of the interference power
at the node j is

j = ZPka 9k7¢k ]) ( j»¢] k)dlz,?b|hk7j|2

= PujlHi > (6)
k

where Py is the power emitted by the k-th interfering node,
dy,; is the Euclidian distance between the k-th interfering node
and node j and hy, ; is the channel coefficient associated to the
link (I). If the posmon of the Ny 1nterfer1ng nodes (zg, yx)
with £ = 1,--- , Ny is fixed, then Py ; = Pk](ek,Q) If,
in addition, the receiving node j has isotropic antenna 6;
Const Vj, then Py ; = Py ;(0%). In this case, the aggregate
interference I; is a random variable with Stable distribution
(16} [17]

I ~ S(a,1,7;) (7)

where « = 1/b and

v = 7T>\E;1E { (Z Pk’j|hk7j|2> }
k

1—a .
oo costra7ny I 1
o = {2(2—0/) cos(ma/2) «Q 7& ®

with

= ifa=1

K
where T'() denotes the Gamma distribution function and E{}
the expectation operator.

The PDF of I; is

1 .
(D =57 [erelds
T
1 [ o e
—- —wW Y5 S __ [ VI
_7T/o e cos{tan<2>w V; w[}dw 9)
where

e1(w) = exp {~[w|* [1 = jSen(w) tan ()] 2}

is the characteristic function of the random variable I.

It is important to highlight that depending on the position
of the receiver j on the surface S, not all the N; interferers
could affect the receiver. The distance (path loss) d,;?b could
be close to zero, thus the node £ does not contribute to the
aggregate interference at the receiver j.

III. SECRECY PRESSURE AND SECRECY FORCE

We want to define a new metric that allows to measure
the intensity of secrecy over a given surface. Taking analogy
from the atmospheric weather science, we define the concept
of Secrecy Pressure.

Let us now associate the previous defined transmitting node
1 as Alice and the receiving node j as Bob. Alice is then
located at point (x4,y4) and Bob at (xp,yp) on the surface
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Fig. 3. Scheme of the transmission of the confidential message M from Alice
to Bob.

S. The position of the eavesdropper Eve is not known, thus
we suppose that its coordinates are generically (z,y).

Suppose that Alice wants to transmit a confidential message
M to Bob. Bob tries to recover the information M from the
vector Zp received (Fig. ). Given the model in Sec. [[I} the
mutual information exchanged in the legitimate link (from
Alice to Bob) is

Ip =1(M; Zp) = H(M) — H(M|Zp) (10)

where H() denotes the entropy.

Analogously, the eavesdropper (Eve) tries to recover the
message M from the received vector Zg. Thus, the informa-
tion stolen by Eve is

Ip = I(M; Zg) = H(M) — H(M|Zp) (1)

The term I(M;Zg) is called Leakage, and it denotes the
amount of information on the message M that Eve is able
to recover from the received vector Z.

As known, these two mutual information can be used to
calculate the secrecy capacity [15]

Csee =max{lp —Ig} > maxlp —maxly = Cp — Cg
Py Pn Py
(12)
where C'p and Cg are the capacities of Bob’s and Eve’s
channel, respectively, and pj; is the marginal distribution of
the codeword M. The secrecy capacity is at least as large as
the difference between the legitimate channel capacity and the
eavesdroppers channel capacity. The inequality can be strict
as in the case of complex Gaussian wiretap channels [15]],
as well as typical wireless fading channels, which are here
considered. It is important to note that both Iz and I depend
on the channel state and position of Bob and Eve respect to
Alice, respectively. This means that changing the position of
Bob or Eve on the surface S, the mutual information changes.
The capacity of the link between the transmitter, called
Alice, positioned in (z4,y4), and the position (zp,yp) of
the legitimate receiver, called Bob, can be written as

1 Py
Ca 20g< +NO+IB> (13)
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Fig. 4. Secrecy map of surface S with Alice’s antenna orientation and
pattern. Three interfering nodes (11, I2, I3) are present. The azimuth of Alice
transmission antenna is 6 deg.

where Ny denotes the Gaussian noise density at the receiver,
Pp and Ip are defined in (@) and (6), respectively.

Since typically we cannot know if an eavesdropper, called
Eve, is present in the surface S or where it is located, we
derive the capacity of a generic point (z,y) of the surface,

i.e.,
1 Pg
c — Clog (14 —E
B(2,y) = 5 Og( + No+IE>
where Pr and I are defined as in (@) and (6), respectively

Pg = PaGa(0a,04,8)Ge(05, 05.4)d3 5lha sl

Ny

I =Y PiGi(0h, 61.5)Gr(0n, dp.i)dy 2 he 5l
k=1

(14)

Thus, supposing that Eve is located in a generic point (z,y)
on the surface S, the secrecy capacity of the link between
Alice and Bob is

Ciee(,y) = max{0,Cp — Cp(z,y)} = [Op — Cp(z,y)]

15)
It is important to highlight that the capacities here are intended
as conditioned to the state of the channels h4 g, ha g, hi,B
and hy, g, as well as the state of the aggregate interference Ip
and Ig.

What we are proposing here is to define a secrecy capacity
for each elementary point (z,y) of the surface S. Using this
representation, we can elaborate a map of the secrecy of the
surface given the position of the known actors, i.e., legitimate
users and interfering nodes. In other words, given the positions
of Alice, Bob and interfering nodes Iy, for each point (x, y) of
the surface, we calculate the secrecy capacity of the legitimate
link as Eve was located in that point. The result is that we can
draw a map showing the different levels of secrecy of the entire
surface S (Fig. [).



The Secrecy Pressure pse. is defined as

]. FSGC
= — Csec(x,y)dxdy =
s / /S (z,y)dzdy A

where Ag denotes the area of the surface S and the term Fl..
is denoting what we define as Secrecy Force. The secrecy force
depends on the locations of the legitimate users and interfering
nodes, but not on the eavesdroppers. The metric ps. is a useful
parameter that indicates how much is secure a surface S, given
the position of legitimate nodes and interfering nodes. Using
this metric, different surfaces and/or nodes configurations can
be thus ordered

Psec (16)

1 2 3
pge)c < p.(se)c < pge)c <.
The index allows a ranking of a given spatial configuration of
legitimate entities and interferes.
Detailing Eq. (T6), we can find an interesting property of
the secrecy pressure

DPsec =

Als/r/y{ %B—CE(xvy)

Since Cp does not depend on (z,y), if the surface goes to
infinity, the secrecy pressure tends to a constant value

if CB S CE(JJ,y)
if Cp > Cg(x,y) drdy

7)

lim pge. = lim

1
S—o0 S—o0 (AS //S[CB - CE(x7 y)w_dxdy) B CB
(18)
This is because the path loss component dfg(x,y) in (3)
vanishes as the generic point (x,y) on the surface S goes
to infinity. In practice, the contributions that decrease the
secrecy pressure mainly comes from the points on the surface
close to the legitimate link. In other words, supposing to
have an infinite surface, the set of points where Eve could be
located that influence the secrecy capacity is limited, due to
the path-loss. A point (z,y) too far away from the legitimate
nodes cannot affect the secrecy capacity, since the legitimate
signal is received with a too low power to observe anything
(CE<x7y) =0).

From Eq. (I3) we can derive another useful representation,
called Secrecy Map. The Cjse.(z,y) in (I3) is indicating
which is the secrecy capacity insisting over the elementary
unit surface dxdy located in a generic point (z,y) of the
surface S (see Fig. [3). This representation can be used to
draw the behaviour of the secrecy capacity over the surface S,
showing zones where the secrecy is low or high, analogously
to the weather forecast (Fig. ). The map, in fact, is built by
calculating the secrecy capacity of the legitimate link as the
eavesdropper was located in each point of the surface. The blue
zones in Fig. ] indicate no secrecy, i.e., if the eavesdropper
is set there, the secrecy rate of the legitimate link is zero.
Summarizing, the secrecy map is derived by the following
steps:

1) take a surface with cartesian coordinates;

2) locate the legitimate nodes (Alice and Bob) on the

surface;

3) compute the secrecy capacity of the legitimate link
assuming that Eve is located in a point (x,y) of the
surface;

4) associate that secrecy capacity to the corresponding
point of the surface;

5) repeat 3 and 4 for every point of the surface.

The secrecy capacity associated to a generic point of the
surface could be zero, i.e., any time Eve has a greater channel
capacity compared to Bob.

The secrecy map of the surface S changes with

« the positions of Alice, Bob and interfering nodes Ij, (k =
L.+, Np)

o the pattern and the orientation G 4(04) of the legitimate
transmitter antenna;

« the power of the legitimate transmitter Py;

« the power of the transmitters of the interfering nodes Pj;

o the state hg g, ha g, hi,B and hy g of the channels.

The effect of time and angle dispersion at the receivers can
be averaged out by replacing P; with j = B in (I3) and with
j = FE in (14).

As listed in the above items, the secrecy capacity in (13))
depends on the instant fading coefficients ha g, ha g, hi B
and hy_g. This means that the secrecy pressure (I6) (and the
secrecy map) depends instantly on these processes. In order
to remove the dependance on the instantaneous realizations
of the fading coefficients, two solutions can be run: 1) put
the characteristic function of the fading coefficients into the
secrecy capacity formula and average it out, or more easily, 2)
assume that the channels are ergodic. The results shown in this
paper are calculated by supposing ergodic channels. Ergodic-
fading model characterizes a situation in which the duration
of a coherence interval is on the order of the time required
to send a single symbol. The processes ha g, ha g, hi,p and
hi,r are mutually independent and i.i.d.; fading coefficients
change at every channel use and a symbol experiences many
fading realizations.

The ergodic secrecy capacity is thus [[15]]

ésec(mvy) =
Elha g2 hes P hes? 110 — Crlz, y)] '}

k=1,---,Nr (19)

where the operator E{} stands for the expectation. The ergodic
secrecy pressure is obtained by substituting the ergodic secrecy

capacity in (19) into Eq. (16)

1 ~
ﬁsec = A // Csec(-xvy)dmdy
S S

Since 5’560(m, y) could be zero in some points of the surface,
computing pg.. implies to make an integral of an irregular
function.

It is important to point out that the power received by
Eve depends on the position of Eve, since path-loss, fading,
angle-of-departure, angle-of-arrival, as well as the power of
the aggregate interference are position-dependent parameters.
Therefore, in the expression of the capacity of both Bob and
Eve, the parameters are position-dependent. Since we want

(20)



a metric which is not dependent on the position of Eve (its
position is not known with 100% probability, typically), we
first locate Eve in each point (x,y) of the surface S, we
calculate the secrecy capacity of each point (x,y) and then we
integrate over the entire surface S. In this way, we take the
mean over a space of the secrecy capacity, which eliminates
the dependence of the secrecy capacity by specific position
of Eve. The resulting (new) metric is a characteristic of the
surface and not of the link, thus we called it secrecy pressure.

IV. SECRECY OPTIMIZATION

The secrecy pressure can be used as a useful metric to de-
termine which is the best configuration parameters to optimize
the secrecy of a link. The proposed metric is suitable to find
out different useful results, such as: a) which is the antenna
orientation that assures highest secrecy towards the legitimate
receiver; b) where is the best location where to put additional
interfering node(s) in order to reach higher secrecy for the
legitimate link; c¢) which is the best configuration of power
emissions from the interfering nodes in order to have highest
secrecy for the legitimate link.

A. Antenna orientation

Let us suppose for simplicity that the interfering nodes [
as well as Bob and Eve have isotropic antennas. Fixed the
surface S, the positions of the legitimate nodes (Alice, Bob)
and of the interfering nodes I, (k = 1,--- , Ny), and given the
pattern of the transmitting antenna G 4(64), we can maximize
the secrecy pressure respect to the antenna orientation

arg max {psec 21
04

Fig. 5] shows the secrecy map over the surface S when
Eve is supposed to be set somewhere in the surface S and
the optimization problem is solved respect to Alice’s antenna
orientation. There exists an optimum azimuth orientation of
Alice’s antenna. Given the positions of the legitimate users
and interfering nodes, the best, from the secrecy capacity point
of view, for Alice is not to point the maximum of the antenna
pattern towards the direction of Bob. An azimuth orientation of
+6 deg optimizes the secrecy capacity, in this case. In general,
with the proposed metric it is possible to derive easily which is
the best antenna orientation for the transmission to a legitimate
receiver in a given perimeter, of which we know only the
positions of the interferers (e.g., other access points or base
stations). Fig. [6] shows the secrecy map over the surface S
for different positions of Eve (I, Il, [ll and IV quadrant) when
the optimization problem is solved respect to Alice’s antenna
orientation. As an example, suppose that the legitimate users
do want to minimize the information leakage in a specific
zone of the surface (e.g., the eavesdropper is suspected to be
in the third quadrant), then the optimum antenna orientation
for Alice is +16 deg (green curve in Fig. [).

B. Interfering node positions

Fixed the surface S, the positions of the legitimate nodes
(Alice, Bob) and given the pattern and orientation of the

Psec

-10 10 20

Azimuth [degrees]

-30 -20

Fig. 5. Secrecy pressure when the optimization problem is solved respect to
Alice’s antenna orientation.
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Fig. 6. Secrecy map for different positions of Eve (I, I, lll and IV quadrant)

when the optimization problem is solved respect to Alice’s antenna orientation.

transmitting antenna G 4(64), we can maximize the secrecy
pressure over the position (zy, yx) of the N+ 1-th interfering
node, a friendly jammer called here flasher, in order to
maximize the secrecy pressure of the legitimate link, given
the positions (fixed) of the Ny interfering nodes

max
(zk,yx), k=Nr+1

arg {Psec} (22)

Fig. [7] shows the secrecy map over the surface S when the
optimization problem is solved. As it can be seen, there
are positions where the additional interference node (flasher)
can be put which optimize the secrecy pressure metric. Like
forecast weather, the areas with same color bring the same
secrecy capacity, if the additional interfering node (friendly
jammer) is installed in that point of the surface. Another
evident result is that the interfering node cannot be placed
close to Bob (white hole in Fig. , since the this would
decrease drastically the capacity of the legitimate link and thus
the secrecy capacity. Fig. [8(a)] shows the same secrecy map in
the case that Eve is supposed to be somewhere in a limited
perimeter (the green dotted line) inside the surface S. In this
case the optimum area is modified compared to the previous
scenario.



Fig. 7. Secrecy map over the surface S when the optimization problem is
solved respect to the position of the additional interfering node (flasher).

C. Power allocation of the interferers

Fixed the surface S, the positions of the legitimate nodes
(Alice, Bob) and of the interfering nodesEl I, and given the
pattern and orientation of the transmitting antenna G 4(64),
we can maximize the secrecy pressure respect to the power
emitted by the interfering nodes

arg HII%X {Psec} k=1,---,Np (23)

To ease the illustration of this optimization, let us suppose to
put an additional interfering node (the 4th) in the scenario and
to optimize its transmit power. Figs. [8(a)] shows the secrecy
map over the surface S when the optimization problem is
solved respect to the position of the additional interfering node
(flasher) and its power. The eavesdropper is supposed to be
located somewhere in a limited perimeter (the green dotted line
in the figure) of the surface. The lighter zone of the secrecy
map denotes the set of points (x,y) where the flasher can be
located to yield the highest secrecy pressure. Fig. B(b)| shows
the secrecy pressure as a function of the power of the flasher.
The curve evidently shows an optimum point, which in that
case is about —9 dB.

It is important to stress that using the proposed metric the
optimum antenna orientation is not trivially in the direction of
the legitimate receiver, as well as the optimum position and
power of the intentional jammer (flasher) are not those that
the common sense would suggest.

D. Joint optimization

Joint optimization of all the parameters (antenna orientation,
friendly jammer position and interfering power allocation) is

2The position of the interfering nodes has been randomly selected by using
a PPP distribution.

0.8

0.4

-4 -2 0 2 4

(a) Secrecy map over the surface S when the optimization problem is solved
respect to the position of the additional interfering node (flasher). Eve is
supposed to be somewhere in the green dotted line.
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(b) Secrecy pressure as a function of the power of the additional interfering
node (flasher). The flasher is supposed to be placed in the center of the lighter
zone depicted in Fig. [B(a)]

Fig. 8. Optimization of both position and power of the additional interfering
node (flasher).

also possible

arg max 24)

sec k= 1, aN
(0;(zk,yk )3 Pr) {Poce} !

Graphical results of this optimization are not shown in this
paper due to the lack of space.

E. Varying the position of Bob

Although the most practical scenario is when Alice and Bob
are fixed and Eve can be everywhere in a limited space, as
previously described, one could also be interested in using the
proposed metric to draw the map of the secrecy pressure when
Bob’s position can vary over the surface S. In this case, the
steps to draw the map are the following

« locate the legitimate receiver (Bob) in a point (z,y) of
the surface S;



« calculate the secrecy pressure metric (20) for Bob located
in that point;

o assign to the point (x, y) the value of the secrecy pressure;

« repeat these points until all the surface S is evaluated.

Fig shows the map of the secrecy pressure when Bob’s
position varies over the surface and Eve’s position varies over
the entire surface as well. As expected the secrecy pressure is
higher when Bob is inside the main lobe of Alice, while the
secrecy pressure decreases drastically when Bob is closer to
an interferer.

Fig 0(b)| shows the map of the secrecy pressure when Bob’s
position vary over the surface and Eve’s position varies only
in a limited perimeter (the green dashed line). Compared to
Fig O(a)] if Eve is confined into a limited space in the surface
S, the zone of maximum secrecy pressure is larger and located
around the main lobe of Alice. Please note that the secrecy
pressure behind Alice, e.g. the point (—4,—2), is low since
there is almost no power from Alice in that direction.

V. GENERAL DEFINITION OF SECRECY PRESSURE AND
PRACTICAL APPLICATIONS

As stated in the previous sections, the new metric is defined
starting from the definition of the well-known secrecy capacity
(Csee). To eliminate the dependence on the position of the
eavesdropper of the secrecy capacity, we have averaged out
the secrecy capacity by integrating the Cj.. over the 2D-space
of the specific surface S. The resulting metric is called secrecy
pressure and it is the analytical expression of the average over
a space (instead of time). The integral of the Cj.. function is
not easy to derive, since Cs.. shows sparsely zeros over the
2D surface, each time that the capacity of Eve is greater of
the capacity of Bob. A closed-form expression of the secrecy
pressure is not easy to obtain, even for simple geometry shape
like circle or square with generic boundaries. For this reason,
we have derived the closed-form expression of the secrecy
outage of a surface (see Sec. [VI). Although a closed-form
expression of the secrecy pressure for a known shape is not
shown in the paper, this does not mean that the metric makes
no sense. The metric is defined as the spatial average of the
secrecy capacity calculated for every point of the surface S.
The average of the secrecy capacity over time is called ergodic
secrecy capacity in the literature, but no previous paper, in our
knowledge, presented the spatial average.

This metric shows the secrecy as a characteristic of a
surface and not of a single link. This is useful in many
practical scenarios, like military tactical scenarios. Typically,
military command has a specific perimeter of operation, where
the presence of the enemy is not perfectly known, based
on the information that the intelligence service or technolo-
gies (satellite, etc.) can collect. Most probably, the military
command can delimit the presence of the enemy in some
zones of the operational scenario, associating the presence
of the enemy with a certain probability. By calculating the
secrecy pressure, the military command can: 1) quantify how
much secure is one perimeter from the point of view of the
wireless transmissions; 2) decide the optimum angle for the
transmitting antenna array; 3) decide which is the optimum

0.5

(a) Map of the secrecy pressure as a function of Bob’s position. Eve can be
everywhere over the surface.

— 0.9

— 07
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(b) Map of the secrecy pressure as a function of Bob’s position. Eve is
supposed to be somewhere in the green dotted line.

Fig. 9. Map of the secrecy pressure. The secrecy pressure is calculated as
Bob was in each point (z,y) of the surface S.

position to place a jammer to enhance the security of the
transmission; 4) decide the optimum power of the jammer,
in order not to degrade the reception of the legitimate receiver
while jamming the potential eavesdropper; 5) operate a multi-
parameter optimization; 6) if the position of the eavesdropper
is only partially known, the military command can draw
zones in the operational perimeter giving to each of them a
statistical probability of Eve presence, and then compute the
secrecy of the perimeter; 7) if a mobility model of Eve is
known or partially (statistically) known, again all the above
mentioned parameters (antenna orientation, friendly jammer



position, etc.) can be optimized. Other optimizations can be
further imagined.

As discussed above, in many practical situations we do not
know if an eavesdropper is present and where it is located
exactly. Thus, we define a probability of presence of Eve to
be associated to a generic point (z,y) on the surface S

Txy(zr,y)=Prob{ex <X <z+dr, y<Y <y-+dy}
z+dzr  ry+dy
= / / vxy(x,y)dedy (25)
z y

where vx y (z,y) is the probability density function (PDF) of
the presence of Eve in (z,y). From now on we call this PDF
VE (IE ) y) :

The secrecy pressure is thus re-defined as follows

Psec = // UE(Iay)Csec(xay)dxdy
S

where  Ciee(,y) = [Cp — Cg(x,y)]"  and
[[vE(z,y)dzdy = 1. Eq. represents the more general
expression of the secrecy pressure in (I6). For example, if
a uniform distribution of Eve’s presence is supposed for the
entire surface .S, the PDF would be vg(x,y) = 1/As and
thus [[¢1/Agdxdy = 1.

In the following sections three practical scenarios are pro-
posed to show the benefits of the new proposed metric. In
particular, the secrecy pressure is computed when

(26)

« an eavesdropper is known to be in a sub-region of the
surface S (leakage zone),

o the eavesdropper position is known with a probability
spatial function (Gaussian approximation), and

o when the eavesdropper has not a fixed position (mobility
scenario).

In all these cases, some simplifications are assumed

« the average fading of the channels is supposed to be 1,
e, Y, h2 =1

o the antenna pattern of Bob, Eve and of the interfering
nodes is supposed to be isotropic. Only Alice has a
directive antenna and can modify the antenna orientation;

o the position of Alice and Bob on the surface S is
supposed to be fixed and known: (—4,0) and (0,0),
respectively;

« the position of the interfering nodes (/,12,13) is supposed
to be fixed and known: (—2,4), (1,-3) and (3,3),
respectively.

A. Leakage zone

In many real situations, e.g., in military scenarios, the
transmitter does not want to leak information in fixed zone,
in a region where it knows that an eavesdropper is surely
present. We name here the leakage zone as forbidden zone,
since the legitimate transmitter surely does not want to leak
any information in that zone. Fig. [I0]shows the surface S with
the forbidden zone Sr inside. In this example the forbidden
zone is the third quadrant.

To each point of the surface Sr we associate a probability
of Eve’s presence such that [f; vg(S)dzdy = 1, while in

X
€ Alice Bob

Forbidden Zone

S¢

Ye

Fig. 10. Forbidden zone inside the surface .S.

the rest of the surface S we set [ o vg(S)dzdy = 0, where

—SF denotes the complementary surface Sp U -Sp = S.
Assume, as an example, to have an equal distribution of the

probability of Eve’s presence in the surface Sp. Than,

0, otherwise

1
UE(xa y) = { ceys’
In this case the secrecy pressure of the surface (26) is

TE YE
Psec = / / UE(J:; y)csec(mv y)dl’dy (28)
0 0

The secrecy map of the surface can be drawn by using the
following result

vE(2,y)Csec(z,y) =

{ 0
1 x
CB - TEYE fOE

if Csec(z,y) =0
JVE Cp(z,y)dedy  otherwise

(29)

The optimization of the secrecy pressure respect to the
azimuth of the transmitting antenna of the legitimate node
(Alice) for a forbidden zone is shown in Fig. [5

B. Gaussian probability of eavesdropper presence

In other situations, it is not known exactly if eavesdroppers
are present or not. Only suspicious. In this case, located a
point on the map, a probability of presence of Eve with
certain distribution can be associated. We suppose here that
a Gaussian spatial distribution of Eve’s presence is associated
to a zone of the surface S. To each point of the surface
S we associate a probability of Eve’s presence vy which
is a random variable with Gaussian distribution centered in
(xg,yr) (Fig. . The circle lines denotes the intensity of
the probability. For example, if the Gaussian random variable
denoting the presence of Eve on the surface has mean 0.8 and
variance 1, we associate a probability of Eve’s presence equal
to 0.8 to the point (xg,yg).

In this case the secrecy pressure of the surface (26) is

Poce = / / () Coee (2, y)drdy (30)
S



Alice

Fig. 11. Gaussian distribution of Eve’s presence inside the surface S.

(z—zp)%+w-yp)?
2

With vg(z,y) = A= °E , where oy indicates

202E
the standard deviation of the Gaussian distribution.
The secrecy map of the surface can be drawn by using the
following result

VE ((b, y)Csec(x, y)dxdy =
if Csee(z,y) <0

0
{ Cp— ffs ve(z,y)Ce(x,y)drdy  otherwise
(31)

This scenario is a particular case of the mobility scenario
described in the next section, the results can be appreciated in

Fig. [[3®)}

C. Mobility model for the eavesdropper

If we know the position of Eve at time ¢,,, we can associate
to the eavesdropper a statistical mobility model and derive the
secrecy pressure over a surface of interest. The mobility model
for Eve depends on its movement capability in the specific
environment. In the absence of prior information on the real
movement of the eavesdropper (i.e., Eve is free to move in all
directions with different speeds), the Gaussian mobility model
represents a fairly general model with a tractable number of
parameters. In the presence of some prior information on the
eavesdroppers movement (e.g., direction or speed is set by the
environment), a mobility model more tight to the real mobility
would provide better performance.

Optimization of the secrecy pressure is shown respect to
the azimuth of the legitimate transmitting antenna as well as
respect to the position of the flasher.

We consider here Gaussian mobility model with conditional
PDF of current position conditioned on the previous position.
For easier notation, let us define the position (z,y) at time
t, of a point on the surface S as a vector p,. Thus, the
conditional PDF of current position is

1

L e )] (32
27| %, |%

Um<pn|pn—l) =

where p, varies with the mobility model as described in
the following, and the covariance matrix ¥, accounts for

11

the uncertainty in the movements in a 2-D plane; thus, it is
expressed by

POm,z0m,y

Om,y

Om,x
POm,zOm,y

Y= (33)
where o, , and o, 4 is the standard deviation along the x and
y axes, respectively. The parameter p takes into account the
possible inter-dependence of the two coordinates. Independent
coordinates have p = 0.

The mean p,, depends on the position p,,—; and the speed
V,—1 according to

MKy = Pn—1 + Vn—l(tn - tn—l) (34)

where v,,_ is the vector of the speed along = and y axes at
time ¢,,_1.

Fig. [I2] shows the secrecy map over the surface S as a
function of the position of the flasher (22) and with mobility
model for the eavesdropper (32). Eve is suspected to move

— 0.810

0.648

0.486

0.324

0.162

Fig. 12. Secrecy map of the position of the flasher with mobility model for
the eavesdropper.

vertically from its previous position, with a mobility model
given by (32). The interfering nodes I, I and I3 are fixed.
Solving gives the optimum point where to locate the
additional flasher I,. Best is to put the flasher close to the
point where the eavesdropper is supposed to arrive. This is
somehow trivial.

In order to complicate the scenario we supposed that Eve is
moving from (3, —3) to (3, 3) with a mobility model given by
(32) (see Fig. in six time steps. Alice antenna azimuth
orientation can vary from —30 to +30 deg. The resulting map
of the secrecy pressure is shown in Fig. [I3(b)} The map shows
which is the optimum transmit antenna orientation (azimuth)
at each time step. As an example, at time step 6, Eve is
stochastically supposed to be in (3, 3) and thus an orientation
between —18 to 48 deg optimizes the secrecy capacity for the
Eve’s mobility scenario. In this case the secrecy rate achievable
is more than 3.20 bps. On the contrary, at time step 3 the
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(b) Secrecy map of the Alice’s antenna orientation with mobility
model for the eavesdropper.

Fig. 13. Eve’s mobility: scenario description and secrecy map over azimuth
of Alice’s antenna.

maximum secrecy rate achievable is 1.28 bps with an antenna
orientation range of (—26,—20) deg.

VI. SECRECY OUTAGE PROBABILITY OF A SURFACE
(SOPS)

A closed-form of the secrecy pressure is not easy to be
derived. Another interesting metric could be the outage prob-
ability of the secrecy capacity over a surface. A secure outage
occurs when the instantaneous secrecy capacity Csee(z,y) is
less than target secrecy rate Rg... Thus, the secure outage
probability is defined as

Pout (Esec)(xa y) = PrOb{Csec(xa y) < Esec} (35)
Note that the outage probability depends on the location (z, y)
of the eavesdropper over the surface. Given the result above,

we define the secrecy outage probability of a surface S (SOPS)
as

Aout(ﬁsec) - //S Pout(ﬁsec)(xvy)UE(xay)dxdy

= // Prob{Ciec(z,y) < Rsecvr(z,y)dzdy  (36)
s

The secrecy outage probability of a surface depends on the
probability vg(z,y) that Eve is located in the point a generic
point (x,y) of the surface. An interesting behaviour to study
is the existence of the secrecy capacity over a surface, i.e.,
when R, is set to zero. In this case the SOPS becomes

Aput(Rsee = 0) = // Prob{Cscc(z,y) = 0}vg(z,y)dzdy

§ 37)
The term vg(xz,y) is the distribution of the presence of Eve
over the surface, which could be uniform or Gaussian or
any other distribution, based on what it is known about the
eavesdroppers. The term Prob{C..(z,y) = 0} can be derived
as

Prob{Cscc(z,y) = 0} = Prob{SNRg(x,y) > SNRp}

(38)
where
Pgp
SNR = — 39
B No +1p (39)
Pg
SNR , _— 40
e(7,y) N1 (40)

with Pg, Pg defined as in (3) and I5, I as in (6). Eq. (38) is
hard to be calculated analytically, since the term at numerator
Pg is Rayleigh distributed, while the term at the denominator
Ip is Stable distributed. A closed form can be reached if we
assume that the Gaussian approximation is valid for the aggre-
gate interference, i.e., Iz ~ N (0, Ng) and Ig ~ NV (0, Ng).
In this case Eq. @T)) becomes

Pp

SNRp No N, 41)
P
SNRs(v,y) = - +ENE (42)

and Eq. (38) can be written as

Prob{Cscc(z,y) = 0} = Prob{SNRg(x,y) > SNRp}
- SNRp + SNRg(z,y)

(43)

where

-ZBide)iE“hA,iP}

NR; =
SNR No + N;

with ¢ = {B, E'} and E{} is the expectation operator.
Thus, the SOPS in this case is

Aout(isec - 0
// SNRg(z,y)
SNRp + SNRg(x,y)

vg(z,y)dedy  (44)
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Fig. 14. Secrecy outage of the surface S as a function of the standard deviation
o g of the distribution of Eve’s presence over S. Eve’s distribution is Gaussian
and centered in three different positions: at Alice’s, at Bob’s and at the first
interferer’s 1.

In the case of a target secrecy rate greater than zero Raee > 0,

Eq. @) is
Aput(Rsee) = //S Prob{Cscc(,y) < RyeeyvE(z,y)dxdy
zJy
The results of the SOPS are shown in Fig.[T4] The curves are

SNRp + 2Bs««cSNRp(z,y)
derived by supposing a Gaussian distribution of the presence
of Eve on the surface, i.e.,

vp(z,y)dzdy

(45)

1 (z—zp)%+w-yp)?

20p
V20% ‘
The other parameters are set as follows: E{|h4 ;|*} = 1 with
i ={B,FE}, og ranges from 0.2 to 5.

Fig. 14| shows the SOPS (Ayy¢(Rsec = 0)) as a function of
the standard deviation o of the distribution of Eve’s presence
on the surface S. Eve is located in three different positions: at
Alice’s, at Bob’s and at the first interferer’s I;. The positions
of Alice, Bob and the interferers I7, Is and I3 are shown in
Fig. @]

The orange dotted line in Fig. [[4] reports the results when
Eve’s distribution is centered on the same position of Alice.
The curve of the SOPS confirms that a higher dispersion of the
probability of Eve’s presence yields a lower surface secrecy
outage. This is logic, since a higher variance of the Gaussian
distribution means higher probability that Eve is located far
away from Alice. The green dashed line in Fig. [T4] reports
the results when Eve’s distribution is centered on the same
position of the first interferer I;. The curve of the SOPS, in
this case, are completely different from the previous one, as
expected. The SOPS increases with the variance og, since
a higher dispersion of the position of Eve means a higher
probability that Eve is located far away from the interference
source, which jams Eve’s receiver.

The blue solid line in Fig. [T4]reports the results when Eve’s
distribution is centered on Bob’s position. The SOPS increases
with the variance o, since a higher dispersion of the position
of Eve means a higher probability that Eve is located closer

vp(r,y) =

13

Fig. 15. Secrecy pressure outage map of the surface S. Eve’s distribution is
Gaussian and centered in three different positions: at Alice’s, at Bob’s and at
the first interferer’s I7.

to the source of the information (Alice), i.e., Eve’s could have
a better signal to noise ratio compared to Bob.

The secrecy pressure outage map of the entire surface is
shown in Fig. T3]

VII. CONCLUSIONS

This paper proposes and studies a new metric for measuring
the secrecy potentials of a surface. This metric is defined
secrecy pressure. Using the metric different environments or
surfaces can be ordered as a function of the secrecy rate
that can be assured. The metric can be used also for solving
optimization problems, e.g., finding which is the best transmit
antenna orientation to maximize the secrecy capacity of the
surface, or finding which is the best position of an addi-
tional interfering node (friendly jammer). Different practical
scenarios are investigated, including mobility option for the
eavesdropper. Another metric, the secrecy outage probability
of a surface (SOPS), is derived. In this case the presence of
Eve is supposed to be uncertain, and modelled as a Gaussian
distribution over the surface. The results of the SOPS are
shown as a function of the dispersion of Eve’s position. The
Gaussian distribution is centered in three specific points: at
Alice’s, at Bob’s and at the first interferer’s.

In addition the first part of the paper includes a general
framework to evaluate the secrecy capacity over a surface. The
framework includes all the parameters affecting the secrecy
capacity, from nodes spatial distribution, to antenna orientation
and pattern, and propagation medium statistics.

This paper offers a new perspective on the role of secrecy
over a surface, considering nodes spatial distribution, wireless
propagation medium, and aggregate network interference.



ACKNOWLEDGMENT

The work of X. Zhou was supported by the Aus-
tralian Research Council’s Discovery Projects under Grant
DP150103905.

The work of Y. Chen was supported in part by the Guang-
dong Natural Science Funds under Grant 2016A030313640.

REFERENCES

[1] A. D. Wyner, "The Wire-Tap Channel,” Bell Sys. Tech. J., vol. 54, no.
8, Aug. 1975, pp. 13551387.

[2] S. K. Leung-Yan-Cheong, and M. E. Hellman, "The Gaussian Wiretap
Channel,” IEEE Trans. Info. Theory, vol. 24, no. 7, July 1978, pp. 451456.

[3] G. J. Foschini, and M. J. Gans, ”On Limits of Wireless Communications
in a Fading Environment when Using Multiple Antennas,” Wireless
Personal Commun., vol. 6, no. 3, Mar. 1998, pp. 311335.

[4] Y. Zou, Y.-D. Yao, and B. Zheng, "Opportunistic Distributed Space-Time
Coding For Decode-And-Forward Cooperation Systems,” IEEE Trans.
Signal Processing, vol. 60, no. 4, Apr. 2012, pp. 17661781.

[5] S.Lakshmanan, C. L. Tsao, R. Sivakumar, and K. Sundaresan, ”Securing
Wireless Data Networks against Eavesdropping using Smart Antennas,
Distributed Computing Systems,” IEEE International Conference on Dis-
tributed Computing Systems (ICDCS), Beijing, China, 17-20 June 2008,
pp. 19-27.

[6] Z. Chu, K. Cumanan, Z. Ding, M. Johnston, and S. Y. Le Goff, ”Secrecy
Rate Optimizations for a MIMO Secrecy Channel With a Cooperative
Jammer,” IEEE Trans. Vehicular Techno., vol. 64, no. 5, May 2015, pp.
1833-1847.

[71 M. Daly, and J. Bernhard, "Directional modulation technique for phased
arrays,” IEEE Trans. Antennas Propag., vol. 57, no. 9, Sep. 2009, pp.
26332640.

[8] M. Daly, E. Daly, and J. Bernhard, "Demonstration of directional modu-
lation using a phased array,” IEEE Trans. Antennas Propag., vol. 58, no.
5, May 2010, pp. 15451550.

[9] A. Kalantari, M. Soltanalian, S. Maleki, S. Chatzinotas, and B. Ottersten,
“Directional modulation via symbol-level precoding: A way to enhance
security,” IEEE J. Sel. Topics Signal Process., vol. 16, no. 8, Aug. 2016,
pp. 1478-1493.

[10] Hao Li, Xianbin Wang, and Weikun Hou, “Security enhancement in
cooperative jamming using compromised secrecy region minimization,”
13th Canadian Workshop on Information Theory (CWIT), Toronto, ON,
Canada, 18-21 June 2013, pp. 214-218.

[11] J. Wang, J. Lee, F. Wang, and T. Q. S. Quek, "Jamming-Aided Secure
Communication in Massive MIMO Rician Channels,” IEEE Transactions
on Wireless Communications, vol. 14, no. 12, Dec. 2015, pp. 6854-6868.

[12] J. M. Carey, and D. Grunwald, "Enhancing WLAN security with smart
antennas: a physical layer response for information assurance,” Vehicular
Technology Conference (VTC Fall), Los Angeles, CA, USA, 26-29 Sept.
2004, pp. 318-320.

[13] A. Rabbachin, A. Conti, and M. Z. Win, "Wireless Network Intrinsic
Secrecy,” IEEE/ACM Transactions on Networking, vol. 23, no. 1, Feb.
2015, pp. 56-69.

[14] L. Ruan, V. K. N. Lau, and M. Z. Win, “Generalized Interference
AlignmentPart II: Application to Wireless Secrecy,” IEEE Transactions
on Signal Processing, vol. 64, no. 10, May 2016, pp. 2688-2701.

[15] M. Bloch, and J. Barros, “Physical-Layer Security: From Information
Theory to Security Engineering,” Cambridge University Press, 2011.
[16] M. Z. Win, P. C. Pinto, and L. A. Shepp, A Mathematical Theory of
Network Interference and Its Applications,” Proceedings of the IEEE ,

vol.97 no.2, Feb. 2009, pp.205-230.

[17] A. Rabbachin, A. Conti, and M. Z. Win, "The role of aggregate
interference on intrinsic network secrecy,” International Conference on
Communications (ICC), Ottawa, Canada, 10-15 June 2012, pp.3548-3553.

[18] http://www.math.uah.edu/stat/special/Rayleigh.html

[19] K. I. Pedersen, P. E. Mogensen, and B. H. Fleury, A stochastic model
of temporal and azimuthal dispersion seen at the base station in outdoor
propagation environments,” IEEE Trans. Veh. Technol., vol. 49, no. 2,
Mar. 2000, pp. 437-447.

[20] H. Asplund, A. A. Glazunov, A. F. Molisch, K. I. Pedersen, and M.
Steinbauer, "The COST 259 Directional Channel Model-Part II: Macro-
cells,” IEEE Transactions on Wireless Communications, vol.5, no.12, Dec.
2006, pp.-3434-3450.

[21] J. Barros, and M. R. D. Rodrigues, “’Secrecy Capacity of Wireless Chan-
nels,” International Symposium on Information Theory (ISIT), Seattle,
WA, USA, 9-14 July 2006, pp. 356-360.

Lorenzo Mucchi [IEEE M’98-SM’12] received the
Dr. Eng. Degree (Laurea) in Telecommunications
Engineering from the University of Florence (Italy)
in 1998 and the Ph.D. in Telecommunications and
Information Society in 2001. Since 2001 he has been
with the Department of Information Engineering of
the University of Florence as a Research Scientist. In
2000 he spent a 12-months period of research at the
Centre for Wireless Communications, University of
Oulu, Finland. He is professor of Information Tech-
nologies at the University of Florence, Italy, since
2008. His main research areas include theoretical modelling, algorithm design
and real measurements, mainly focused in the following fields: physical-layer
security, visible light communications, ultra wideband techniques, localization,
adaptive diversity techniques and interference management. Currently, he has
published 8 book chapters, 32 papers in international journals and more than
80 papers in international conference proceedings during his research activity.
Dr. Mucchi is member (2009) of the IEEE Communications and Information
Security Technical Committee (CISTC). Since 2016 he is associate editor of
IEEE COMMUNICATION LETTERS. In 2004 he was the lead organizer
and general chair of the IEEE International Symposium on Medical ICT
(ISMICT). He has been Guest Editor and Editor-in-chief for the ELSEVIER
ACADEMIC PRESS LIBRARY. Dr. Mucchi is member of the European
Telecommunications Standard Institute (ETSI) Smart Body Area Network
(SmartBAN) group (2013) and team leader (2016) of the special task force
511 “SmartBAN Performance and Coexistence Verification”. All details are
available at: http://www.lorenzomucchi.info/

Luca Ronga (luca.ronga@cnit.it) [IEEE S’89-
M’94-SM’04] received his M.S. degree in elec-
tronic engineering in 1994 and his Ph.D. degree in
telecommunications in 1998 from the University of
Florence,Italy. In 1997 joined the International Com-
puter Science Institute of Berkeley, California, as a
visiting scientist. In 1999 he joined Italian National
Consortium for Telecommunications, where he is
currently head of research area. He has been editor of
EURASIP Newsletter for 4 years, member of ETSI
SatEC working group, member of NATO task force

on Cognitive Radio. His research interests span from satellite communications
to cognitive radio, software defined radio, radio resource management and
wireless security.He has been principal investigator in several research projects
and author of more than 90 papers in international journals and conference
proceedings.

Xiangyun Zhou (xiangyun.zhou@anu.edu.au)
[IEEE M’11] is a Senior Lecturer at the Australian
National University (ANU). He received the Ph.D.
degree from ANU in 2010. His research interests
are in the fields of communication theory and
wireless networks. He currently serves on the
editorial board of IEEE TRANSACTIONS ON
WIRELESS COMMUNICATIONS and IEEE
COMMUNICATIONS LETTERS. He served as
a guest editor for IEEE COMMUNICATIONS
MAGAZINE’s feature topic on wireless physical
layer security in 2015. He also served as symposium/track and workshop
co-chairs for major IEEE conferences. He was the chair of the ACT Chapter
of the IEEE Communications Society and Signal Processing Society from
2013 to 2014. He is a recipient of the Best Paper Award at ICC’11 and
IEEE ComSoc Asia-Pacific Outstanding Paper Award in 2016.

=



Kaibin Huang (huangkb@eee.hku.hk) [IEEE M’08-
SM’13] received the B.Eng. (first-class hons.) and
the M.Eng. from the National University of Singa-
pore, respectively, and the Ph.D. degree from The
University of Texas at Austin (UT Austin), all in
electrical engineering. Since Jan. 2014, he has been
an assistant professor in the Dept. of Electrical and
Electronic Engineering (EEE) at The University of
Hong Kong. He is an adjunct professor in the School
of EEE at Yonsei University in S. Korea. He used
to be a faculty member in the Dept. of Applied
Mathematics (AMA) at the Hong Kong Polytechnic University (PolyU) and
the Dept. of EEE at Yonsei University. His research interests focus on the
analysis and design of wireless networks using stochastic geometry and multi-
antenna techniques. He frequently serves on the technical program committees
of major IEEE conferences in wireless communications. Most recently, he
served as the lead chairs for the Wireless Comm. Symp. of IEEE Globecom
2017 and the Comm. Theory Symp. of IEEE GLOBECOM 2014 and the TPC
Co-chairs for IEEE PIMRC 2017 and the IEEE CTW 2013. Currently, he is an
editor for the newly established IEEE Transactions on Green Communications
and Networking, and IEEE Transactions on Wireless Communications. He was
an editor for IEEE Journal on Selected Areas in Communications (JSAC)
series on Green Communications and Networking in 2015-2016, for IEEE
Wireless Communications Letters in 2011-2016, and for for IEEE/KICS
Journal of Communication and Networks in 2009-2015.

Yifan Chen (yifan.chen@waikato.ac.nz) [IEEE
M’06-SM’14] received the B.Eng. (Hons I) and
Ph.D. degrees in Electrical and Electronic Engineer-
ing from Nanyang Technological University (NTU),
Singapore, in 2002 and 2006, respectively. He is
the Professor of Engineering and Associate Dean
External Engagement for the Faculty of Science
and Engineering and the Faculty of Computing and
Mathematical Sciences in the University of Waikato,
Hamilton, New Zealand. From 2012 to 2016, he was
a Professor and the Head of Department of Electrical
and Electronic Engineering with the Southern University of Science and
Technology, Shenzhen, China, appointed through the Recruitment Program
of Global Experts (known as “the Thousand Talents Plan”). In 2013, he
was a Visiting Professor with the Singapore University of Technology and
Design, Singapore. From 2007 to 2012, he was a Lecturer and then a Senior
Lecturer with the University of Greenwich and Newcastle University, U.K.
From 2005 to 2007, he was a Project Officer and then a Research Fellow
with the Singapore-University of Washington Alliance in bioengineering,
supported by the Singapore Agency for Science, Technology and Research,
Nanyang Technological University, Singapore, and the University of Wash-
ington at Seattle, USA. His current research interests include electromagnetic
medical imaging and diagnosis, transient communication with application to
healthcare, touchable communication and computation with application to
targeted drug delivery and contrast-enhanced medical imaging, fundamentals
and applications of nanoscale and molecular communications, and channel
modelling for next-generation wireless systems and networks.

Rui Wang (wang.r@sustc.edu.cn) received his
Bachelors Degree at the University of Science and
Technology of China (USTC) in 2004. Then he
got Ph.D. degree in wireless communications at the
Hong Kong University of Science and Technology
(HKUST) in 2008. From 2009 to 2012, he was a
senior research engineer in Huawei Technologies,
Co., Ltd. Since 2012, he has joined the Southern
University of Science and Technology (SUSTech)
as associate professor. Dr. Wang has research ex-
perience in both academia and industry. He has
published over 30 papers in top-level IEEE journals and flagship international
conferences, especially in the area of wireless radio resource optimization and
interference management. Moreover, he also involved in the development of
interference mitigation technology for 5G systems, and has contributed more
than 20 US patent applications and 40 Chinese patent applications (20 of them
have been granted).




	Introduction
	Related works
	Our contribution

	System model
	The scenario
	Channel model
	Received power
	Aggregate interference

	Secrecy Pressure and Secrecy Force
	Secrecy Optimization
	Antenna orientation
	Interfering node positions
	Power allocation of the interferers
	Joint optimization
	Varying the position of Bob

	General Definition of Secrecy Pressure and Practical Applications
	Leakage zone
	Gaussian probability of eavesdropper presence
	Mobility model for the eavesdropper

	Secrecy Outage Probability of a Surface (SOPS)
	Conclusions
	References
	Biographies
	Lorenzo Mucchi
	Luca Ronga
	Xiangyun Zhou
	Kaibin Huang
	Yifan Chen
	Rui Wang


