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2.5D multizone reproduction using weighted mode matching:
Performance analysis and experimental validation
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ABSTRACT:
Mode-matching based multizone reproduction has been mainly focused on a purely two-dimensional (2D) theory, where
infinite-long 2D secondary sources are assumed for 2D multizone reproduction. Its extension to the three-dimensional
(3D) case requires more secondary sources and a higher computational complexity. This work investigates a more
practical setup to use 3D sound sources as secondary sources for multizone reproduction in a 2D horizontal plane, i.e.,
2.5D multizone reproduction. A weighted mode-matching approach is proposed to solve the dimensionality mismatch
between the 2D desired sound field and 3D reproduced sound field. The weighting is based on an integral of Bessel-
spherical harmonic modes over the entire control region. A detailed analysis of the weighting function is provided to
show that the proposed method controls all the reproduction modes present on the 2D plane to minimize the reproduc-
tion error. The method is validated in both simulation-based and hardware-based experiments. The results demonstrate
that in comparison with the conventional sectorial mode-matching method, the proposed approach can achieve more
accurate reproduction over a wide frequency range and a large control region. VC 2020 Acoustical Society of America.
https://doi.org/10.1121/10.0000797
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I. INTRODUCTION

Today, the development of multizone sound field repro-
duction has gained considerable research interest. The aim
of multizone reproduction is to provide a variety of listening
experiences to different listeners in a shared space, such as
listening to music, watching movies, or even generating
quiet zones simultaneously in designated areas using a sin-
gle loudspeaker array.1,2 This technology provides signifi-
cant flexibility because there is no need for listeners to wear
headphones or be physically isolated, leading to a wide
range of audio applications.3–5

Up to now, many approaches have been developed for
multizone reproduction, including frequency-domain,6–8

time-domain,9–11 and modal-domain12–16 methods. The first
two are based on multi-point control that achieves optimal
reproduction at specific points. The modal-domain method,
on the other hand, decomposes the sound field on a spatial
orthogonal basis and then uses the mode-matching approach
to control reproduction over a region.

The mode-matching approach, however, has been
mainly considered in the two-dimensional (2D) case, i.e.,
both the virtual source generating the desired sound field
and the secondary source used for reproduction are mod-
elled as 2D near-field or far-field sources. However, the the-
ory can be easily extended to the three-dimensional (3D)

case. Recently, a weighted mode-matching (WMM) based
approach has been presented for 3D sound field reproduction
using a 3D loudspeaker array, that is both the desired field
and reproduced field are 3D in nature.17 The optimal
weights are derived on the expansion coefficients according
to the norm to be minimized. Given the same reproduction
setup, the 3D approach that controls sound within a sphere
requires more secondary sources and a higher computational
complexity.

We investigate the problem of controlling 2D multizone
sound fields using 3D point sources in this work, which is a
more practical setup because, on the one hand, the same
number of loudspeakers as in the 2D reproduction is
required, and on the other hand, loudspeakers are more
accurately modelled as 3D point sources.18 However, there
is an intrinsic dimensionality mismatch between the 2D
desired sound fields and 3D secondary sources, also known
as 2.5D reproduction.19,20 In order to solve the dimensional-
ity mismatch problem, the sectorial mode-matching (SMM)
approach21 was proposed, where the desired and generated
sound fields are decomposed through spatial harmonics and
the matching at the center of the setup is applied. Analytical
solutions were derived for a circular array of secondary
sources.22–24 This approach, however, has mainly been veri-
fied for the case of a single sound zone, which is also located
at the reproduction center.

In this paper, we further explore the previously pro-
posed WMM approach for 2.5D multizone reproduction
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based on the concept outlined in previous work.15,25 Instead
of referencing the synthesized sound field to the desired one
at a particular point or radius, is that the matching is over
the entire control region. This is based on weighting the
Bessel-spherical harmonic modes. The key contributions
of this work are: (i) a detailed analysis of the weight func-
tion is provided, and (ii) simulation-based and hardware-
based experiments are performed to validate the proposed
method.

The structure of this paper is as follows. In Sec. II, we
review the theory of 2D modal-domain multizone reproduc-
tion and adopt the semidefinite relaxation (SDR) approach
to obtain the 2D global sound field coefficients. In Sec. III,
the WMM approach is proposed for 2.5D reproduction
when the secondary sources for reproduction are assumed as
3D point sources. We provide a detailed analysis of the
weighting to solve the dimensionality mismatch problem.
The simulation-based and hardware-based experiments are
given in Secs. IV and V, respectively. We present the com-
parison between the proposed WMM and the conventional
SMM method, where the experimental results show that the
proposed method can achieve better reproduction perfor-
mance over a wide frequency range and a large control
region. Finally, the summation of this work is concluded in
Sec. VI.

II. 2D MULTIZONE REPRODUCTION

As a starting point, we review the 2D multizone repro-
duction formulation as in Ref. 25. As shown in Fig. 1, we
assume that each sound zone q has a radius rq and its centre
is denoted by oq with respect to the global origin o. Any
observation point within a sound zone is represented by xq

with respect to oq , or x ¼ xq þ oq with respect to o. All
sound zones are within a general region of interest with
radius r # r0.

A. Sound field model

A 2D source-free incoming field at an arbitrary point
xq $ ðjjxq jj;/xq

Þ can be approximately represented in terms
of a harmonic decomposition of the form26

Pðq Þðxq ; kÞ '
XNq

m0¼(Nq

aðq Þm0 ðkÞJm0ðkjjxq jjÞeim0/xq ; (1)

where k ¼ 2p f=c is the wave number with f being the fre-
quency and c the speed of sound, Jm0ðkjjxq jjÞ is the cylindri-
cal Bessel function of order m0, and aðq Þm0 ðkÞ is the
corresponding m0 th order sound field coefficient to describe
a spatial sound field with respect to oq . Given the radius of
the local sound zone rq , the wave number k, the truncation
order is Nq ¼ dekrq =2e,27 where d)e denotes the ceiling
function and e is the Euler’s number.

Similar to Eq. (1), the global sound field at the point
x $ ðjjxjj;/xÞ can be written as

Pðx; kÞ '
XN0

m¼(N0

bmðkÞJmðkjjxjjÞeim/x ; (2)

where the truncation order N0 ¼ dekr0=2e and r0 is the
radius of the general region of interest.

The local sound field coefficients aðq Þm0 ðkÞ can be related
to the global sound field coefficients bmðkÞ using the 2D
Bessel function addition theorem,28 that is

JmðkjjxjjÞeim/x

¼
XNq

m0¼(Nq

Jm(m0ðkjjoq jjÞeiðm(m0Þ/q Jm0ðkjjxq jjÞeim0/xq ;

(3)

given x ¼ xq þ oq and oq $ fjjoq jj;/q g in the global
system.

From Eqs. (1)–(3), we can represent the relationship
between global and local region in a compact form as

aq ¼ Tq b; (4)

where aq ¼ ½aðq Þ(Nq
ðkÞ;…; aðq ÞNq

ðkÞ+T and b ¼ ½b(N0
ðkÞ;…; bN0

ðkÞ+T are column vectors of length ð2Nq þ 1Þ and ð2N0 þ 1Þ,
respectively. Tq is the ð2Nq þ 1Þ , ð2N0 þ 1Þ translation
matrix between the global region and the local region, that

is ½Tq +m0þNqþ1;mþN0þ1 ¼ Jm(m0ðkjjoq jjÞeiðm(m0Þ/q .

B. Problem formulation and solution using SDR

Modal-domain control of the multizone reproduction
problem can be formulated by finding the global sound field
coefficients b to reproduce a desired sound field in the bright
zone Xb characterised by its local coefficients ab with con-
straints on the sound energy in the dark zone Xd and the
total energy of the global sound field,29 that is

min
b
jjTbb( abjj2 (5a)

FIG. 1. (Color online) Geometry of multizone sound field control.
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subject to jjTdbjj2 # ed; (5b)

jjbjj2 # eg; (5c)

where Tb and Td are the translation matrices of the local
bright zone and dark zone from the global system, respec-
tively. In terms of the two energy terms of Eqs. (5b) and
(5c), ed is determined by a threshold on the sound level
within the dark zone, and eg is the energy of the entire
global sound field. For personal audio, perceptual require-
ments can also be taken into account for setting the values
of ed and eg, such as the noticeable level of reproduction
error within the bright zone and the acceptable level of
audio interference reduction within the dark zone.29

The above formula can be classified as a complex-
valued quadratically constrained quadratic program (QCQP)
problem. As in Refs. 30 and 31, Eq. (5) can be converted to
a real-valued form as follows:

y¼
Refabg
Imfabg

" #

; x ¼
Refbg
Imfbg

t

2

64

3

75;

Sb ¼
RefTbg (ImfTbg
ImfTbg RefTbg

" #

;

Sd ¼
RefTdg (ImfTdg
ImfTdg RefTdg

" #

;

Ab ¼
ST

b Sb (ST
b y

(yTSb yTy

" #

; Ad ¼
ST

d Sd 0

0 0

" #

;

where t, which satisfies t2 ¼ 1, is an extra variable to
homogenize the Eq. (5).31

Then, the problem can be reposed as homogeneous
QCQP

min
x

xTAbx; (6a)

subject to xTAdx # ed; (6b)

xTx # eg; (6c)

t2 ¼ 1: (6d)

Instead of solving the Lagrangian solution to the cost func-
tions of Eq. (5),25 we choose to use SDR, a computationally
efficient technique for solving quadratic optimization prob-
lems,31 to find the approximated solution of Eq. (6).

By defining a variable X ¼ xxT , we can obtain the SDR
of Eq. (6) as

min
X

TrðAbXÞ; (7a)

subject to TrðAdXÞ # ed; (7b)

TrðXÞ # eg; (7c)

X ! 0; (7d)

t2 ¼ 1; (7e)

where the notation ! means the matrix X is positive semide-
finite. The detailed derivation is shown in Appendix A. By
solving this SDR problem, we can obtain the global coeffi-
cients b. Note that the SDR has polynomial running time,
and it can be handled conveniently using readily available
software packages, such as CVX. We refer readers to Ref. 31
for a detailed derivation and applications of the theory.

III. 2.5D REPRODUCTION USING WEIGHTED MODE
MATCHING

The problem of 2.5D reproduction is to solve the dimen-
sionality mismatch between the 2D desired sound fields and
3D secondary sources. In the existing methods, the matching
point is simply at the center of the setup, i.e., the global ori-
gin at r¼ 0,21 i.e., the SMM approach. However, for multi-
zone reproduction, local sound zones are normally away
from the center. We propose a matching over the entire
global region, i.e., the reference distance r 2 ½0; r0+, using
the weighting function as shown in the following.

A. Algorithm 1: Weighted mode matching

The WMM is based on the following cost function to
minimize the reproduction error over the entire control
region X25

J ðd; kÞ ¼ 1

2p

ð

X
jP̂ðx; kÞ ( Pdesðx; kÞj2dr ðxÞ; (8)

where dr ðxÞ ¼ rdrd/x is the differential area element at x,
and r ¼ jjxjj.

Referring to Eq. (2), the global desired sound field can
be represented as

Pdesðx; kÞ '
XN0

m¼(N0

bmðkÞJmðkjjxjjÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
bmðjjxjj;kÞ

eim/x : (9)

The global sound field generated by an array of L loud-
speakers can be written as

P̂ðx; kÞ ¼
XL

‘¼1

d‘ðkÞG‘ðx; kÞ; (10)

where G‘ðx; kÞ represents the acoustic transfer function
(ATF) between the ‘ th loudspeaker and the observation
point x in the global system, and ½d+‘ ¼ d‘ is the ‘ th loud-
speaker driving signal.

The ATF for a 3D source is parameterised in the modal
domain as

G‘ðx;kÞ'
XN0

m¼(N0

XN0

n¼jmj
cm

n ð‘;kÞjnðkjjxjjÞYm
n ðhx;/xÞ; (11)

where Ym
n ðhx;/xÞ is the spherical harmonic function, jn is

the nth order spherical Bessel function of the first kind, and
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cm
n ð‘; kÞ are ATF coefficients for the ‘ th speaker. Note that

each loudspeaker is a 3D point source, there are ðN0 þ 1Þ2
coefficients to describe its ATF with respect to the global
control region. The ATF coefficients are assumed to be prior
knowledge, obtained from theoretical solutions or pre-
calibration.32 In anechoic condition cm

n ð‘; kÞ ¼ (ikhð2Þn ðkr‘Þ
Ym

n ðh‘;/‘Þ, where ð)Þ represents the complex conjugate,
hð2Þn is spherical Hankel function of second kind, and x‘
$ ðr‘; h‘;/‘Þ is the position of the sources.

Then, the generated 3D sound field at the height of the
human ear (elevational angle hl ¼ p =2) is

P̂ðx; kÞ '
XN0

m¼(N0

XL

‘¼1

d‘ðkÞ
XN0

n¼jmj
cm

n ð‘; kÞjnðkjjxjjÞQ
m
n

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
hmð‘;jjxjj;kÞ

eim/x ;

(12)

where Ym
n ðp =2;/xÞ ¼ Qm

n eim/x with Qm
n ¼ ð(1ÞmAm

n Pjmjn ð0Þ
and Am

n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ð2nþ1Þ=ð4p Þ+½ðn( jmjÞ!=ðnþ jmjÞ!+

p
.

Substituting Eqs. (9) and (12) into Eq. (8) leads to

J ðd; kÞ ¼
XN0

m¼(N0

ðr0

0

XL

‘¼1

d‘ðkÞhmð‘; r; kÞ ( bmðr; kÞ

$$$$$

$$$$$

2

rdr:

(13)

We then write Eq. (13) in matrix form

J ðd; kÞ ¼ dHHd( BHd( dHBþ C; (14)

with

C ¼
ðr0

0

bðr; kÞHbðr; kÞrdr; (15)

where the desired field vector bðr; kÞ ¼ ½b(N0
ðr; kÞ;…;

bN0
ðr; kÞ+T .

H½ +‘1;‘2 ¼
XN0

m¼(N0

XN0

n¼jmj

XN0

n0¼jmj
xm

n;n0cm
n ð‘1; kÞcm

n0ð‘2; kÞ:

For notation clarity, we define both n and n0 as the degree
index

B½ +‘1 ¼
XN0

m¼(N0

XN0

n¼jmj
vm

n cm
n ð‘1; kÞbmðkÞ;

and

xm
n;n0¢Qm

n Qm
n0

ðr0

0

jnðkrÞjn0ðkrÞrdr;

vm
n ¢Qm

n

ðr0

0

jnðkrÞJmðkrÞrdr:

These two integrals are continuous and are numerically cal-
culated in this work using a trapezoidal method with 10(4

spacing.

We further write

H ¼ CHWC; (16)

where C is the ATF coefficient matrix defined as
½C+n2þnþmþ1;‘ ¼ cm

n ð‘; kÞ and W is a ðN þ 1Þ2-square weight-
ing matrix defined as

W½ +n2þnþmþ1;n02þn0þm0þ1 ¼ dm(m0xm
n;n0 : (17)

The superscript ½)+H denotes the conjugate transpose opera-
tor. Note that here we define both m and m0 as the order
index.

Similarly, it can be defined that B ¼ CHXb, where

X½ +n2þnþmþ1;m0þN0þ1 ¼ dm(m0vm
n ;

and ½b+mþN0þ1 ¼ bmðkÞ.
By solving the cost function in Eq. (14), we can obtain

the loudspeaker driving signals

d̂ ¼ H(1B ¼ ðCHWCÞ(1CHXb: (18)

B. Algorithm 2: Sectorial weighted mode matching

SMM only matches the sectorial modes at n ¼ jmj and
the matching point is at the global origin r¼ 0.21 Here, we
remove the requirement of the matching at the center and
apply the weighting approach to the SMM. That is, for the
sectorial mode approximation,

hsect
m ð‘; jjxjj; kÞ ¼ cm

jmjð‘; kÞjjmjðkjjxjjÞQ
m
jmj: (19)

Then we have

Hsect ¼ CH
sectWsectCsect; (20)

where Csect is a matrix of size ð2N0 þ 1Þ , L, i.e.,
½Csect+mþN0þ1;‘ ¼ cm

jmjð‘; kÞ, and the diagonal weighting
matrix

Wsect½ +mþN0þ1;mþN0þ1 ¼ jQm
jmjj

2

ðr0

0

jjjmjðkrÞj2rdr;

is of size ð2N0 þ 1Þ , ð2N0 þ 1Þ.
Given the global sound field coefficient b and

Xsect½ +mþN0þ1;mþN0þ1 ¼ Qm
jmj

ðr0

0

jjmjðkrÞJmðkrÞrdr;

the solution for the sectorial weighted mode matching
(SWMM) is

d̂sect¼H(1
sectBsect¼ðCH

sectWsectCsectÞ(1CH
sectXsectb: (21)

The weighting terms are introduced to solve the dimension-
ality mismatch problem in 2.5D reproduction. The tradi-
tional method only matches the 2D desired field and 3D
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reproduced field at the origin, i.e., achieving the optimal
control at this point. The weighting terms we proposed have
an integral of Bessel-spherical harmonic modes over the
entire global region; based on this, we can control all the
reproduction modes present on the 2D plane and thus can
achieve optimal control over the entire region.

C. Performance analysis of weighting function

In this subsection, we analyse the weighting matrix W
and the Bessel integral term within W. In addition, we com-
pare the three modal-domain 2.5D reproduction methods,
i.e., the conventional SMM,21 the proposed WMM, and
SWMM, and have the following remarks.

• The weighting matrix W as shown in Fig. 2 is a symmet-
ric matrix. It is noted that at the horizontal plane when
nþ jmj is an odd integer, the associated Legendre func-
tions Pjmjn ð0Þ in Qm

n are equal to zero.33,34 Therefore, there
are many zeros in W, and the non-zero elements are
mainly concentrated on principal diagonal lines. In Fig. 2
different orders are separated by the white line. The low
order modes have bigger values comparing to the higher
order modes, showing that the weighting has a greater
control effect on low order modes that becomes effective
at smaller r (or more prevalent over the entire control
region).

• The weighting matrix W in Eq. (17) involves computing
the integral of Bessel-spherical harmonic modes. We
define the Bessel integral term E(kr) to investigate the
influence of the Bessel function term in W, i.e.,

EðkrÞ ¼
ðr0

0

jnðkrÞjn0ðkrÞrdr: (22)

Figure 3 shows the results of E(kr) of different orders
along with kr. Note that the zeroth order mode, which has
the biggest value, always exists, while higher order modes
gradually appear as kr increases. This also demonstrates

that the lower order modes are more prevalent over the
entire region while higher order modes become effective
for larger r.

• The biggest difference in the proposed weighting meth-
ods and conventional SMM method is the number of
effective control modes. As shown in Fig. 4, the black
dots, black circles, and white dotted circles correspond to
the sectorial, elevational, and zero modes, respectively,35

while the n and m in x and y axes represent the different
degree and order. The SMM and SWMM approaches
only match the sectorial modes at n ¼ jmj. Thus, the
number of the control modes is ð2N0 þ 1Þ. For the WMM
method truncated to N0, out of the ðN0 þ 1Þ2 modes, the
number of non-zero terms is ðN0=2þ 1ÞðN0=4þ 1Þ when
N0 is even and ½ðN0 ( 1Þ=2þ 1+½ðN0 ( 1Þ=4þ 1+ when
N0 is odd. Comparing to the SMM and SWMM, the
WMM guarantees that all modes present on the horizon-
tal plane are controlled to minimize the reproduction
error within the entire control region.

IV. SIMULATION

In this section, we verify the effectiveness of the proposed
reproduction methods through simulation-based experiments.
We make the comparison between the proposed WMM/
SWMM methods and the existing SMM method.21

FIG. 2. (Color online) A plot of the weighting matrix W with index
n2 þ nþmþ 1; n ¼ 0;…;N0; m ¼ (n;…; n, where dekr=2e ¼ 5.

FIG. 3. (Color online) A plot of the Bessel integral term E(kr) for n ¼ 1;
…; 5 as a function of kr.

FIG. 4. Sectorial and elevational modes in the x–y plane.
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A. Simulation setup

We simulated two-zone reproduction examples under
free field and reverberant environments. A rectangular room
of size 5 m, 7 m is simulated using the image source
method36 with the image order up to 5, the wall reflection
coefficients up to 0.7, and the floor and ceiling being
perfectly-absorbing. The radius of the global control region is
r0 ¼ 0:8 m. The virtual source, which is located in the far
field and incident from /V ¼ p =3, produces a monochromatic
plane wave of frequency 1000 Hz. The bright zone and dark
zone are located at ob ¼ ð0:5; 0Þ and od ¼ ð(0:5; 0Þ with
respect to the global origin, respectively. Each sound zone has
a radius of 0.15 m. A 41-element circular loudspeakers array
of radius 1 m is used for reproduction. The proposed SDR
method mentioned in Sec. II B is used to solve the desired
global coefficients b. By referring to Eqs. (5b) and (5c), we
set the energy constraints in the dark zone and global region
as ed ¼ (10 dB and eg ¼ 20 dB for perceptual requirements
in personal audio.29

Three evaluation indicators are given as follows:

• The acoustic contrast (AC) j ðkÞ between the bright zone
and dark zone

j ðkÞ ¼ 10log10

1

Vb

ð

Xb

jP̂ðx; kÞj2dr ðxÞ

1

Vd

ð

Xd

jP̂ðx; kÞj2dr ðxÞ
: (23)

• The bright zone reproduction error eðkÞ

eðkÞ ¼ 10log10

1

Vb

ð

Xb

jP̂ðx; kÞ ( Pdesðx; kÞj2dr ðxÞ

1

Vb

ð

Xb

jPdesðx; kÞj2dr ðxÞ
: (24)

• The array effort or the loudspeaker weight energy to quan-
tify the total output for generating the desired sound field

iðkÞ ¼ 10log10jjd̂ðkÞjj
2; (25)

where P̂ðx; kÞ and Pdesðx; kÞ represent the reproduced
sound field and the desired sound field at a point x within
the bright zone Xb or the dark zone Xd. Vb and Vd denote
the area of the bright zone and the dark zone, respectively.

B. Two-zone examples

The real part of the reproduced results are plotted in Fig. 5.
The display is limited to the maximum value of the recon-
structed field within the bright zone, i.e., the acoustic pres-
sures greater than 1 are white and those less than (1 are
black. Reproduction results in free field using SMM,
SWMM, and WMM are shown in Figs. 5(a), 5(b), and 5(c).
The AC of these three methods is 25.59, 21.65, and
25.83 dB, respectively. The bright zone reproduction errors
are (9.21, (13.00, and (27.40 dB, respectively. The
WMM method demonstrates the highest AC and the lowest

FIG. 5. (Color online) Examples of a two-zone reproduction where a plane wave of frequency 1000 Hz from p =3 is reproduced in the bright zone. Blue )
marks denote the locations of loudspeakers. The area in the black dashed line and white solid line correspond to the global region, bright zone, and dark
zone, respectively. First row: (a) SMM, (b) SWMM, (c) WMM in free field. Second row: (d) SMM, (e) SWMM, (f) WMM in reverberation room.
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bright zone reproduction error. The loudspeaker weight
energy of these three methods is 15.08, 6.94, and 13.28 dB,
respectively.

The second row in Fig. 5 shows the reproduction results
of these three methods in the reverberant environment. The
AC for SMM, SWMM, and WMM is 17.74, 17.07, and
31.76 dB, and the corresponding bright zone reproduction
errors are (9.40, (12.18, and (26.67 dB, respectively. The
WMM method also demonstrates the highest AC and the
lowest bright zone reproduction error. However, the loud-
speaker weight energy required in the WMM method is
about 15 dB higher than that required in the SWMM and
SMM methods. The reason for this result is that the WMM
approach controls a larger number of modes as stated in
Sec. III C, thus requiring more loudspeaker energy.

C. Performance comparison of SMM, SWMM, and
WMM

In this subsection, we show the evaluation results for
comparison of the three reproduction methods. The repro-
duction setup is the same as in the example of Fig. 5. We
especially investigate the performance for a variable of
operating frequencies, sound zone locations, and the virtual
source directions.

First, we evaluate the system performance over a broad-
band frequency range of [0.1,2] kHz in free field and a rever-
beration room. The bright zone and dark zone are about 0.5 m
away from the global center and the desired sound field is due
to a plane wave from 50-. The blue, black, and red lines corre-
spond to the SMM, SWMM, and WMM methods, respec-
tively. The results in Fig. 6(a) show that the SMM and WMM
have roughly the same AC performance, and the SWMM has
the worst AC performance. In Fig. 6(d), the WMM method

demonstrates the lowest reproduction error. This is due to the
fact that WMM applies the model weighting for all the modes
present on the horizontal plane, thus the optimal control is
achieved over the entire global region.

Next, we evaluate the system performance under differ-
ent values of the distance between the bright/dark zone cen-
ter and the global origin. The source operates at the
frequency of 1000 Hz and the desired sound field is due to a
plane wave from 50-. The results are shown in Figs. 6(b)
and 6(e). The conventional SMM has the lowest bright zone
reproduction error when the distance is less than 0.15 m.
This corresponds to the case that the sound zones are close
to the global origin, i.e., the matching point at the center of
the setup. On the other hand, the proposed WMM has
roughly the same AC performance over the entire distance
range, but with the lowest bright zone reproduction error
when the distance is above 0.24 m. Compared with SMM,
the proposed SWMM only shows marginal improvement of
bright zone reproduction accuracy when the sound zones are
further away from the center but also with the lowest AC.

We then compare the performance of these three methods
for the virtual source (or a plane wave) direction over an angle
range of [0-, 180-]. The source operates at the frequency of
1000 Hz and the bright zone and dark zone are about 0.5 m
away from the global center. As shown in Fig. 6(c), SMM and
WMM have roughly the same AC performance, while
SWMM has the worst AC performance. In terms of the repro-
duction error, the proposed WMM method can achieve the
lowest reproduction error for the angle range of [0-, 110-].

Figure 7 gives the evaluation results in the reverberation
room. The simulation parameters are consistent with those
mentioned above. In Figs. 7(a) and 7(d), the AC results of
the SMM and SWMM methods are roughly the same, except
the results at several frequency points are quite poor. The

FIG. 6. (Color online) Free field evaluation results. (a), (b), and (c) are the acoustic contrast results varying with frequency, distance, and angle, respectively.
(d), (e), and (f) are the bright zone reproduction results varying with frequency, distance and angle, respectively.
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AC performance of the WMM method is slightly better and
consistent over the entire frequency band. For sound zones at
different distances, WMM also demonstrates significant
advantage. The general trend is that the greater the distance,
the better WMM performs for both AC and reproduction error
as shown in Figs. 7(b) and 7(e). When the virtual source direc-
tion changes, the WMM method has better performance over
a wide range of angles with the lowest reproduction error
reaching (27.88 dB. These results further demonstrate the
effectiveness of the proposed WMM method.

V. EXPERIMENTAL VALIDATION

In this section, we provide experimental validation of
the proposed weighting methods in comparison with the
SMM method. The experimental validation was conducted
in the Acoustics and Audio Lab at the Center of Intelligent
Acoustics and Immersive Communications (CIAIC),
Northwestern Polytechnical University.

A. Experiment setup

We used a circular array of 48 equiangular-placed loud-
speakers at the radius 1 m and height 1.65 m to reproduce
the desired multizone sound field. The block diagram of
equipment electrical connections is shown in Fig. 8. All the
devices were controlled under the Dante network.
According to the requirement of realization process, the
experiment can be divided into ATF measurement and
reproduction stages.

1. ATF measurement

The first step is to obtain the ATF modal coefficients
cm

n ð‘; kÞ as given in Eq. (11). A rigid sphere is preferred to

perform this task because it can circumvent the Bessel zeros
problem. In our experiment, we used the 32-channel spheri-
cal microphone array Eigenmike to measure cm

n ð‘; kÞ. The
Eigenmike is a sphere of aluminium at the radius of 0.042 m
with 32 high quality microphones placed on its surface.
Elements such as microphones, pre-amplifiers, and A/D con-
verters are all packed inside the sphere, and its operating fre-
quency (i.e., the spatial aliasing frequency) up to 5000 Hz.37

The systems is capable of recording 32 channel data with
24 bit resolution at a sampling rate of 44.1 or 48 kHz. The
clock synchronization between Eigenmike and the Dante
network is achieved by connecting the output of the
Rednet3 sound card to the EMBI ADAT input of Eigenmike
through an ADAT fiber, and by setting Dante as the master
network clock.

In the recoding stage, the radius of the global control
region is up to 0.6 m corresponding to ðN0 þ 1Þ2 ¼ 256
modes at 1000 Hz. However, the Eigenmike only can cap-
ture an order up to 4, and thus the effective modes number
is ð4þ 1Þ2 ¼ 25. Therefore, we need to combine multiple
measurements together to obtain the global ATF coeffi-
cients. The minimum requirement of measurement numbers
is Q ¼ d256=25e ¼ 11. We move a single Eigenmike along
the boundary of the global control region 11 times at equal
angle interval to capture 256-point global sound pressures.38

Loudspeakers were fed one at a time with a 5-s long expo-
nential sweep of [120, 5000] Hz.39 Then, the 32-channel
captured pressure signals were delivered to the EMBI
Firewire interface through a digital CAT-6 cable, and the
output of the interfere was transmitted to a Mac Pro for
data storage and computing. The ATF coefficient extraction
from higher order microphone recordings and translation
between the local measurements and global system is shown
in Appendix B.

FIG. 7. (Color online) Reverberation room evaluation results. (a), (b), and (c) are the acoustic contrast results varying with frequency, distance, and angle,
respectively. (d), (e), and (f) are the bright zone reproduction results varying with frequency, distance, and angle, respectively.
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2. Reproduction

Given the ATF coefficients, the next step is to repro-
duce the desired sound field using the 48-channel loud-
speaker array as shown in Fig. 9(a). We use the Meyer
Sound MM-4XP miniature loudspeaker for reproduction.
This loudspeaker can deliver a maximum peak sound
pressure level (SPL) of 113 dB and has a wide operating fre-
quency range from 120 Hz to 18 kHz with very low distor-
tion. The MM-4XP loudspeaker requires a MPS-488

external power supply as shown in Fig. 8. The reproduction
system is based on ADAT protocol and 24-bit ADA8200
converters. The sound card we used is a Focusrite Rednet3
at the sampling frequency of 48 kHz. The system is driven
by the Dante controller.

As in the simulation section, the global center is set as
the origin and we have the bright and dark zone at positive x
axis and negative x axis, i.e., 0- and 180-, respectively. The
radii of the global control region and local region are 0.6
and 0.15 m, while the latter is comparable to the size of the

FIG. 8. (Color online) The block diagram of the electrical connections of equipments.

FIG. 9. (Color online) (a) The 48-
channel loudspeakers array and 32-
channel fixed gain planar Microphone
experiment setup enclosed by acoustic
baffles. (b) and (c) are the main and
top view of the 4, 8 elements micro-
phone array.
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listener’s head. The experimental space within a radius of
1.3 m is enclosed by acoustic baffles (2 m, 0.8 m) which
have two surfaces, sound absorption and reverberant, to sim-
ulate the semi-anechoic and reverberation acoustic environ-
ment. We choose the frequency range of ½200; 1000+ Hz.

The driving signals were fed to the loudspeakers array
to produce an actual sound field, and the sound pressures
within the bright and dark region were captured by the 32-
channel fixed-gain microphone array placed on a plane as
shown in Figs. 9(b) and 9(c). The measurement region of
the array is a rectangle of size 0.35 m, 0.15 m, which is
able to cover the entire local region. The spacing between
the adjacent microphone points is 0.05 m.

B. Results and discussions

The desired field is a plane wave with an amplitude of
0.5 coming from the azimuth angle / ¼ 30-. In this experi-
ment, a circular array of 48 loudspeakers was used to syn-
thesize this sound field in the bright zone with minimum
radiation into the dark zone. Both sound zones are in a plane
levelled with the listener’s ears.

Here, we use the SMM, SWMM, and WMM methods
to design the loudspeaker driving signals, and the bright
zone reproduction performance is measured through the
Eigenmike recordings extracted modal-domain coefficients.
Note that the effective observation range of the Eigenmike
is sufficient to recover sound fields below 1 kHz within
0.15 m radius.

We define the modal-domain coefficients based repro-
duction error within the bright zone as38

1ðkÞ ¼ 10 log10

jjcdes ( cjj2

jjcdesjj2

 !

; (26)

where cdes and c denote column vectors of desired and mea-
sured bright zone modal coefficients, respectively.

The conventional method SMM was compared with the
proposed weighting methods, SWMM and WMM. The
results with and without ATF calibration are plotted across
frequency range ½200; 1000+ Hz and distance range ½0:2; 0:6+
m in Figs. 10–12, respectively.

With the actual ATF knowledge, the AC result of SMM
is lower than that of SWMM and WMM for almost all
considered frequencies in the semi-anechoic experimental
environment as shown in Figs. 10(a) and 10(b), except at the
frequency of 500 Hz. This abnormal result may be caused
by the ATF measurement error due to loudspeaker/micro-
phone positioning errors, and sensor-self noise, etc. WMM
demonstrates the lowest bright zone reproduction error over
the entire frequency range as shown in Figs. 10(c) and 10(d).
In addition, the conventional SMM has the lowest AC when
the distance is larger than 0.3 m, corresponding to the opti-
mal control points of SMM which are around the global
origin. The experimental results are consistent with those
from simulations as shown in Fig. 6.

Compared to the experimental results in the semi-
anechoic environment, room reverberation degrades the
overall sound field reproduction performance, such as
around 3–7 dB acoustic contrast loss and 2–5 dB error loss
as shown in Figs. 10 and 11. The proposed WMM method
achieves the better AC results and the lowest reproduction

FIG. 10. (Color online) Semi-anechoic
experimental results with ATF calibra-
tion: (a) and (c) are the acoustic con-
trast and bright zone reproduction error
results varying with frequency when
the distance between the local origin
and global origin is fixed at 0.6 m. (b)
and (d) are the acoustic contrast and
bright zone reproduction results vary-
ing with distance when the frequency
is fixed at 700 Hz.
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error in the reverberant acoustic environments. In
addition, comparing the AC performance of these three
methods, the WMM and SWMM approaches perform
especially better when the distance between global and

local region is larger than 0.33 m, as shown in Figs. 10(b)
and 11(b). The results also demonstrate that the suppres-
sion of reverberation is very important for sound field
reproduction.

FIG. 11. (Color online) Reverberant
experimental results with ATF calibra-
tion: (a) and (c) are the acoustic con-
trast and bright zone reproduction error
results varying with frequency when
the distance between the local origin
and global origin is fixed at 0.6 m. (b)
and (d) are the acoustic contrast and
bright zone reproduction results vary-
ing with distance when the frequency
is fixed at 700 Hz.

FIG. 12. (Color online) Reverberant
experimental results without ATF cali-
bration: (a) and (c) are the acoustic
contrast and bright zone reproduction
error results varying with frequency
when the distance between the local
origin and global origin is fixed at
0.6 m. (b) and (d) are the acoustic con-
trast and bright zone reproduction
results varying with distance when the
frequency is fixed at 700 Hz.
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As shown in Figs. 12(a) and 12(b), without the actual
ATF knowledge, i.e., the ATF of the loudspeaker is mod-
elled as 3D free-field Green’s function, these three methods
have roughly the same AC performance and at some fre-
quency points, the AC results are quite poor (below 0 dB).
The bright zone reproduction error is also much greater
comparing to the results in Fig. 11. As expected, the actual
ATF knowledge is required in the mode-matching based
method to get the desired results, the same requirement as in
multi-point control based reproduction.

VI. CONCLUSION

In this work, the WMM approach was proposed for
2.5D multizone reproduction. The method is based on
weighting the Bessel-spherical harmonic modes over the
entire global control region. A detailed analysis of the
weighting function was provided to provide insights and
superiority of the proposed method. In comparison with the
conventional approach, the advantages of the proposed
weighting approach were confirmed by simulations-based
and hardware-based experiments. The experimental results
further showed that the proposed method can achieve better
reproduction performance in both the semi-anechoic and
reverberant environments.
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APPENDIX A: SEMIDEFINITE RELAXATION

The first step for deriving an SDR of Eq. (6) is to use
the cyclic property of the trace

xTAbx ¼ TrðxTAbxÞ ¼ TrðAbxxTÞ: (A1)

Both the objective function and constraints in Eq. (6)
are linear in the matrix xxT . By introducing a variable
X ¼ xxT , we have

xTAbx ¼ TrðAbXÞ; (A2)

where X is equivalent to a rank one symmetric positive
semidefinite matrix, that is

X ! 0; rankðXÞ # 1; (A3)

where X ! 0 denotes that X is positive semidefinite.
By using the result from Eq. (A2), we obtain the follow-

ing equivalent formulation of Eq. (6):

min
X

TrðAbXÞ; (A4)

subject to TrðAdXÞ # ed; (A4a)

TrðXÞ # eg; (A4b)

X ! 0; rankðXÞ # 1; (A4c)

t2 ¼ 1: (A4d)

The results show that the only difficult constraint in Eq.
(6) is the rank one constraint rankðXÞ # 1, which is noncon-
vex (the objective and all other constraints are convex in X).
Therefore, we drop the rank one constraint to obtain the
following relaxed from of Eq. (6) according to Ref. 40, that is

min
X

TrðAbXÞ; (A5)

subject to TrðAdXÞ # ed; (A5a)

TrðXÞ # eg; (A5b)

X ! 0; (A5c)

t2 ¼ 1: (A5d)

In this way, we transform the original complex-valued
QCQP problem as an SDR.

APPENDIX B: ATF RECORDING USING HIGHER
ORDER MICROPHONE

In our experiment, the loudspeakers are located
completely outside of the control region, and thus the ATF
measurements can be viewed as a spatial interior recording
problem.41,42 We adopt the method used in Ref. 38 to cap-
ture the sound pressure produced by the loudspeaker. A sin-
gle Eigenmike is moved along a horizontal circle (assuming
stationary conditions) to obtain the local sound pressure at
different observation positions.

Then, we combine multiple local measurements and
transform them to the global result using the spherical
Bessel function addition theorem.28 That is, one position
sound field coefficient g!l can be related to the global sound
field coefficients fvu as follows:

XN0

u¼(N0

XN0

v¼juj
fvuðkÞHul

v! ðop; kÞ ¼ g!l ðkÞ; (B1)

where op is the vector that points from the global origin to
the origin of the pth observation position, and

Hul
v! ðop; kÞ ¼ 4p i!(vW1W2

X1

l¼0

ilð(1Þ2u(l jlðkjjopjjÞ

, Ylðl !uÞ ðhop ;/op
Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2vþ 1Þð2! þ 1Þð2lþ 1Þ

4p

r
;

(B2)

with

W1 ¼
v ! l
0 0 0

% &
; W2 ¼

v ! l
u (l ðl ( uÞ

% &
; (B3)

denoting the Wigner 3( j symbol.
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Using the matrix-vector notation, we can represent Eq.
(B1) as

Hg¼ y; (B4)

where g¼ ½f0;…; fv2þvþuþ1;…; fðN0þ1Þ2 +
T , y¼ ½g0;…;

g1þ!2þ!þl ;…; gðNpþ1Þ2 +
T , and H is the ðNp þ 1Þ2 , ðN0 þ 1Þ2

translation matrix. The mode number upper limit of the local
and global observation region are Np ¼ dekrp=2e and N0

¼ dekr0=2e, respectively.
Because H and HH are one-sided inverse,28 that is

HHH ¼ I: (B5)

Thus, we have the following relationship:

HHy¼ g: (B6)

Comparing to Eq. (B4), we can obtain the global coefficients
using Eq. (B6) directly.
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