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Abstract

In this work we study the oscillatory behaviour of the differential equation of mixed type

x′ (t) =

∫ 0

−1
x (t− r (θ)) dν (θ) +

∫ 0

−1
x (t+ τ (θ)) dη (θ)

with delays, r (θ) , and advances, τ (θ) , both differentiable. Some analytical and numerical criteria are

obtained in order to guarantee that all solutions are oscillatory.
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1. Introduction

The aim of this work is to study the oscillatory behaviour of the differential equation of mixed type

x′ (t) =

∫ 0

−1
x (t− r (θ)) dν (θ) +

∫ 0

−1
x (t+ τ (θ)) dη (θ) (1)

where x (t) ∈ R, ν(θ) and η (θ) are real functions of bounded variation on [−1, 0] normalized so that
ν (−1) = η (−1) = 0, r (θ) and τ (θ) are nonnegative real continuous functions on [−1, 0] . Taking

‖τ‖ = max {τ (θ) : θ ∈ [−1, 0]} ,

the advance τ (θ) will be assumed to satisfy

τ (θ0) = ‖τ‖ > τ (θ) , ∀θ 6= θ0. (2)
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In case of having τ (θ0) > 0, the function η (θ) is supposed to be atomic at θ0, that is, such that

η
(
θ+0
)
− η

(
θ−0
)
6= 0. (3)

The equation (1) represents the wider class of linear functional differential equations of mixed type and
is considered by Krisztin [8] as a basis for some mathematical applications appearing in the literature, such
as in [3] and [12].

LettingR = max {‖r‖ , ‖τ‖} , by a solution of (1) we will mean any differentiable function x : [−R,+∞)→
R which satisfies (1) for every t ∈ [0,+∞) .

As usual, we will say that a solution x (t) of (1) oscillates if it has arbitrarily large zeros. In [8] x (t)
is called oscillatory if there is no cone, K, such that x (t) ∈ K, eventually. Notice that for equations, both
definitions coincide. When all solutions oscillate (1) will be said to be oscillatory.

By assuming that delays and advances are positive and differentiable on [−1, 0] , one can obtain some
special criteria for having (1) oscillatory. In this paper we will analyze this case, complementing the results
in [9] for the case where delays and advances are only continuous. Further theoretical results for delay
equations are obtained in [10] and these can be extended in a natural way to the mixed equation.

The two main ingredients in theory of linear delay equations (see [7]) are the existence of a unique
solution, for any given initial condition, and the exponential boundeness on those solutions. As is shown
in [11], this is not at all the situation of a differential equation of mixed type like (1). However, under the
atomicity assumption (3), one has that every oscillatory solution is exponentially bounded as t → ∞ ([8,
Proposition 4]). This fact enables the oscillatory behaviour of (1) to be studied through the analysis of the
zeros of the characteristic equation

λ =

∫ 0

−1
exp (−λr (θ)) dν (θ) +

∫ 0

−1
exp (λτ (θ)) dη (θ) . (4)

In fact, if we let

M (λ) =

∫ 0

−1
exp (−λr (θ)) dν (θ) +

∫ 0

−1
exp (λτ (θ)) dη (θ) ,

by [8, Corollary 5] the equation (1) is oscillatory if and only if M (λ) 6= λ, for every real λ. Therefore, if
either

M (λ) > λ, ∀λ ∈ R (5)

or
M (λ) < λ, ∀λ ∈ R (6)

we can conclude that equation (1) is oscillatory.

2. Differentiable delays and advances

By an increasing (decreasing) function on an interval [a, b] we will mean any nondecreasing (respectively
nonincreasing) function, φ, such that φ (a) < φ (b) (respectively, φ (a) > φ (b)). Assuming that −1 6 θ1 ≤ 0,
letD+(θ1) be the family of all positive differentiable functions, which are increasing on [−1, θ1] and decreasing
on [θ1, 0] . If θ1 = 0, we obtain the set, D+

i of all positive increasing differentiable functions on the interval
[−1, 0] . In the case where θ1 = −1, we obtain the class D+

d of all decreasing positive differentiable functions
on [−1, 0] .

For r ∈ D+(θ1) and τ ∈ D+(θ0) with θ0 as in (2), we define the value

S1 = e−1
(∫ 0

−1
ν (θ) d ln r (θ) +

∫ 0

−1
η (θ) d ln τ (θ)

)
.

Through (5) we obtain the following theorems.
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Theorem 2.1. For r ∈ D+(θ1) and τ ∈ D+(θ0), let

ν (θ) 6 0 for θ ∈ [−1, θ1[ , ν (θ) > 0 for θ ∈ [θ1, 0] (7)

η (θ) 6 0 for θ ∈ [−1, θ0[ , η (θ) > 0 for θ ∈ [θ0, 0] , (8)

such that η (0) > 0. If
1 + ln (τ (0) η (0)) + τ (0)S1 > 0 (9)

then the equation (1) is oscillatory.

Proof: For λ = 0, we have M (0) = ν (0) + η (0) > 0. Let λ 6= 0. Using integration by parts we obtain

M (λ) = exp (−λr (0)) ν (0) + exp (λτ (0)) η (0) +

+λ

∫ 0

−1
exp (−λr (θ)) ν (θ) dr (θ)− λ

∫ 0

−1
exp (λτ (θ)) η (θ) dτ (θ) . (10)

Since ν (θ) r′ (θ) 6 0 and η (θ) τ ′ (θ) 6 0 for θ ∈ [−1, 0] , and u exp (−u) 6 1/e, for every real u, we have

M (λ) > exp (−λr (0)) ν (0) + exp (λτ (0)) η (0) + S1.

Therefore

M (λ)− λ > exp (−λr (0)) ν (0) + exp (λτ (0)) η (0)− λ+ S1

> exp (λτ (0)) η (0)− λ+ S1. (11)

As η (0) > 0, the function f (λ) = exp (λτ (0)) η (0)− λ attains an absolute minimum at

λ0 = − ln (τ (0) η (0))

τ (0)

and consequently

M (λ)− λ >
1

τ (0)
+

1

τ (0)
ln (τ (0) η (0)) + S1 > 0.

Thus (5) is satisfied, which completes the proof.

Example 2.1. Consider the equation (1) for ν (θ) = (3θ + 1) (θ + 1) , η (θ) = (θ + 1) (2θ + 1) ,

r (θ) = −3

2
θ2 − θ + 1

and
τ (θ) = −θ2 − θ + 2

As

S1 = e−1
∫ 0

−1
(3θ + 1) (θ + 1)

−3θ + 1

− 3
2θ

2 − θ + 1
dθ + e−1

∫ 0

−1
(θ + 1) (2θ + 1)

−2θ − 1

−θ2 − θ + 2
dθ

≈ −0.1421,

1 + ln (τ (0) η (0)) + τ (0)S1 = 1 + ln 2 + 2S1 ≈ 1.4089,

the corresponding equation (1) is oscillatory.
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Example 2.2. Consider the equation (1) with

ν (θ) =

{
−θ − 1, if θ ∈ [−1, 0[
1, if θ = 0

,

η (θ) = θ + 1, r (θ) = θ + 2 and τ (θ) = −θ + 1.

The corresponding equation is oscillatory since

S1 = e−1
∫ 0

−1

−θ − 1

θ + 2
dθ + e−1

∫ 0

−1

− (θ + 1)

−θ + 1
dθ ≈ −0.25499

and
1 + ln (τ (0) η (0)) + τ (0)S1 = 1 + ln 1 + S1 ≈ 0.74501.

Now let

S2 =

∫ 0

−1
ν (θ) dr (θ)−

∫ 0

−1
η (θ) dτ (θ) .

Theorem 2.2. Let r ∈ D+(θ1), τ ∈ D+(θ0). If (7)-(8) hold such that ν (0) + η (0) > 0 and

1− eτ (0) η (0) < S2 < 1 + er (0) ν (0) (12)

then equation (1) is oscillatory.

Proof: The case where λ = 0, follows as in the proof of Theorem 2.1.
For λ 6= 0, by (10) we have

M (λ)

λ
=

exp (−λr (0))

λ
ν (0) +

exp (λτ (0))

λ
η (0)

+

∫ 0

−1
exp (−λr (θ)) ν (θ) dr (θ)−

∫ 0

−1
exp (λτ (θ)) η (θ) dτ (θ) . (13)

Let λ > 0. Since exp (−u) < 1, expu > 1, exp(−u)
u > 0 and expu

u ≥ e, for u > 0, we obtain

M (λ)

λ
> eτ (0) η (0) + S2 > 1

and so M (λ) > λ.
For λ < 0, the same arguments imply that

M (λ)

λ
< −er (0) ν (0) + S2 < 1

and M (λ) > λ. Hence (5) is again satisfied and (1) is oscillatory.

Example 2.3. Consider the equation (1) with

ν (θ) = (5θ + 4) (θ + 1) , η (θ) = (10θ + 9) (θ + 1) ,

r (θ) = −5

2
θ2 − 4θ + 5

and
τ (θ) = −5θ2 − 9θ + 1.

We have

S2 = −
∫ 0

−1
(5θ + 4)

2
(θ + 1) dθ +

∫ 0

−1
(10θ + 9)

2
(θ + 1) dθ ≈ 15.417
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and
−23.465 ≈ 1− 9e = 1− eτ (0) η (0) < S2 < 1 + er (0) ν (0) = 1 + 20e ≈ 55.366.

So, the corresponding equation is oscillatory. Notice that in this case as

S1 = e−1

(∫ 0

−1

− (5θ + 4)
2

(θ + 1)

− 5
2θ

2 − 4θ + 5
dθ +

∫ 0

−1

− (10θ + 9)
2

(θ + 1)

−5θ2 − 9θ + 1
dθ

)
≈ −3.6737

and
1 + ln (τ (0) η (0)) + τ (0)S1 = 1 + ln 9 + S1 = −0.47648 < 0.

we cannot apply Theorem 2.1.

With respect to condition (6) we obtain the following theorem.

Theorem 2.3. Let r ∈ D+(θ1), τ ∈ D+(θ0) and

ν (θ) > 0 for θ ∈ [−1, θ1[ , ν (θ) 6 0 for θ ∈ [θ1, 0] , (14)

η (θ) > 0 for θ ∈ [−1, θ0[ , η (θ) 6 0 for θ ∈ [θ0, 0] (15)

such that ν (0) < 0. If
1 + ln (r (0) |ν (0)|)− r (0)S1 > 0 (16)

then the equation (1) is oscillatory.

Proof: For λ = 0, we have M (0) = ν (0) + η (0) < 0 = λ.
Let λ 6= 0. Applying (10) and taking into account that now ν (θ) r′ (θ) > 0 and η (θ) τ ′ (θ) > 0 for

θ ∈ [−1, 0] , and u exp (−u) 6 1/e, for every real u, we have

M (λ) 6 exp (−λr (0)) ν (0) + exp (λτ (0)) η (0) + S1.

Notice that, in this case, M (λ)→ −∞, as λ→ ±∞.
Therefore

M (λ)− λ ≤ exp (−λr (0)) ν (0)− λ+ S1. (17)

The function g (λ) = exp (−λr (0)) ν (0)− λ has a maximum at

λ0 =
ln (r (0) |ν (0)|)

r (0)

and consequently by (16)

M (λ)− λ 6 − 1

r (0)
− 1

r (0)
ln (r (0) |ν (0)|) + S1 < 0,

for every λ ∈ R.
Thus (6) is satisfied and (1) is oscillatory.

Remark 2.1. Notice that conditions (7) and (8) of Theorem 2.1, by (11), imply that M (λ)− λ→ +∞, as
λ → ±∞. Analogously to (14) and (15) of Theorem 2.3, by (17), one has M (λ) − λ → −∞, as λ → ±∞.
This means that in such situations, the real roots of the characteristic equation (4) are bounded.
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Example 2.4. Consider the equation (1) with

ν (θ) = (−θ − 1) (4θ + 3) , η (θ) = −8θ − 8,

r (θ) = −2θ2 − 3θ + 1,

and
τ (θ) = −θ + 1.

Notice that

S1 = e−1
∫ 0

−1

(−θ − 1) (4θ + 3) (−4θ − 3)

−2θ2 − 3θ + 1
dθ + e−1

∫ 0

−1

8θ + 8

−θ + 1
dθ ≈ 1.6372.

and
1 + ln (r (0) |ν (0)|)− r (0)S1 = 1 + ln 3− S1 ≈ 0.4614.

By Theorem 2.3, the corresponding equation (1) is oscillatory.

Example 2.5. Consider

ν (θ) =

{
θ + 1, if θ ∈ [−1, 0[
−1, if θ = 0

,

η (θ) = −θ − 1, r (θ) = −θ2 + 2 and τ (θ) = −θ + 3.

The equation (1) is oscillatory since

S1 = e−1
(∫ 0

−1

−2θ (θ + 1)

−θ2 + 2
dθ +

∫ 0

−1

θ + 1

−θ + 3
dθ

)
≈ 0.1291,

and
1 + ln (r (0) |ν (0)|)− r (0)S1 = 1 + ln 2− 2S1 ≈ 1.4349.

Theorem 2.4. Let r ∈ D+(θ1), τ ∈ D+(θ0) and assume that (14)-(15) are satisfied such that ν (0)+η (0) <
0. If

1 + er (0) ν (0) < S2 < 1− eτ (0) η (0) (18)

then the equation (1) is oscillatory.

Proof: When λ = 0, as before one has M (0) = ν (0) + η (0) < 0.
Let λ > 0. Using (13) and the arguments as in Theorem 2.2, we obtain

M (λ)

λ
< eτ (0) η (0) + S2,

and by (18) follows that M (λ) < λ.
For λ < 0, the same arguments as before enable us to conclude that

M (λ)

λ
> er (0) |ν (0)|+ S2 > 1.

So, by (18) one has also M (λ) < λ, which achieves the proof.
For the case where θ0 = θ1 = −1, the delays and advances are in D+

d.. When θ0 = θ1 = 0, the delays and
advances are in D+

i . The following example illustrates this situation for Theorem 2.4.
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Example 2.6. Let the equation (1)

ν (θ) = − (5θ + 1) (θ + 1) , η (θ) = − (6θ + 1) (θ + 1) ,

r (θ) = −10θ2 − 4θ + 10,

and
τ (θ) = −3θ2 − θ + 1.

We have

S2 =

∫ 0

−1
(5θ + 1) (θ + 1) (20θ + 4) dθ −

∫ 0

−1
(6θ + 1)

2
(θ + 1) dθ

≈ 2.1667

−26.138 ≈ 1− 10e = 1 + er (0) ν (0) < S2 < 1− eτ (0) η (0) = 1 + e ≈ 3.7183,

so, the corresponding equation is oscillatory.

3. Numerical experiments

In this section, we show how numerical approximations can be used to derive information about oscillation
or non-oscillation of solutions to a mixed-type equation. To begin, we give an overview of the approach,
which builds on that adopted in [4]. We give more details later.

The general approach is to derive a discrete system that approximates the underlying mixed-type equation
and to analyze the behaviour of solutions of the discrete scheme. The approach we have adopted here is to
use a very simple discretization, based on an Euler rule to approximate the derivative on the left hand side
of the equation, and a trapezoidal rule to approximate the integrals on the right hand side. In principle,
one could use a more complicated approach, but the results we obtain here are very good and the method
is already effective in our view.

As a general principle, we shall use a fixed step length h > 0 and the resulting system of discrete
equation will take the form of difference equations or a recurrence relation. This can be analyzed using
its characteristic equation and (for no oscillatory solutions) we are looking for the case when there are no
non-negative real characteristic roots.

The root counting method we have adopted (see [4] for further discussion) is based on an application
of the argument principle and Rouché’s Theorem to count zeros of a polynomial function inside a closed
path. We choose a rectangular path with vertices at 0 ± 1

M i,M ± 1
M i for large positive values of M ∈ R

and count the zeros inside the rectangle as M →∞. As we saw in [4], one can show that the characteristic
polynomial of the discrete problem has zeros close to the positive real axis only if the characteristic equation
of the underlying continuous problem has characteristic values close to the real axis. Further details of the
analytical results will be found in [4] (see also [1, 2, 5, 6].)

For the detail, consider the numerical scheme for the equation (1)

x′(t) =

∫ 0

−1
x(t− r(θ)) dν(θ) +

∫ 0

−1
x(t+ τ(θ)) dη(θ)

where, x(t) ∈ R, ν(θ) and η(θ) are real functions of bounded variation on [−1, 0] normalized in manner that
ν(−1) = η(−1) = 0, r(θ) and τ(θ) are nonnegative real continuous functions on [−1, 0]. We shall use the
backward Euler method to approximate the time derivative and use the trapzoidal method to approximate
the integral. Then we obtain the corresponding discrete characteristic polynomial. Further we use Rouché’s
Theorem to find the numbers of real roots of the discrete characteristic polynomial. We observe that the
equation (1) is oscillatory if and only if the characteristic polynomial has no real roots, which is consistent
with the theoretic results.

Below we will describe how to find the discrete characteristic polynomial of (1). In all the numerical
examples, we assume that r(θ), ν(θ), τ(θ) and η(θ) are quadratic polynomials.
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Let us consider how to discretize the integral
∫ 0

−1 x(t− r(θ)) dν(θ). A similar idea can be applied to the

integral
∫ 0

−1 x(t+ τ(θ)) dη(θ)
We first need to find the critical point θr of r(θ) on [−1, 0], i.e., r′(θr) = 0. Assume that r(θ) attains its

maximum value at θr, i.e., r(θ) is increasing on [−1, θr] and decreasing on [θr, 0]. We also assume that

r(−1) = r−1 > 0, r(0) = r0 > 0.

Obviously, in this case r(θr) = rc ≥ max{r−1, r0}.
We write the integral in two parts:∫ 0

−1
x(t− r(θ)) dν(θ) =

∫ θr

−1
x(t− r(θ)) dν(θ) +

∫ 0

θr

x(t− r(θ)) dν(θ).

Let 0 = t0 < t1 < t2 < · · · < tn < . . . be time points and let h = tj+1 − tj be the time step.

The idea of the discretization of the integral
∫ θr
−1 x(t + r(θ)) dν(θ) is to find two nonnegative integers

N1, N2, N1 > N2 such that
−1 = θ−N1

< θ−N1+1 < · · · < θ−N2
= θr,

is a partition of [−1, θr] and

r(θ−N1
) = r(−1) = r−1 = N1h, (19)

r(θj) = N1h+mr(N1 + j)h, j = −N1 + 1,−N1 + 2, . . . ,−N1 + (N1 −N2 − 1), (20)

r(θ−N2) = r(θr) = rc = N1h+mr(N1 −N2)h. (21)

Here mr is some positive integer which guarantees that N2 ≥ 0. Such N1 and N2 can be obtained by (19)
and (21),

N1 =
r−1
h
, N2 =

(mr + 1)N1 − rc
h

mr
. (22)

Note that θj , j = −N1,−N1 + 1, . . . ,−N1 + (N1 −N2) can be obtained by solving (19) - (21) for the given
r(θ).

The idea of the discretization of the integral
∫ 0

θr
x(t + r(θ)) dν(θ) is to find two nonnegative integers

N3, N4 such that
θr = θ−N3

< θ−N3+1 < · · · < θ−1 < θ0 = 0,

is a partition of [θr, 0] and

r(θ0) = r(0) = r0 = N4h, (23)

r(θl) = (N3h+N4h)− (N3 + l)h, l = −N3 + 1,−N3 + 2, . . . ,−1, (24)

r(θ−N3) = r(θr) = rc = N3h+N4h. (25)

Such N3 and N4 can be obtained by (23) and (25),

N4 =
r0
h
, N3 =

rc
h
−N4. (26)

Note that θl, l = −N3,−N3 + 1, . . . ,−1, 0 can be obtained by solving (23) - (25) for the given r(θ).
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Now we can discretize the integral
∫ 0

−1 x(t+ r(θ)) dν(θ) at t = tn. We have∫ 0

−1
x(tn − r(θ)) dν(θ) =

∫ θr

−1
x(tn − r(θ)) dν(θ) +

∫ 0

θr

x(tn − r(θ)) dν(θ)

≈
−N2−1∑
j=−N1

x(tn − r(θj))
(
ν(θj+1)− ν(θj)

)
+

−1∑
l=−N3

x(tn − r(θl))
(
ν(θl+1)− ν(θl)

)

=

−N2−1∑
j=−N1

x(nh− [N1h+mr(N1 + j)h])
(
ν(θj+1)− ν(θj)

)

+

−1∑
l=−N3

x(nh− [N3h+N4h− (N3 + l)h])
(
ν(θl+1)− ν(θl)

)
Similarly we can discretize the integral

∫ 0

−1 x(t+ τ(θ)) dη(θ). Now let us summarize the steps to find the
characteristic polynomial of (1).

Step 1. Find the critical point θr of r(θ) on [−1, 0]. Without loss of the generality, we assume that r(θ)
is increasing on [−1, θr] and decreasing on [θr, 0] and r(−1) = r−1 > 0, r(0) = r0 > 0.

Step 2. Find the nonnegative integers N1, N2, N1 > N2 by

N1 =
r−1
h
, N2 =

(mr + 1)N1 − rc
h

mr
,

where rc = r(θr) and mr is some positive integer such that N2 ≥ 0.
Find the nonnegative integers N3 and N4 by

N4 =
r0
h
, N3 =

rc
h
−N4.

Step 3. Find the critical point θτ of τ(θ) on [−1, 0]. Without loss of the generality, we assume that τ(θ)
is increasing on [−1, θτ ] and decreasing on [θτ , 0] and τ(−1) = τ−1 > 0, τ(0) = τ0 > 0.

Step 4. Find the nonnegative integers M1,M2, M1 > M2 by

M1 =
τ−1
h
, M2 =

(mτ + 1)M1 − τc
h

mτ
,

where τc = τ(θτ ) and mτ is some positive integer such that M2 ≥ 0.
Find the nonnegative integers M3 and M4 by

M4 =
τ0
h
, M3 =

τc
h
−M4.

Step 5. Approximating the time derivative in (1) by the backward Euler method and approximating the
integral in (1) by the Trapezoidal method, we obtain, at time tn,

x(tn+1)− x(tn)

h
≈
−N2−1∑
j=−N1

x
(
nh− [N1h+mr(N1 + j)h]

)(
ν(θj+1)− ν(θj)

)
+

−1∑
l=−N3

x
(
nh− [N3h+N4h− (N3 + l)h]

)(
ν(θl+1)− ν(θl)

)
+

−M2−1∑
j=−M1

x
(
nh+ [M1h+mτ (M1 + j)h]

)(
η(θ′j+1)− η(θ′j)

)
+

−1∑
l=−M3

x
(
nh+ [M3h+M4h− (M3 + l)h]

)(
η(θ′l+1)− η(θ′l)

)
.
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Here θj and θl are determined by

r(θj) = N1h+mr(N1 + j)h, j = −N1,−N1 + 1, . . . ,−N2,

and
r(θl) = (N3h+N4h)− (N3 + l)h, l = −N3,−N3 + 1, . . . ,−1, 0.

Similarly, θ′j and θ′l are determined by

r(θ′j) = M1h+mτ (M1 + j)h, j = −M1,−M1 + 1, . . . ,−M2,

and
r(θ′l) = (M3h+M4h)− (M3 + l)h, l = −M3,−M3 + 1, . . . ,−1, 0.

Denote xn ≈ x(tn), n = 0, 1, 2, . . . . We have

xn+1 − xn

h
=

−N2−1∑
j=−N1

xn−[N1+mr(N1+j)]
(
ν(θj+1)− ν(θj)

)
+

−1∑
l=−N3

xn−[N3+N4−(N3+l)]
(
ν(θl+1)− ν(θl)

)
+

−M2−1∑
j=−M1

xn+[M1+mτ (M1+j)]
(
η(θ′j+1)− η(θ′j)

)
+

−1∑
l=−M3

xn+[M3+M4−(M3+l)]
(
η(θ′l+1)− η(θ′l)

)
.

Denote N = max{N1 +mr(N1 −N2 − 1), N3 +N4}. Choosing n = N and replacing x by z, we get the
following discrete characteristic equation of (1)

P (z) = −zN+1 + zN + h
[−N2−1∑
j=−N1

zn−[N1+mr(N1+j)]
(
ν(θj+1)− ν(θj)

)
+

−1∑
l=−N3

zn−[N3+N4−(N3+l)]
(
ν(θl+1)− ν(θl)

)
+

−M2−1∑
j=−M1

zn+[M1+mτ (M1+j)]
(
η(θ′j+1)− η(θ′j)

)
+

−1∑
l=−M3

zn+[M3+M4−(M3+l)]
(
η(θ′l+1)− η(θ′l)

)]
.

Step 6. Apply Rouché’s Theorem to determine the existence of the positive real roots of the characteristic
polynomial P (z).

1

2πi

∫
C

P ′(z)

P (z)
dz = Number of zeros of P (z) inside the closed curve C.

In our numerical simulation, we chose the curve C as the boundary of a rectangle with vertices A(0, 1
M ),

B(0,− 1
M ), C(M,− 1

M ) and D(M, 1
M ) for some sufficiently large M .

Remark 3.1. We can use a similar idea to work on the case where r(−1) = r−1 < 0 and r(0) = r0 < 0, or
r(−1) · r(0) < 0.
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Remark 3.2. We can also use a similar idea to work on the case where r(θ) (or τ(θ)) is decreasing on
[−1, θc] (or [−1, θτ ]) and increasing on [θc, 0] (or [θτ , 0]).

Below we will consider how to construct the discrete characteristic polynomials for some examples.

Example 3.1. Consider the equation (1) with the conditions of example 2.1

x′(t) =

∫ 0

−1
x(t− r(θ)) dν(θ) +

∫ 0

−1
x(t+ τ(θ)) dη(θ). (27)

Here
ν(θ) = (3θ + 1)(θ + 1), η(θ) = (θ + 1)(2θ + 1),

and

r(θ) = −3

2
θ2 − θ + 1, τ(θ) = −θ2 − θ + 2.

Let us find the discrete characteristic polynomial of (27). We first find the critical point θr of r(θ) on
[−1, 0]. Let r′(θ) = −3θ − 1 = 0. we get θr = − 1

3 . Further it is easy to find that r(θ) is increasing on
[−1, θr] and decreasing on [θr, 0] and r(−1) = r−1 = 1

2 > 0, r(0) = r0 = 1 > 0 and r(θr) = rc = 7
6 .

The nonnegative integers N1, N2, N1 > N2 can be determined by

N1 =
r−1
h

=
1

2h
, N2 =

(mr + 1)N1 − rc
h

mr
=

1

6h
,

where we choose mr = 2 which guarantees that N2 > 0.
The nonnegative integers N3 and N4 can be determined by

N4 =
r0
h

=
1

h
, N3 =

rc
h
−N4 =

1

6h
.

Next we will find the critical point θτ of τ(θ) on [−1, 0]. Let τ ′(θ) = −2θ − 1 = 0. we get θτ = − 1
2 .

Further it is easy to find that τ(θ) is increasing on [−1, θτ ] and decreasing on [θτ , 0] and τ(−1) = τ−1 = 2 >
0, τ(0) = τ0 = 2 > 0 and τ(θτ ) = τc = 2.25.

The nonnegative integers M1,M2, M1 > M2 can be determined by

M1 =
τ−1
h

=
2

h
, M2 =

(mτ + 1)M1 − τc
h

mτ
=

7

4h
,

where we choose mτ = 1 which guarantees that M2 ≥ 0.
The nonnegative integers M3 and M4 can be determined by

M4 =
τ0
h

=
2

h
, M3 =

τc
h
−M4 =

1

4h
.

Finally we denote N = max{N1 + 2(N1 − N2 − 1), N3 + N4}. Then we obtain the following discrete
characteristic equation of (27)

P (z) = −zN+1 + zN + h
[−N2−1∑
j=−N1

zN−[N1+2(N1+j)]
(
ν(θj+1)− ν(θj)

)
+

−1∑
l=−N3

zN−[N3+N4−(N3+l)]
(
ν(θl+1)− ν(θl)

)
+

−M2−1∑
j=−M1

zN+[M1+(M1+j)]
(
η(θ′j+1)− η(θ′j)

)
+

−1∑
l=−M3

zN+[M3+M4−(M3+l)]
(
η(θ′l+1)− η(θ′l)

)]
.
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Here θj and θl are determined by

r(θj) = −3

2
θ2j − θj + 1 = (3N1 + 2j)h, j = −N1,−N1 + 1, . . . ,−N2,

and

r(θl) = −3

2
θ2l − θl + 1 = N4h− lh, l = −N3,−N3 + 1, . . . ,−1, 0.

which implies that

θj =
1 +

√
1 + 6

(
1− (3N1 + 2j)h

)
2× (−3/2)

, j = −N1,−N1 + 1, . . . ,−N2,

and

θl =
1−

√
1 + 6

(
1−N4h+ lh

)
2× (−3/2)

, l = −N3,−N3 + 1, . . . ,−1, 0.

Similarly, θ′j and θ′l are determined by

θ′j =
1 +

√
1 + 4

(
2− (2M1 + j)h

)
2× (−1)

, j = −M1,−M1 + 1, . . . ,−M2,

and

θ′l =
1−

√
1 + 4

(
2−M4h+ lh

)
2× (−1)

, l = −M3,−M3 + 1, . . . ,−1, 0.

Applying Rouché’s Theorem, we find that P (z) has no positive real roots and so this satisfies the conditions
for discrete equation to be oscillatory. Hence the numerical results are consistent with the theoretical results
about the oscillatory property of the equation (27). See Figure 1 and Table 1.

Step Length h Length of Rectangle M Number of Zeros NP
0.05 2 12
0.05 4 6
0.05 10 2
0.05 20 2
0.05 large 0

Table 1: cf Fig 1: Number of zeros of the polynomial by Rouché’s Theorem

Example 3.2. Consider the equation (1) for the example 2.2

x′(t) =

∫ 0

−1
x(t− r(θ)) dν(θ) +

∫ 0

−1
x(t+ τ(θ)) dη(θ). (28)

Here

ν(θ) =

{
−θ − 1, −1 ≤ θ < 0,

1, θ = 0,

and
η(θ) = θ + 1, r(θ) = θ + 2, τ(θ) = −θ + 1.

We now find the discrete characteristic polynomial of (28). We first find the critical point θr of r(θ) on
[−1, 0]. We get θr = 0. Further it is easy to see that r(θ) is increasing on [−1, θr] and r(−1) = r−1 = 1 >
0, r(0) = r0 = 2 > 0 and r(θr) = rc = 2.
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Figure 1: Characteristic Plot for h=0.05, M=10

The nonnegative integers N1, N2, N1 > N2 can be determined by

N1 =
r−1
h

=
1

h
, N2 =

(mr + 1)N1 − rc
h

mr
= 0,

where we choose mr = 1 which guarantees that N2 ≥ 0.
Next we will find the critical point θτ of τ(θ) on [−1, 0]. We get θτ = −1. Further it is easy to see that

τ(θ) is decreasing on [θτ , 0] and τ(−1) = τ−1 = 2 > 0, τ(0) = τ0 = 1 > 0 and τ(θτ ) = τc = 2.
The nonnegative integers M3,M4 can be determined by

M4 =
τ0
h

=
1

h
, M3 =

τc
h
−M4 =

1

h
.

Finally we denote N = N1 +(N1−N2−1). Then we obtain the following discrete characteristic equation
of (28)

P (z) = −zN+1 + zN + h
[−N2−1∑
j=−N1

zN−[N1+(N1+j)]
(
ν(θj+1)− ν(θj)

)
+

−1∑
l=−M3

zN+[M3+M4−(M3+l)]
(
η(θ′l+1)− η(θ′l)

)]
. (29)

Here θj are determined by

r(θj) = θj + 2 = N1h+ (N1 + j)h, j = −N1,−N1 + 1, . . . ,−N2,

which implies that
θj = N1h+ (N1 + j)h− 2, j = −N1,−N1 + 1, . . . ,−N2.

Similarly, θ′l are determined by

τ(θ′l) = −θ′l + 1 = (M3h+M4h)− (M3 + l)h, j = −M3,−M3 + 1, . . . ,−1, 0.
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Figure 2: Characteristic Plot for h=0.01, M=8

which implies that

θ′l = −(M3h+M4h) + (M3 + l)h+ 1, l = −M3,−M3 + 1, . . . ,−1, 0.

Remark 3.3. Note that ν(θ) has a jump at θ = 0, therefore we have, in (29),

ν(θ−N2
)− ν(θ−N2−1) = ν(0)− ν(N1h+N1h−N2h− h)

= ν(0)− ν(2− h) = 1−
(
− (2− h)− 1

)
= 4− h,

Applying Rouché’s Theorem, we find that P (z) has no positive real roots and therefore satisfies the
conditions for the discrete equation to be oscillatory. Hence the numerical results are consistent with the
theoretical results about the oscillation proprty for the equation (28). See Figure 2 and Table 2.

Example 3.3. Consider the equation (1) for the example 2.3

x′(t) =

∫ 0

−1
x(t− r(θ)) dν(θ) +

∫ 0

−1
x(t+ τ(θ)) dη(θ). (30)

Here
ν(θ) = (5θ + 4)(θ + 1), η(θ) = (10θ + 9)(θ + 1),

and

r(θ) = −5

2
θ2 − 4θ + 5, τ(θ) = −5θ2 − 9θ + 1.

We now find the discrete characteristic polynomial of (30). We first find the critical point θr of r(θ) on
[−1, 0]. Let r′(θ) = −5θ − 4 = 0. We get θr = − 4

5 . Further it is easy to find that r(θ) is increasing on
[−1, θr] and decreasing on [θr, 0] and r(−1) = r−1 = 6.5 > 0, r(0) = r0 = 5 > 0 and r(θr) = rc = 6.6.

The nonnegative integers N1, N2, N1 > N2 can be determined by

N1 =
r−1
h

=
6.5

h
, N2 =

(mr + 1)N1 − rc
h

mr
= 2N1 −

6.6

h
,
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where we choose mr = 1 which guarantees that N2 ≥ 0.
The nonnegative integers N3 and N4 can be determined by

N4 =
r0
h

=
5

h
, N3 =

rc
h
−N4 =

6.6

h
−N4.

Next we will find the critical point θτ of τ(θ) on [−1, 0]. Let τ ′(θ) = −10θ − 9 = 0. we get θτ = − 9
10 .

Further it is easy to find that τ(θ) is increasing on [−1, θτ ] and decreasing on [θτ , 0] and τ(−1) = τ−1 = 5 >
0, τ(0) = τ0 = 1 > 0 and τ(θτ ) = τc = 5.05.

The nonnegative integers M1,M2, M1 > M2 can be determined by

M1 =
τ−1
h

=
5

h
, M2 =

(mτ + 1)M1 − τc
h

mτ
= 2M1 −

5.05

h
,

where we choose mτ = 1 which guarantees that M2 ≥ 0.
The nonnegative integers M3 and M4 can be determined by

M4 =
τ0
h

=
2

h
, M3 =

τc
h
−M4 =

1

4h
.

Finally we denote N = max{N1 + 2(N1 − N2 − 1), N3 + N4}. Then we obtain the following discrete
characteristic equation of (30)

P (z) = −zN+1 + zN + h
[−N2−1∑
j=−N1

zN−[N1+2(N1+j)]
(
ν(θj+1)− ν(θj)

)
+

−1∑
l=−N3

zN−[N3+N4−(N3+l)]
(
ν(θl+1)− ν(θl)

)
+

−M2−1∑
j=−M1

zN+[M1+(M1+j)]
(
η(θ′j+1)− η(θ′j)

)
+

−1∑
l=−M3

zN+[M3+M4−(M3+l)]
(
η(θ′l+1)− η(θ′l)

)]
.

Here θj and θl are determined by

r(θj) = −5

2
θ2j − 4θj + 5 = (2N1 + j)h, j = −N1,−N1 + 1, . . . ,−N2,

and

r(θl) = −5

2
θ2j − 4θj + 5 = N4h− lh, l = −N3,−N3 + 1, . . . ,−1, 0.

which implies that

θj =
4 +

√
16 + 10

(
5− (2N1 + j)h

)
2× (−5/2)

, j = −N1,−N1 + 1, . . . ,−N2,

and

θl =
4−

√
16 + 10

(
5−N4h+ lh

)
2× (−5/2)

, l = −N3,−N3 + 1, . . . ,−1, 0.

Similarly, θ′j and θ′l are determined by

θ′j =
9 +

√
81 + 20

(
1− (2M1 + j)h

)
2× (−5)

, j = −M1,−M1 + 1, . . . ,−M2,
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Figure 3: Characteristic Plot for h=0.05, M=20

and

θ′l =
9−

√
81 + 20

(
1−M4h+ lh

)
2× (−5)

, l = −M3,−M3 + 1, . . . ,−1, 0.

Applying Rouché’s Theorem, we find that P (z) has no positive real roots which satisfies the conditions
for oscillation of the discrete equation. Hence the numerical results are consistent with the theoretical results
about the oscillation of the equation (30). See Figure 3 and Table 3.

Step Length h Length of Rectangle M Number of Zeros Np
0.05 2 78
0.05 4 38
0.05 10 14
0.05 20 8
0.05 large 0

Table 2: cf Fig 3 : Number of zeros of the polynomial by Rouché’s Theorem

Example 3.4. Consider the equation (1) for the example 2.4

x′(t) =

∫ 0

−1
x(t− r(θ)) dν(θ) +

∫ 0

−1
x(t+ τ(θ)) dη(θ). (31)

Here
ν(θ) = (−θ − 1)(4θ + 3), η(θ) = −8θ − 8,

and
r(θ) = −2θ2 − 3θ + 1, τ(θ) = −θ + 1.

We now find the discrete characteristic polynomial of (31). We first find the critical point θr of r(θ) on
[−1, 0]. Let r′(θ) = −4θ − 3 = 0. We get θr = − 3

4 . Further it is easy to find that r(θ) is increasing on
[−1, θr] and decreasing on [θr, 0] and r(−1) = r−1 = 2 > 0, r(0) = r0 = 1 > 0 and r(θr) = rc = 17

8 .
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The nonnegative integers N1, N2, N1 > N2 can be determined by

N1 =
r−1
h

=
2

h
, N2 =

(mr + 1)N1 − rc
h

mr
= 2N1 −

17

8h
,

where we choose mr = 1 which guarantees that N2 ≥ 0.
The nonnegative integers N3 and N4 can be determined by

N4 =
r0
h

=
1

h
, N3 =

rc
h
−N4 =

17

8h
−N4.

Next we will find the critical point θτ of τ(θ) on [−1, 0]. We get θτ = −1. Further it is easy to find that
τ(θ) is decreasing on [θτ , 0] and τ(−1) = τ−1 = 2 > 0, τ(0) = τ0 = 1 > 0 and τ(θτ ) = τc = 2.

The nonnegative integers M3 and M4 can be determined by

M4 =
τ0
h

=
1

h
, M3 =

τc
h
−M4 =

2

h
−M4.

Finally we denote N = max{N1 + (N1 − N2 − 1), N3 + N4}. Then we obtain the following discrete
characteristic equation of (31)

P (z) = −zN+1 + zN + h
[−N2−1∑
j=−N1

zN−[N1+(N1+j)]
(
ν(θj+1)− ν(θj)

)
+

−1∑
l=−N3

zN−[N3+N4−(N3+l)]
(
ν(θl+1)− ν(θl)

)
+

−1∑
l=−M3

zN+[M3+M4−(M3+l)]
(
η(θ′l+1)− η(θ′l)

)]
.

Here θj and θl are determined by

r(θj) = −2θ2j − 3θj + 1 = (2N1 + j)h, j = −N1,−N1 + 1, . . . ,−N2,

and
r(θl) = −2θ2l − 3θl + 1 = N4h− lh, l = −N3,−N3 + 1, . . . ,−1, 0.

which implies that

θj =
3 +

√
9 + 8

(
1− (2N1 + j)h

)
2× (−2)

, j = −N1,−N1 + 1, . . . ,−N2,

and

θl =
3−

√
9 + 8

(
1−N4h+ lh

)
2× (−2)

, l = −N3,−N3 + 1, . . . ,−1, 0.

Similarly, θ′l are determined by

θ′l = −M4h+ lh+ 1, l = −M3,−M3 + 1, . . . ,−1, 0.

Applying Rouché’s Theorem, we find that P (z) has no positive real roots which satisfies the conditions
for oscillation of the discrete equation. Hence the numerical results are consistent with the theoretical results
about the oscillation of the equation (31). See Figure 4 and Table 4.
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Figure 4: Characteristic Plot for h=0.05, M=10

Step Length h Length of Rectangle M Number of Zeros Np
0.05 2 6
0.05 8 2
0.05 10 2
0.05 20 2
0.05 30 2
0.05 large 0

Table 3: cf Fig 4 : Number of zeros of the polynomial by Rouché’s Theorem

Example 3.5. Consider the equation (1) for the example 2.5

x′(t) =

∫ 0

−1
x(t− r(θ)) dν(θ) +

∫ 0

−1
x(t+ τ(θ)) dη(θ). (32)

Here

ν(θ) =


θ + 1, −1 ≤ θ < 0,

0, θ = 0,

and
η(θ) = −θ − 1, r(θ) = −θ2 + 2, τ(θ) = −θ + 3.

We now find the discrete characteristic polynomial of (32). We first find the critical point θr of r(θ) on
[−1, 0]. Let r′(θ) = −2θ = 0. We get θr = 0. Further it is easy to see that r(θ) is increasing on [−1, θr] and
r(−1) = r−1 = 1 > 0, r(0) = r0 = 2 > 0 and r(θr) = rc = 2.

The nonnegative integers N1, N2, N1 > N2 can be determined by

N1 =
r−1
h

=
1

h
, N2 =

(mr + 1)N1 − rc
h

mr
= 2N1 −

2

h
,
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where we choose mr = 1 which guarantees that N2 ≥ 0.
Next we will find the critical point θτ of τ(θ) on [−1, 0]. We get θτ = −1. Further it is easy to see that

τ(θ) is decreasing on [θτ , 0] and τ(−1) = τ−1 = 4 > 0, τ(0) = τ0 = 3 > 0 and τ(θτ ) = τc = 4.
The nonnegative integers M3 and M4 can be determined by

M4 =
τ0
h

=
3

h
, M3 =

τc
h
−M4 =

1

h
.

Finally we denote N = N1+(N1−N2−1), N3+N4}. Then we obtain the following discrete characteristic
equation of (32)

P (z) = −zN+1 + zN + h
[−N2−1∑
j=−N1

zN−[N1+2(N1+j)]
(
ν(θj+1)− ν(θj)

)
+

−1∑
l=−M3

zN+[M3+M4−(M3+l)]
(
η(θ′l+1)− η(θ′l)

)]
.

Here θj are determined by

r(θj) = −θ2j + 2 = (2N1 + j)h, j = −N1,−N1 + 1, . . . ,−N2,

which implies that
θj = −

√
2− (2N1 + j)h, j = −N1,−N1 + 1, . . . ,−N2.

Similarly, θ′l are determined by
τ(θ′l) = −θ′l − 1 = M4h− lh,

which implies that
θ′l = −M4h+ lh− 1, l = −M3,−M3 + 1, . . . ,−1, 0.

Applying Rouché’s Theorem, we find that P (z) has no positive real roots which satisfies the conditions
for oscillation of the discrete equation. Hence the numerical results are consistent with the theoretical results
about the oscillation of the equation (32). See Figure 5 and Table 5.

Step Length h Length of Rectangle M Number of Zeros Np
0.01 2 10
0.01 4 4
0.01 8 2
0.01 10 2
0.01 20 2
0.01 Large 0

Table 4: cf Fig 5 : Number of zeros of polynomial by Rouché’s Theorem

Example 3.6. Consider the equation (1) for the example 2.6

x′(t) =

∫ 0

−1
x(t− r(θ)) dν(θ) +

∫ 0

−1
x(t+ τ(θ)) dη(θ). (33)

Here
ν(θ) = −(5θ + 1)(θ + 1), η(θ) = −(6θ + 1)(θ + 1),

and
r(θ) = −10θ2 − 4θ + 10, τ(θ) = −3θ2 − θ + 1.
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Figure 5: Characteristic Plot for h=0.01, M=10

We now find the discrete characteristic polynomial of (33). We first find the critical point θr of r(θ) on
[−1, 0]. Let r′(θ) = −20θ − 4 = 0. We get θr = − 1

5 . Further it is easy to find that r(θ) is increasing on
[−1, θr] and decreasing on [θr, 0] and r(−1) = r−1 = 4 > 0, r(0) = r0 = 10 > 0 and r(θr) = rc = 10.4.

The nonnegative integers N1, N2, N1 > N2 can be determined by

N1 =
r−1
h

=
4

h
, N2 =

(mr + 1)N1 − rc
h

mr
=

3N1 − 10.4
h

2
,

where we choose mr = 2 which guarantees that N2 ≥ 0.
The nonnegative integers N3 and N4 can be determined by

N4 =
r0
h

=
10

h
, N3 =

rc
h
−N4 =

10.4

h
−N4.

Next we will find the critical point θτ of τ(θ) on [−1, 0]. We get θτ = − 1
6 . Further it is easy to find that

τ(θ) is increasing on [−1, θτ ] and decreasing on [θτ , 0] and τ(−1) = τ−1 = −1 < 0, τ(0) = τ0 = 1 > 0 and
τ(θτ ) = τc = 13

12 .

Note that here τ(−1) = τ−1 = −1 < 0. Let us discretize the integral
∫ θτ
−1 x(t + τ(θ)) dη(θ). We need to

find some nonnegative integers M1,M2, M1 > M2 such that −1 = θ−M1
< θ−M1+1 < · · · < θ−M2

= θτ is a
partition of [−1, θτ ] and

τ(θ−M1
) = τ(−1) = τ−1 = −M1h,

τ(θj) = −M1h+mτ (M1 + j)h, j = −M1 + 1,−M1 + 2, . . . ,−M2 − 1,

τ(θ−M2
) = τ(θτ ) = τc = −M1h+mτ (M1 −M2)h,

Here mτ is some positive integer which guarantees that M2 ≥ 0. In fact, we can determine M1,M2, M1 > M2

by the following:

M1 = −τ−1
h

=
1

h
,
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and, with mτ = 3,

−M1h+mτ (M1 −M2)h =
13

12
,

which implies that M2 =
2M1− 13

12h

3 > 0. We remark that the bigger mr is, the faster τ(θj), j = −M1 +
1,−M1 + 2, . . . ,−M2 increase. In order to guarantee M2 is nonnegative, we need to choose mr ≥ 3.

The nonnegative integers M3 and M4 can be determined by

M4 =
τ0
h

=
21

h
, M3 =

τc
h
−M4 =

1

12h
.

Finally we denote N = max{N1 + mr(N1 − N2 − 1), N3 + N4}. Then we obtain the following discrete
characteristic equation of (33)

P (z) = −zN+1 + zN + h
[−N2−1∑
j=−N1

zN−[N1+2mr(N1+j)]
(
ν(θj+1)− ν(θj)

)
+

−1∑
l=−N3

zN−[N3+N4−(N3+l)]
(
ν(θl+1)− ν(θl)

)
+

−M2−1∑
j=−M1

zN+[M1+mτ (M1+j)]
(
η(θ′j+1)− η(θ′j)

)
+

−1∑
l=−M3

zN+[M3+M4−(M3+l)]
(
η(θ′l+1)− η(θ′l)

)]
.

Here θj and θl are determined by

r(θj) = −10θ2j − 4θj + 10 = N1h+mr(N1 + j)h, j = −N1,−N1 + 1, . . . ,−N2,

and
r(θl) = −10θ2l − 4θl + 10 = N4h− lh, l = −N3,−N3 + 1, . . . ,−1, 0.

which implies that

θj =
4 +

√
16 + 40

(
10− (N1h+mr(N1 + j)h

)
2× (−10)

, j = −N1,−N1 + 1, . . . ,−N2,

and

θl =
4−

√
16 + 40

(
10−N4h+ lh

)
2× (−10)

, l = −N3,−N3 + 1, . . . ,−1, 0.

Similarly, θ′j and θ′l are determined by

θ′j =
1 +

√
1 + 12

(
1 +M1h−mτ (M1 + j)h

)
2× (−3)

, j = −M1,−M1 + 1, . . . ,−M2,

and

θ′l =
1−

√
1 + 12

(
1−M4h+ lh

)
2× (−3)

, l = −M3,−M3 + 1, . . . ,−1, 0.

Applying Rouché’s Theorem, we find that P (z) has no positive real roots which satisfies the conditions
for oscillation of the discrete equation. Hence the numerical results are consistent with the theoretical results
about the oscillation of the equation (33). See Figure 6 and Table 6.
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Figure 6: Characteristic Plot for h=0.05, M=20

Step Length h Length of Rectangle M Number of Zeros Np
0.05 2 24
0.05 4 12
0.05 8 6
0.05 10 4
0.05 20 2
0.05 30 2
0.05 large 0

Table 5: cf Fig 6 : Number of zeros of the polynomial by Rouché’s Theorem

4. Conclusions

As we have seen, the numerical approach introduced here does provide a reliable method for determining
whether or not linear mixed functional differential equations are oscillatory. Based on the experiments we
have tried, the technique works also for non-linear problems, but there is a need for further analytical results
in this case.
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