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Mixed-type functional differential equations: a

numerical approach

Neville J Ford 1 and Patricia M Lumb

Mathematics Department, University of Chester, Parkgate Road, Chester, CH1
4BJ, UK

Abstract

The equations considered in this paper are mixed-type functional equations (some-
times known as forward-backward differential equations) that take the form

u′(t) = au(t) + bu(t − 1) + cu(t + 1), t ∈ I ⊂ R.

We consider basic existence and uniqueness properties when I = [t1, t2] and we seek
solutions u ∈ C[t1 − 1, t2 + 1] that satisfy

u(t) = w1(t), t ∈ [t1 − 1, t1], u(t) = w2(t), t ∈ [t2, t2 + 1],

for prescribed functions w1, w2 absolutely continuous, respectively, on [t1−1, t1], [t2, t2+
1]. With arbitrary boundary conditions specified in this way, the problem turns out
to be ill-posed and so existence and uniqueness questions have an important role to
play in developing numerical schemes.

We consider, with t1, t2 ∈ N, numerical approximations of a solution when it
exists. The numerical methods that we consider are linear θ-methods and we in-
vestigate computationally their effectiveness through some illustrative examples.
Keywords: delay equations, advanced equations, mixed functional differential equa-
tions, numerical methods

AMS subject classification: 34K06,34K28,65Q05

1 Introduction and background information

Functional differential equations with both delayed and advanced arguments
are generally referred to as mixed (type) functional differential equations
(MFDEs) or forward-backward equations. The study of these equations was
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originally motivated by optimal control problems (see [13]) but applications
also arise in other areas. We highlight example equations arising in nerve
conduction theory (in [2]), economic dynamics (in [14]) and travelling waves
in a spatial lattice (in [1])). In many example applications, the independent
variable is likely to be spatial rather than temporal.

The analysis of MFDEs presents a significant challenge and it is appropriate
for us to devote some space in this paper gathering together various insights
and results. Our aim is to provide sufficient analytical background on which
to build the numerical scheme that we shall discuss later.

To be precise, we shall investigate solutions to equations of the form:

u′(t) = au(t) + bu(t − 1) + cu(t + 1), t ∈ I ⊂ R. (1)

One might reasonably expect to gain some insights into these problems from
the existing literature on retarded differential equations of the form

u′(t) = au(t) + bu(t − 1) (2)

(the case c = 0) and these insights will be our starting point in this paper.
Further insights could be obtained from the advanced equation (b = 0).

2 MFDEs as boundary value problems

We are accustomed to needing to specify initial or boundary conditions for a
differential equation in order to be able to arrive at a unique solution. There-
fore a natural starting point is to consider the appropriate form of conditions
that will be needed for a MFDE of the form (1). Our insights from the study
of retarded and advanced differential equations suggest that the conditions
will be required in terms of function values over one or more intervals. To
make things clearer, one can attempt to solve (1) by applying Laplace trans-
forms. If we assume that a solution u exists in a suitable space, satisfies (1)
for t ∈ I = [t1, t2] and that u(t) = w1(t), t ∈ [t1 − 1, t1], u(t) = w2(t), t ∈
[t2, t2+1] and that u is defined to be zero elsewhere, then we can show that the
Laplace transform of the solution, if it exists, is given in terms of the boundary
functions w1, w2.

Unfortunately, as we shall see later, the specification of such boundary func-
tions is not sufficient to ensure that a solution can be found. It turns out that
the underlying problem is both ill-posed (see section 3) and highly unstable
(the characteristic quasi-polynomial has roots with both positive and negative
real part). We shall discuss this further in the next sections.
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3 Existing insights

The ill-posedness of MFDEs is discussed by Rustichini [13], who described it as
the “single most relevant difficulty encountered when dealing with MFDEs”.
Further evidence is readily found elsewhere in the existing literature. Conse-
quences of the problem being ill-posed include the following:

• Linear equations with constant coefficients may not have a solution for given
boundary conditions. For example, equation (1) with a = 0, b = 1, c = 1
and initial condition u0 ≡ 1 has no everywhere continuous solution since
u(t) = (−1)k is the only function (and is not continuous) that could possibly
be a solution of this initial-value problem [7,13].

• a variation of constants formula analogous to that for ODEs and retarded
differential equations does not seem possible [14].

Further consequences are described in [7,9,12].

The problem of ill-posedness has been avoided or overcome by several authors.
Mallet-Paret and Verduyn Lunel decompose solutions as sums of ‘forward’ and
‘backward’ solutions in [12]. Rustichini ([14]) restricts the action of a linear
operator of mixed type to functions which are periodic. This enables the op-
erator to be identified with one of the delay type. Härterich et al ([7]) discuss
finding functions ϕ(t) for which a solution exists on either R+ or R−. How-
ever, they comment on the difficulty of determining whether or not the set
of eigenfunctions is complete. Verduyn Lunel (in [15]) gives conditions which
guarantee completeness of the set of eigenfunctions for autonomous FDEs
which links this work with our interest in super-exponentially decaying solu-
tions for retarded differential equations (see [4,5,10]) but here there may be
a further complication with the existence of super-exponentially growing so-
lutions. Mallet-Paret established an existence theory for a class of MFDEs of
mixed type using a linear Fredholm theory and the implicit function theory
(see [11]). Collard et al. (in [3]) develop and implement a numerical procedure
‘to solve for the short run dynamics of a neoclassical growth model with a
simple time-to-build lag’. (They use a Runge-Kutta type of algorithm com-
bined with a shooting method). Abell et al. have developed a collocation code,
COLMTFDE, for MFDEs. We refer the reader to [1] for further details. De-
spite the attention to MFDEs in the literature since 1989, Abell et al ([1]) still
refer, as recently as 2005, to the ‘lack of analytical techniques and numerical
solvers for differential equations with both forward and backward delays’.
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4 The characteristic quasi-polynomial

Many of the interesting features and challenges of MFDEs become apparent
when one considers the roots of the characteristic quasi-polynomial which, for
(1), takes the form

λ = a + be−λ + ceλ. (3)

If λ satisfies (3) then u(t) = eλt satisfies (1) on any interval I ⊂ R. The
values λ are known as characteristic values, or eigenvalues, of (1) and the
corresponding functions eλt are the characteristic functions or eigenfunctions.
By setting λ = x + iy, x, y ∈ R and x 6= 1

2
ln

∣

∣

∣

b
c

∣

∣

∣. We obtain

cos y =
(x − a)

(be−x + cex)
, (4)

sin y =
y

(−be−x + cex)
, (5)

which can be combined to give a more convenient equation

y = ±
(

cex − be−x
)

√

√

√

√1 −
(x − a)2

(be−x + cex)2
. (6)

In the figures that follow, we consider the equation

u′(t) = 2u(t) − 5u(t − 1) + 3u(t + 1). (7)

In Figure 1 we plot the graphs of y against x given by (4) and (6). In Figure
2 we plot the corresponding graphs for cos(y) against x. The characteristic
values λ will be given by the values of x, y corresponding to points where
the graphs given by (4) and (6) intersect. Of course, we had to choose values
for the constants, but one obtains similar graphs for any choice of non-zero
constants we tried.

Interpreting the graphs, we can see that there are infinitely many characteristic
values with positive x co-efficient and infinitely many with negative x co-
efficient. The characteristic roots do not have any cluster points. In the special
cases where either b = 0 or c = 0, either the left hand or right hand branch
of one of the graphs is absent which accords with our previous experience for
retarded differential equations.

The implication of these characteristic values is significant. There are eigen-
functions with arbitrarily large exponential growth rates and eigenfunctions
with arbitrarily large exponential decay rates. This means that, whether we
project forward in time from the left hand end of the interval or backwards
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in time from the right hand end, the solution we obtain will be arbitrarily
highly unstable with respect to small changes in the boundary function. This
explains the possible motivation for decomposing the solution into forward
and backward components.

For a given a, b, c we can obtain a value x = x1 and find y1 such that λ = x1 +
iy1 is a characteristic value and hence plot a particular eigenfunction for the
equation. In Figures 3 and 4 we illustrate typical solutions, for eigenfunctions
with x1 < 0 and x1 > 0 respectively. In each case the same equation is used
for all four graphs but the time period over which the solution is given varies.
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Fig. 1. y against x given by (4) and (6) for (7)

5 Existence and uniqueness of solutions

The previous section has illustrated some of the difficulties in developing the-
oretical results for MFDEs. Now we move on to develop some theory. First
we clarify what is meant by a solution of a MFDE. Definition 5.1 is given by
Mallet-Paret and Verduyn Lunel. See [9,13] for alternative definitions

Definition 5.1 [12] A solution of equation (1) on an interval [t1, t2] ⊆ R is
a continuous function x : [t1 − 1, t2 + 1] → C which is absolutely continuous
on [t1, t2] and which satisfies equation (1) for almost every t ∈ [t1, t2].

Next we remark that a simple transformation of MFDEs is possible. We use
the substitution ũ(t) = eatu(t) to transform (1) into an equation of the form

ũ′(t) = αũ(t + 1) + βũ(t − 1), t ∈ [t1, t2] (8)
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Fig. 2. cos(y) against x given by (4) and (6) for (7)
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Fig. 3. Typical solutions for (7) x1 = −0.6723

We are thus able to focus our attention on equations that do not include an
instantaneous term.
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Fig. 4. Typical solutions for (7) x1 = 0.6379

We follow the methodology adopted in [8] to extend the solution to the right.
We rewrite (8) in the form

u(t) = au′(t−1)+bu(t−2) where a =
1

α
, b = −

β

α
, t ∈ [t1 +1, t2 +1]. (9)

To establish an existence theorem, we suppose α 6= 0, t1 = 0, t2 = k−1 ∈ N and
treat (9) as an initial value problem. with the initial conditions u(t) = ϕ(t),
t ∈ [−1, 1], with

ϕ(t) =











ϕ1(t) for t ∈ [−1, 0],

ϕ2(t) for t ∈ (0, 1].
(10)

Table 1 gives the solution using the method of steps for u(t) for t ∈ (1, 5].
u(t) = ϕ(t), t ∈ [−1, 1], where

Interval for t Solution x(t)

(1,2] aϕ′

2(t − 1) + bϕ1(t − 2)

(2,3] a2ϕ′′

2(t − 2) + bϕ2(t − 2) + abϕ′

1(t − 3)

(3,4] a3ϕ′′′

2 (t − 3) + 2abϕ′

2(t − 3) + a2bϕ′′

1(t − 4) + b2ϕ1(t − 4)

(4,5] a4ϕ
(4)
2 (t − 4) + 3a2bϕ′′

2(t − 4) + b2ϕ2(t − 4) + a3bϕ′′′

1 (t − 5)

+2ab2ϕ′

1(t − 5)

Table 1
Solution to (9) over successive intervals
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Continuing in this way we find that for t ∈ (2ℓ− 1, 2ℓ], ℓ ∈ N the solution u(t)
is given by

u(t) = Σℓ−1
k=0γℓ,2ka

2kbℓ−kϕ(2k)(t−2ℓ)+Σℓ−1
k=0γℓ,2k+1a

2k+1bℓ−k−1ϕ(2k+1)(t−(2ℓ−1))
(11)

and for t ∈ (2ℓ, 2ℓ + 1] by

u(t) = Σℓ
k=0δℓ,2ka

2kbℓ−kϕ(2k)(t− 2ℓ)+Σℓ−1
k=0δℓ,2k+1a

2k+1bℓ−kϕ(2k+1)(t− (2ℓ+1)),
(12)

where γv,w and δv,w, v, w ∈ N, are defined for ℓ ≥ 1 and v ≤ 2ℓ − 1 as follows:

γℓ,2k =Σk
i=0γℓ−k−1+i,2i + Σk−1

i=0 δℓ−k−1+i,2i+1 (13)

γℓ,2k+1 =Σk
i=0γℓ−k−1+i,2i + Σk

i=0δℓ−k−1+i,2i+1 (14)

δℓ,2k = γℓ+1,2k (15)

δℓ,2k+1 = γℓ,2k+1. (16)

We can show that γℓ,0 = 1, γℓ,2ℓ−1 = 1, γℓ,2ℓ−2 = 1, δℓ,0 = 1,δℓ,2ℓ−1 = 1,
δℓ,2ℓ = 1, and establish the following relationships

γp,2k−1 + γp,2k = γp+1,2k (17)

γp+1,2k + γp,2k+1 = γp+1,2k+1 (18)

We note that γv,w = δv,w = 0 for v < 0 and that γℓ,w = δℓ,w = 0 for j > 2ℓ−1.
We can prove the validity of expressions (11) and (12) by induction (see the
Technical Report [6] for the proofs of this and the subsequent Theorems).

Remark 5.1 The solution can be extended to the left in a similar manner by
rewriting the equation in the form u(t) = au′(t + 1) + bu(t + 2). Of course, in
that case we would need boundary conditions defined on [k − 2, k].

Necessary and sufficient conditions for the solution given by (11) and (12) to
be continuously differentiable are given by the following Theorem. Notice that,
contrary to experience with retarded differential equations, here the solutions
become less smooth rather than more smooth as the solution propagates.

Theorem 5.1 Define u(t) as in equations (11)and (12).
For m = 1, 2, ..., k, u(m+) = u(m−) and u′(m+) = u′(m−)
if and only if ϕ(n+1)(0) = αϕ(n)(1) + βϕ(n)(−1) for n = 0, 1, ..., k.

This result can be extended under further conditions on the initial function
to guarantee that the solution is in C∞.

Theorem 5.2 The solution to equation (8) with ϕ ∈ C∞

[−1,1] exists and is

differentiable if and only if ϕ(n+1)(0) = αϕ(n)(1)+βϕ(n)(−1) for n = 0, 1, 2, ....
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Under the conditions of Theorem 5.1 or Theorem 5.2 we have the following
uniqueness Theorem:

Theorem 5.3 Let ϕ ∈ C∞

[−1,1], then there is at most one differentiable func-
tion u(t) that satisfies equation (8) with u(t) = ϕ(t) for t ∈ [−1, 1].

Remark 5.2 As is familiar from the treatment of retarded differential equa-
tions, discontinuities in the solution may arise at the integer points if no con-
ditions, such as those in Theorem 5.1, are imposed on ϕ.

6 Numerical methods

It would be very easy to construct a numerical method for providing an ap-
proximate solution to an equation of the form (9) subject to initial conditions
defined on [−1, 1]. However, we are interested in solving (1) or (2) subject
to the boundary conditions given on [−1, 0] and [k − 1, k] for some k ∈ N.
Our approach will be to use the boundary conditions to provide approximate
initial conditions on [−1, 1] and, in turn, to solve the initial value problem for
a solution on [1, k − 1].

To be precise, we now imagine the case of (10) where ϕ1(t) is known, ϕ2(t) is
unknown but u(t) is known to equal f(t) for t ∈ [k − 1, k].

We introduce the following notation: We fix N ∈ N, h > 0 and define

yn+N = (xn+N xn+N−1 . . . . . . xn+1 xn . . . . . . xn−N )T

where xj ≈ u(jh). We note that x−N , . . . , x0 can be obtained from the known
values of ϕ1(t) while x1, . . . , xN should be obtained from the unknown function
ϕ2. x(k−1)N+1, . . . , xkN may be obtained from values of the function f .

We apply a linear θ- method to (1), with the fixed step length h = 1
N

, and
this leads to an equation of the form

yn+N = Ayn+N−1 with A =







M1 M2

M3 M4





 (19)

where M1 takes the form
(

− (1−θ)
θ

0 . . . 0 (1−hθa)
hθc

−[1+h(1−θ)a]
hθc

0 . . . 0 −b
c

)

, M2 =
(

−b(1−θ)
θc

)

, M3 is an appropriate identity matrix and M4 = (0.....0)T . Since

yn+N = Ayn+N−1 = A2yn+N−2 = A3yn+N−3 = ...., it follows that yn+N = ANyn

and yn+2N = A2Nyn, yn+3N = A3Nyn, ..., yn+kN = AkNyn.
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Thus ykN = A(k−1)NyN which leads to an equation of the form







F

∗





 =







D B

∗ ∗













X

C







where X ∈ RN×1, is an unknown vector containing the values x1, . . . , xN and
the matrices B ∈ RN×(N+1), C ∈ R(N+1)×1, D ∈ RN×N and F ∈ RN×1. It turns
out that we do not need to concern ourselves with matrix entries marked ∗.
For a particular problem F, D, B and C will be known and the important
equation will be F = DX + BC. We aim to use this equation to find X, a set
of approximations to values of ϕ2 on [0, 1]. By varying N we can choose the
density of approximations. Of course, k will be fixed in a particular example,
but we can perform the same technique for any natural number k.

Finally, we use the function ϕ1 on [−1, 0] together with the values contained in
the vector X to provide the starting vector, yN , for the formula (19) which can
be used to propagate the solution over successive unit intervals on [0, k − 1].

We are interested in establishing how good an approximation this method will
provide to the exact solution to the MFDE on [0, k]. This is determined by
the quality of the approximation of the solution at the points on [0, 1]. Thus
it makes sense for us to compare the computed sequence X with the sequence
XE , derived from the exact solution with the same grid points for the chosen
test problem. Of course we must choose test problems where the exact solution
is known on [0, k].

7 Numerical examples

In each example we use equations with a known exact solution and use the
conditions that x(t) is equal to this function on [−1, 0] and on (k − 1, k]. We
discretise the equation and, following the method outlined in Section 6, obtain
a solution on (0, 1]. We estimate the 2-norm of the error by finding

E = h × ‖(X − XE‖2.

The values of E2 are tabulated for the examples that follow and enable us to
estimate the order of convergence, p, as h → 0 of X to XE .

Example 7.1 We consider x′(t) = 1
2
x(t+1)− 1

2
x(t−1) on (0, 1] given ϕ1(t) =

t2, t ∈ [−1, 0], and f(t) = t2, t ∈ [3, 4].

In Table 2 we present values of E2 and estimates for the order p for the
forward and backward Euler methods and for the trapezium rule. We observe
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E2 and estimates p̂ for the order p

Step Forward Euler Backward Euler Trapezium

length method method rule

i hi E2 p̂ E2 p̂ E2

1 0.5 4.508574 1.909368 0

2 0.25 1.721040 0.6947 0.398952 1.1294 0

3 0.125 0.528169 0.8521 0.086295 1.1044 0

4 0.0625 0.145308 0.9309 0.019675 1.0665 0

5 0.03125 0.038016 0.9672 0.004670 1.0374 0

6 0.015625 0.009716 0.9841 0.001136 1.0197 0

7 0.0078125 0.002455 0.9923 0.000280 1.0102 0

8 0.00390625 0.000617 0.9962 0.000069 1.0104 0

Table 2
Equation: x′(t) = 1

2x(t + 1) − 1
2x(t − 1) given ϕ1(t) = t2, t ∈ [−1, 0], and f(t) =

t2, t ∈ [3, 4]. E2 = h2‖X − XE‖
2
2 on [0, 1] and estimates of order p.

that p → 1 as h → 0 for both Euler methods. The trapezium rule is exact for
this problem.

We now consider equation (20), which has as an exact solution x(t) = eαt,
when ϕ1(t) and f(t) both equal eαt. We present two examples, each time
using the trapezium rule to discretise the equation

x′(t) = (α − be−α − ceα)x(t) + bx(t − 1) + cx(t + 1) (20)

Example 7.2 We consider equation (20) with α = 1 and with k = 2, 3 and 4.
In Table 3 we present the values of E2 and estimates for the order p. Results are
as expected (with an order 2 observed for the trapezium rule) until the method
becomes unreliable when the combination of small h and larger k leads to a
nearly singular matrix. The values ∗ in the table correspond to those entries
where Matlab reports that the results will be unreliable.

Example 7.3 We consider equation (20) for different values of α. In Table 4
we present the values of E2 and estimates of p for three values of α. Again, we
observe that the numerical method achieves its order providing that the matrix
involved in the computation is not close to being singular.

Remark 7.1 We have seen that the results in our tables are limited, for small
step lengths h, by the fact that the matrices in our computations may become
close to singular. This is a limitation of our existing method (which is designed
to provide a prototype algorithm) and could be avoided by the use of more

11



E2 and estimates p̂ of order p

Step length k=2 k=3 k=4

i hi E2 p̂ E2 p̂ E2 p

1 0.5 6.024×10−4 2.998×10−3 8.069×10−3

2 0.25 2.449×10−5 2.310 1.234×10−4 2.301 3.332×10−4 2.299

3 0.125 1.193×10−6 2.180 6.068×10−6 2.173 1.644×10−5 2.171

4 0.0625 6.516×10−8 2.097 3.332×10−7 2.093 9.047×10−7 2.092

5 0.03125 3.796×10−9 2.051 1.947×10−8 2.049 5.293×10−8 2.048

6 0.015625 2.288×10−10 2.026 1.176×10−9 2.025 3.200×10−9 2.024

7 0.0078125 1.404×10−11 2.013 7.222×10−11 2.013 ∗ ∗

8 0.00390625 8.7×10−13 2.006 4.48×10−12 2.005 ∗ ∗

Table 3
(Trapezium Rule) Equation: x′(t) = (1−0.5e−1−0.5e1)x(t)+0.5x(t−1)+0.5x(t+1)
given ϕ1(t) = et, t ∈ [−1, 0], and f(t) = et, t ∈ [k−1, k]: E2 = h2‖X−XE‖

2
2 on [0, 1]

and estimates of p.

sophisticated techniques from numerical linear algebra for the solution of the
underlying systems of equations. This is beyond the scope of the present paper.

Finally, we consider the approximation of the solution over the subsequent
interval [1, k−1]. In Figures 5 and 6 we illustrate the trajectories of the solution
on [0, k] for k = 2, 3, 4, 5. In Figures 5 and 6 we use step lengths h = 1

50
and 1

128

respectively. We can see the effect of the near singular matrices reflected in the
trajectories because in these cases the original solution given over [k − 1, k] is
not recovered accurately. As we remarked earlier, this particular problem could
be overcome by the use of improved solution methods for the linear systems.

8 Conclusions and limitations of the approach

The results of the paper are very satisfactory in providing a reliable method
for finding solutions to MFDEs where the boundary conditions are given.
We need to return to the question of whether or not a solution to such a
problem exists! As we remarked at the beginning of the paper, the boundary
value problem of MFDEs is not well-understood, but it is known that such a
problem often has no solution. As we saw in Theorems 5.2 and 5.3 even for the
initial function problem (8), there are quite stringent conditions required on
the initial function in order to ensure that the solution has certain properties,
such as being continuously differentiable, for example.
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E2 and estimates p̂ of order p

Step length α = −0.5 α = 0.6 α = 3

i hi E2 p̂ E2 p̂ E2 p

1 0.5 6.226×10−7 1.291×10−4 4.966

2 0.25 3.146×10−8 2.153 5.627×10−6 2.260 2.202×10−1 2.248

3 0.125 1.772×10−9 2.075 2.863×10−7 2.148 1.051×10−2 2.195

4 0.0625 1.052×10−10 2.037 1.602×10−8 2.080 5.589×10−4 2.117

5 0.03125 6.410×10−12 2.018 9.454×10−10 2.041 3.199×10−5 2.063

6 0.015625 4.000×10−13 2.001 5.741×10−11 2.021 1.910×10−6 2.033

7 0.0078125 ∗ ∗ ∗ ∗ 1.166×10−7 2.017

8 0.00390625 ∗ ∗ ∗ ∗ 6.863×10−9 2.043

Table 4
(Trapezium Rule) Equation: x′(t) = (α − be−α − ceα)x(t) + bx(t − 1) + cx(t + 1)

given ϕ1(t) = eαt, t ∈ [−1, 0], and f(t) = eαt, t ∈ [3, 4]. E2 = h2‖X − XE‖
2
2 on [0, 1]

and estimates of p.
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Fig. 5. See example 7.3: Trajectory of the approximate solution found on [0, k] for
k=2, 3, 4, 5; N=50

Given any set of boundary conditions and any MFDE of the form we considered
here, the proposed numerical method will provide a solution. If the original
problem had a continuously differentiable solution, then the solution found by
the method in this paper is likely (assuming any problems with near singular
matrices are circumvented) to be a good approximation to the true solution.
However, if the original problem does not have a solution, then the numerical
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Fig. 6. See example 7.3: Trajectory of the approximate solution found on [0, k] for
k=2, 3, 4, 5; N=128

scheme will nevertheless provide a solution, but this time to a perturbation of
the original problem! Caveat emptor! 2
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