

The Regulation of Osteoprotegerin and Dickkopf-1 Production in Osteoblastic Cells

Thesis submitted in accordance with the requirements of the University of Chester for the degree of Doctor of Philosophy by

Helen Samantha McCarthy BSc. (Hons)

June 2011

University of Chester

&

Charles Salt Research Centre for Metabolic Diseases, RJAH Orthopaedic Hospital NHS Trust

ACKNOWLEDGEMENTS

I would like to thank both Dr Michael J Marshall, my supervisor at the Charles Salt Research Centre and Professor John Williams, my supervisor at Chester University for their knowledge, guidance, support and patience during my time here at the Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry. Thanks to Dr Michael Davie, Director of Research at the Charles Salt Centre both for allowing me to undertake my PhD in his research laboratory and for providing my funding. I would also like to thank Dr DC Mangham for the fracture callus and Paget bone tissue sections and all the laboratory staff in both the Pathology and Histopathology departments for performing the immunohistochemistry on such sections.

The biggest thanks of all must go to both my parents and my partner Luke for their constant encouragement, understanding, patience and emotional support (or in Luke's words, "putting up with me"!) both throughout my PhD and whilst writing this thesis.

DECLARATION

The work in this thesis is original and has not been submitted previously in support of any qualification or programme.

Signed:

Date:

Word Count:

ABSTRACT

Bone is a highly specialised living tissue and has both mechanical and metabolical functions. Remodelling of the bone ensures a healthy bone mass and is regulated by a trio of secreted proteins, namely receptor-activator of NF κ B (RANK), receptor-activator of NF κ B ligand (RANKL) and osteoprotegerin (OPG). OPG, a major regulator of osteoclastogenesis, bone resorption and vascular calcification, is produced by various cell types including mesenchymally derived cells, particularly osteoblastic cells.

Wnt signalling also plays a role in maintaining healthy bone mass. Dickkopf-1 (DKK-1) is a soluble inhibitor of Wnt signalling and its excessive expression contributes to bone loss in rheumatoid arthritis and multiple myeloma. Recently, DKK-1 has been demonstrated to be over-produced in osteoblasts of patients with Paget's disease of bone (PDB).

The osteoblastic cell lines MG63 and Saos-2 were subjected to a series of different growth factors, hormones and cytokines to investigate the production of OPG, DKK-1 and the expression of various *Wnt* proteins. These results demonstrate that during standard culture conditions, both OPG and DKK-1 production in osteoblastic cells depend on a factor present in serum. Serum deprivation resulted in the up-regulation of *Wnt4* and *Wnt11*, while down-regulating the expression of *Wnt7b*. Serum-induced OPG and DKK-1 production and Wnt expression was found to be regulated via a number of different signalling pathways.

OPG production and expression was stimulated by platelet-derived growth factor-AB (PDGF-AB) not only in MG63 and Saos-2 osteosarcoma cells, but also a mouse pre-osteoblastic cell line (MC3T3-E1) and human bone marrow stromal cells (BMSC). PDGF-AB was shown to act through the PDGF receptor, PKC, Pl3K, ERK and P38 and not via NFkB or JNK. PDGF isoforms AA, BB and AB demonstrated a similar stimulation of OPG production. The importance of PDGF in fracture healing suggests a role for OPG production in countering bone resorption during the early phase of this process.

BIO, an inhibitor of canonical Wnt signalling resulted in the down-regulation of *DKK-1* and the up-regulation of *Wnt5a*. Phorbol ester (PE), a known stimulator of PKC resulted in the up-regualtion of *DKK-1*, *Wnt4*, *Wnt7a* and *Wnt16*. The effects of PE were inhibited by bisindolymaleamide but not staurosporine. DKK-1 production, but not expression, was observed to be stimulated by calcium along with an up-regulation of *Wnt7b* and a down-regulation of *Wnt10a* and *Wnt11*. Incubation of pre-stimulated cells with Triton-X demonstrated the ability of calcium to increase DKK-1 secretion.

DKK-1 was shown to be significantly elevated in the serum of PDB patients compared to healthy controls and did not correlate with ALP levels. Immunohistochemistry demonstrated that DKK-1 production is increased in both osteoblasts and fibrotic cells within the marrow cavity in PDB patients compared to fracture callus. B-catenin was found to be localised to intercellular membranes of plump osteoblasts, demonstrating its alternate role as a cell adhesion protein. DKK-1 therefore may be a useful biomarker of PDB and that Dkk-1 may play a central role in the aetiology of PDB.

In summary, the results presented in this thesis have investigated the ways in which OPG and DKK-1 production in osteoblastic cells can be modulated with various effectors and the effect of Wnt signalling. These results may therefore be beneficial to increase the understanding of bone biology, improve fracture repair and generate further research into the role DKK-1 and the osteoblast in the aetiology of PDB to enable improved treatments to be developed.

CONTENTS

Acknowledg	gements	5		ii
Declaration				
Abstract				iv
Contents				v
List of figur	es			xi
List of table	s			xvi
Abbreviatio	ns			xviii
Units of me	asuremo	ent		xxii
Chapter 1	Introc	luction		1
1.1	Bone	structure	e, function and composition	2
1.2	Cells	of the bo	one	7
	1.2.1	The Ost	eoblast	7
	1.2.2	The Ost	eocyte	8
	1.2.3	The Bor	ne Lining Cell	8
	1.2.4	The Ost	reoclast	9
1.3	Bone	formatio	n	12
	1.3.1	Wnt sig	nalling	12
	1.3.2	Wnt sigi	nalling inhibitors	18
		1.3.2.1	sFRP	18
		1.3.2.2	WIF-1	18
		1.3.2.3	DKK-1	19
		1.3.2.4	Sclerostin	20
	1.3.3	TGFβ a	nd BMP's	21

1.4	Bone	resorption and remodelling	22
	1.4.1	RANK, RANKL and OPG in bone remodelling	25
		1.4.1.1 RANK	25
		1.4.1.2 RANKL	26
		1.4.1.3 OPG	26
	1.4.2	Parathyroid hormone	29
	1.4.3	1,25(OH) ₂ vitamin D3	30
	1.4.4	Calcitonin	30
	1.4.5	Oestrogen	30
	1.4.6	Markers for bone remodelling	31
1.5	Bone	disease	34
	1.5.1	Osteoporosis	34
	1.5.2	Osteopetrosis	35
	1.5.3	Paget's disease of bone	36
	1.5.4	Multiple myeloma	37
	1.5.5	Osteosarcoma	38
	1.5.6	Osteoarthritis and Rheumatoid arthritis	39
1.6	Aims	and objectives	40
•			
Chapter 2		ials and methods	41
2.1	Mater		42
	2.1.1	Cells and cell culture	42
	2.1.2	Reagents	42
	2.1.3	OPG and DKK-1 enzyme-linked immunosorbant assay (ELISA)	43
	2.1.4	RNA extraction and real-time polymerase chain reaction (RT-PCR)	43

	2.1.5	Immunolocalisation of DKK-1 and β -catenin	43
	2.1.6	Equipment	43
2.2	Metho	ods	44
	2.2.1	Cell culture	44
	2.2.2	Cell number – propidium iodide assay	45
	2.2.3	Alizarin red staining	45
	2.2.4	Alkaline phosphatase assay	45
	2.2.5	RNA extraction and RT-PCR	46
		2.2.5.1 RNA extraction	46
		2.2.5.2 Reverse transcription	46
		2.2.5.3 Quantitative / real-time PCR	47
	2.2.6	Human OPG ELISA	48
	2.2.7	Human DKK-1 ELISA	49
	2.2.8	Serum alkaline phosphatase	49
	2.2.9	Formalin-fixed paraffin-embedded (FFPE) tissue samples	
		and immunohistochemistry	50
		2.2.9.1 Preparation of FFPE samples	50
		2.2.9.2 Immunhistochemical localisation of DKK-1 and β-catenin	50
	2.2.10	Statistical analysis	51
Chapter 3	The e	ffect of FCS on osteoblastic cells	52
3.1	The e	ffect of FCS on OPG production	53
3.2	The e	ffect of FCS on DKK-1 production and Wnt expression	58
3.3		fying possible candidate effectors responsible for the nduced OPG and DKK-1 production	69
	3.3.1	The effect of BMP-2 and BMP-7 on OPG and DKK-1 production	69

	3.3.2	The effect of TGF β on OPG and DKK-1 production	73
	3.3.3	The effect of Activin A on OPG and DKK-1 production	76
	3.3.4	The effect of TNF α on OPG and DKK-1 production	79
	3.3.5	The effect of insulin on OPG and DKK-1 production	82
	3.3.6	The effect of IGFII on OPG and DKK-1 production	85
	3.3.7	The effect of IL-6 on OPG and DKK-1 production	88
	3.3.8	The effect of FGF-1 on OPG and DKK-1 production	91
	3.3.9	The effect of serotonin, HGF and SCF on OPG and	
		DKK-1 production	93
	3.3.10	The effect of Bradykinin on OPG and DKK-1 production	97
Chapter 4	The ef	fect of platelet-derived growth factor on	
	osteo	protegerin production in osteoblastic cells	99
4.1		ffect of PDGF-AB on OPG and DKK-1 production in	
		blastic cells	100
4.2	The ef	ffect of PDGF on differentiated osteoblastic cells	119
Chapter 5		anisms of DKK-1 production	124
5.1		ffect of simulating canonical Wnt signalling on I production and Wnt expression	125
5.2		fect of sFRP-1 on DKK-1 production and Wnt	125
5.2	expres	·	127
5.3	-	ble of PKC in DKK-1 production and Wnt expression	129
5.4	The ef	ffect of phorbol ester on DKK-1 production and Wnt	
	expre	ssion	132
Chapter 6	The ef	ffect of calcium on osteoblastic cells	134
6.1	The ef	ffect of calcium on OPG and DKK-1 production in	
	osteo	blastic cells	135
6.2	The ef	ffect of EDTA on OPG and DKK-1 production	137

6.3	Time course of calcium-induced DKK-1 production	139
6.4	The effect of signalling inhibitors on calcium-induced	
	DKK-1 production	141
6.5	The effect of Nifedpine and NPS2390	144
6.6	The effect of lonomycin	146
6.7	The effect of calcium on Wnt expression	148
6.8	The effect of cycloheximide and Triton-X on	
	calcium-induced DKK-1 production	151
Chapter 7	DKK-1 and Paget's disease of bone	154
7.1	Dkk-1 in serum of patients with Paget's disease	155
7.2	Immunolocalisation of DKK-1 and β -Catenin in patients	
	with Paget's disease of bone	160
Chapter 8	Discussion	167
8.1	OPG and DKK-1 production is dependant upon a factor	
	present in serum	168
8.2	present in serum OPG and DKK-1 production can be regulated by a	168
8.2		168 177
8.2 8.3	OPG and DKK-1 production can be regulated by a	
	OPG and DKK-1 production can be regulated by a number of cytokines	177
8.3	OPG and DKK-1 production can be regulated by a number of cytokines PDGF-AB stimulates OPG production in osteoblastic cells	177
8.3	OPG and DKK-1 production can be regulated by a number of cytokines PDGF-AB stimulates OPG production in osteoblastic cells DKK-1; a product of canonical or non-canonical Wnt	177 187
8.3 8.4	OPG and DKK-1 production can be regulated by a number of cytokines PDGF-AB stimulates OPG production in osteoblastic cells DKK-1; a product of canonical or non-canonical Wnt signalling?	177 187 192
8.3 8.4 8.5	OPG and DKK-1 production can be regulated by a number of cytokines PDGF-AB stimulates OPG production in osteoblastic cells DKK-1; a product of canonical or non-canonical Wnt signalling? Calcium-induced secretion of DKK-1	177 187 192 199
8.3 8.4 8.5 8.6	OPG and DKK-1 production can be regulated by a number of cytokines PDGF-AB stimulates OPG production in osteoblastic cells DKK-1; a product of canonical or non-canonical Wnt signalling? Calcium-induced secretion of DKK-1 Paget's disease and DKK-1	177 187 192 199 205

Reference	list
-----------	------

List of publications, presentations and prizes related to this work

Abstracts/presentations	255
Publications	256
Prizes	256

Appendix

LIST OF FIGURES

Chapter 1

Introduction

Fig 1.1	Diagrammatic representation of a long bone.	5
Fig 1.2	Diagrammatic representation of a section of bone.	6
Fig 1.3	Diagram depicting the inter-relationships between osteoblasts and blood monocytes during osteoclastogenesis.	11
Fig 1.4	Canonical Wnt signalling.	15
Fig 1.5	Schematic representation of the BMSC differentiation linage.	16
Fig 1.6	Non-canonical Wnt signalling.	17
Fig 1.7	Schematic representation of the four stages of a bone remodelling cycle.	24
Fig 1.8	Diagrammatic representation of a mature OPG monomer.	28

Chapter 3

The effect of FCS on osteoblastic cells

Fig 3.1	The effect of FCS on OPG production in osteoblastic cells.	54
Fig 3.2	The effect of various media constituents on OPG production in osteoblastic cells.	55
Fig 3.3	The effect of pathway inhibitors on OPG production in osteoblastic cells.	57
Fig 3.4	The effect of FCS starvation on DKK-1 production and Wnt expression in osteoblastic cells.	59
Fig 3.5	FCS-induced DKK-1 production and signals through Pi3K, ERK and P38MAPK.	61
Fig 3.6	The effect of pathway inhibitors for PI3K, P38MAPK, JNK and ERK/MEK on Wnt expression in osteoblastic cells.	62
Fig 3.7	The effect of serum starvation on DKK-1 with time.	65
Fig 3.8	The effect of serum starvation on the expression of <i>Wnt4, Wnt7b</i> and <i>Wnt11</i> with time.	66
Fig 3.9	The effect of re-addition of FCS.	68

Fig 3.10	BMP-2 stimulates both OPG and DKK-1 production in MG63 cells.	70
Fig 3.11	The effect of BMP-2 on OPG and DKK-1 production in Saos-2 cells.	71
Fig 3.12	The effect of BMP-7 on OPG and DKK-1 production in osteoblastic cells.	72
Fig 3.13	The effect of TGF β on OPG and DKK-1 production in MG63 cells.	74
Fig 3.14	The effect of TGF β on OPG and DKK-1 production in Saos-2 cells.	75
Fig 3.15	The effect of Activin A on OPG and DKK-1 production in MG63 cells.	77
Fig 3.16	The effect of Activin A on OPG and DKK-1 production in Saos-2 cells.	78
Fig 3.17	The effect of TNF α on OPG and DKK-1 production in MG63 cells.	80
Fig 3.18	The effect of TNF α on OPG and DKK-1 production in Saos-2 cells.	81
Fig 3.19	The effect of insulin on OPG and DKK-1 production in MG63 cells.	83
Fig 3.20	The effect of insulin on OPG and DKK-1 production in Saos-2 cells.	84
Fig 3.21	The effect of IGFII on OPG and DKK-1 production in MG63 cells.	86
Fig 3.22	The effect of IGFII on OPG and DKK-1 production in Saos-2 cells.	87
Fig 3.23	The effect of IL-6 on OPG and DKK-1 production in MG63 cells.	89
Fig 3.24	The effect of IL-6 on OPG and DKK-1 production in Saos-2 cells.	90
Fig 3.25	The effect of FGF-1 on OPG and DKK-1 production in osteoblastic cells.	92
Fig 3.26	The effect of serotonin on OPG and DKK-1 production in osteoblastic cells.	94
Fig 3.27	The effect of SCF on OPG and DKK-1 production in osteoblastic cells.	95
Fig 3.28	The effect of HGF on OPG and DKK-1 production in osteoblastic cells.	96
Fig 3.29	The effect of bradykinin on OPG and DKK-1 production in osteoblastic cells.	98

xii

Chapter 4

The effect of platelet-derived growth factor on osteoprotegerin production in osteoblastic cells			
Fig 4.1	The effect of PGDF-AB on osteoblastic cell proliferation.	101	
Fig 4.2	The effect of PDGF-AB on OPG and DKK-1 production in MG63 cells.	102	
Fig 4.3	The effect of PDGF-AB on OPG and DKK-1 production in Saos-2 cells.	104	
Fig 4.4	PDGF-AB-induced OPG production in osteoblastic cells is time dependent.	106	
Fig 4.5	All PDGF isoforms stimulate OPG production in osteoblastic cells.	107	
Fig 4.6	PDGF-AB stimulates OPG protein production in MC3T3-E1 and hMSC but not in hFOB or skin fibroblasts.	109	
Fig 4.7	PDGF-AB-stimulated OPG production is inhibited by AG1296.	110	
Fig 4.8	PDGF-AB-stimulated OPG production is accompanied by increased mRNA expression and is inhibited by AG1296.	111	
Fig 4.9	PDGF-AB signals through PI3K, ERK and p38.	113	
Fig 4.10	The effect of STS on cell number in osteoblastic cells.	116	
Fig 4.11	PDGF-AB induced OPG production is stimulated by STS.	117	
Fig 4.12	PDGF-AB induced OPG production is inhibited by BIM.	118	
Fig 4.13	ALP expression in Saos-2 cells with differentiation.	120	
Fig 4.14	The ability for PDGF-AB to stimulate OPG production is lost with osteoblastic differentiation.	121	
Fig 4.15	The expression of the PDGF receptors α and β during differentiation.	123	

Chapter 5

Mechanisms of DKK-1 production

Fig 5.1	The effect of BIO on DKK-1 production and Wnt expression in	126
	MG63 cells.	

Fig 5.2 The effect of sFRP-1 on Wnt expression and DKK-1 production in 128

MG63 cells.

Fig 5.3	The effect of BIM and STS on DKK-1 production in MG63 cells.	130
Fig 5.4	The effect of BIM and STS on Wnt and DKK-1 expression in MG63 cells.	131
Fig 5.5	The effect of BIM and STS on PE-induced Wnt and DKK-1 expression in MG63 cells.	133
Chapte	er 6 fect of calcium on osteoblastic cells	
Fig 6.1		136
Fig 6.2	The effect of EDTA on OPG and DKK-1 production in MG63 cells.	138
Fig 6.3	The time course for calcium-induced DKK-1 production in MG63 cells.	140
Fig 6.4	The effect of signalling inhibitors on calcium-induced DKK-1 production in MG63 cells.	142
Fig 6.5	The effect of nifedipine and NPS2390 on calcium-induced DKK-1 production in MG63 cells.	145
Fig 6.6	The effect of ionomycin on calcium-induced DKK-1 production in MG63 cells.	147
Fig 6.7	The effect of calcium on the expression of <i>Wnt7b, Wnt10a</i> and <i>Wnt11</i> in MG63 cells.	149
Fig 6.8	The effect of calcium on the expression of Wnt3a, Wnt4, Wnt5a and	150

- **Fig 6.9** The effect of cycloheximide on calcium-induced DKK-1 production 152 in MG63 cells.
- Fig 6.10The effect of Triton X-100 on calcium-induced DKK-1 production in153MG63 cells.

Chapter 7

DKK-1 and Paget's disease of bone

DKK-1 in MG63 cells.

Fig 7.1 Log₁₀ tsALP concentration in PDB patients and controls. 157

Fig 7.2	Serum DKK-1 concentration in PDB patients and controls.	159
Fig 7.3	Key histological observations in FFPE bone sections from PDB patients.	161
Fig 7.4	Immunolocalisation of DKK-1 in fracture callus and PDB.	162
Fig 7.5	Immunolocalisation of DKK-1 in fibrotic regions of PDB.	163
Fig 7.6	Immunolocalisation of β -catenin in fracture callus.	165
Fig 7.7	Immunolocalisation of β-catenin in PDB.	166

Chapter 8

Discussion

- Fig 8.1Signalling pathways and their effect on OPG and DKK-1 production, 172DKK-1 expression and Wnt expression in response to serum.
- Fig 8.2 Mechanisms of PDGF-induced OPG production in osteoblastic cells. 188
- Fig 8.3The regulation of DKK-1 production, DKK-1 expression and Wnt198expression by PKC

LIST OF TABLES

Chapter 1 Introductio	n	
Table 1.1	Indicating the markers of bone formation, bone resorption, and	33
	where they can be measured.	
Chapter 4		
	of platelet-derived growth factor on osteoprotegerin i in osteoblastic cells	
-		
Table 4.1	Signalling inhibitors and OPG production.	114
Chapter 6		
The effect	of calcium on osteoblastic cells	
Table 6.1	Percentage stimulation of calcium-induced DKK-1 production in	143
	MG63 cells in the presence of various inhibitors.	
Chapter 7		
DKK-1 and	Paget's disease of bone	
Table 7.1	Age and study sample size in PDB patients and controls.	156
Chapter 8		
Discussion	1	
Table 8.1	Summary of the signalling inhibitors used in chapter 3 and their	171
	effect on OPG and DKK-1 production, DKK-1 expression and	
	Wnt expression.	
Table 8.2	Summary of the effectors used in chapter 3 and their effect on	185
	OPG and DKK-1 production in MG63 cells both with and without	
Table 8.3	FCS.	106
1 avie 0.3	Summary of the effectors used in chapter 3 and their effect on OPG and DKK-1 production in Saos-2 cells both with and	186
	without FCS.	

- **Table 8.4**Summary of the effectors used in chapter 5 and their effect on197DKK-1 production, *DKK-1* expression and *Wnt* expression.
- Table 8.5Summary of the effect of calcium on OPG and DKK-1 production, 200DKK-1 expression and Wnt expression.

ABBREVIATIONS

1,25(OH) ₂ D ₃	1,25 dihydroxyvitamin D_3
αΜΕΜ	Minimal essential medium, alpha
ALP	Alkaline phosphatase
ANOVA	Analysis of variance
APC	Adenomatous polyposis coli
ATP	Adenosine triphosphate
BGP	Sodium beta-glycerophosphate
BIM	BisindolyImaleamide
BIO	6-Bromoindirubin-3'-monoxime
BMD	Bone mineral density
BMP-2	Bone morphogenetic protein-2
BMP-7	Bone morphogenetic protein-7
BMSC	Bone marrow stromal cell
BMU	Bone multicellular unit
BP	Bisphosphonate
BSA	Bovine serum albumin
BSP	Bone sialoprotein
Ca ²⁺	Calcium ions
CaCl ₂	Calcium Chloride
cAMP	Cyclic adenosine monophosphate
CaSR	Calcium sensing receptor
cDNA	Copy deoxyribonucleic acid
CRD	Cysteine-rich domain
CREB	Cyclic adenosine monophosphate response element-binding
СТ	Cycle threshold
СТХ	Carboxy-terminal crosslinked telopeptide of type I collagen
DAB	3,3' diaminobenzidine
DEXA	Dual energy X-ray absorptiometry
DKK-1	Dickkopf-1
DKK-2	Dickkopf-2
DKK-3	Dickkopf-3
DKK-4	Dickkopf-4
DMEM	Dulbecco's modified essential medium
DNA	Deoxyribonucleic acid

Dvl	Dishevelled protein
ECM	Extracellular Matrix
EDTA	Diaminoethanetetra-acetic acid diammonium salt
ELISA	Enzyme-linked immunosorbant assay
ERK	Extracellular signal-related kinase
ESH	Expansile skeletal hyperphophatasia
FCS	Foetal calf serum
FEO	Familial expansile osteolysis
FFPE	Formalin fixed paraffin embedded
FGF-1	Fibroblast growth factor-1
FGF-2	Fibroblast growth factor-2
Fzd	Frizzled receptor
GAPDH	Glyceralderhyde-3-phosphate dehydrogenase
GH	Growth hormone
GHSH	Growth hormone stimulating hormone
GIOP	Glucocorticoid induced osteoporosis
GS3Kβ	Glycogen synthase kinase-3 beta
HCI	Hydrochloric acid
hESC	Human embryonic stem cell
HGF	Hepatocyte growth factor
hMSC	Human mesenchymal stems cell
HSPG	Heparin sulphate proteoglycan
IGFII	Insulin-like growth factor-II
IL-1	Interleukin-1
IL-6	Interleukin-6
IL-11	Interleukin-11
JNK	c-Jun N-terminal kinase
JPD	Juvenile Paget's disease of bone
LEF	Lymphoid enhancing factor
LRP5/6	Low density lipoprotein related protein 5/6
M-CSF	Macrophage-colony stimulating factor
MM	Multiple myeloma
MMP-13	Matrix metalloproteinase-13
mRNA	Messenger ribonucleic acid
MSC	Mesenchymal stem cell
n	Number of replicates
ND	Not detected

NF-AT	Nuclear factor of activated T-cells
NFκB	Nuclear-factor kappa B
NHS	National health service
NTX	Amino-terminal crosslinked telopeptide of type I collagen
OA	Osteoarthiritis
00	Osteocalcin
OCIF	Osteoclastogenesis inhibitory factor
ODAR	Osteoclast differentiation and activation receptor
ODF	Osteoclast differentiation factor
OPG	Osteoprotegerin
OPGL	Osteoprotegerin ligand
OPPG	Osteoporosis pseudoglioma
Р	Probability factor
p38 MAPK	p38 mitogen-activated protein kinase
PAR-2	Protease-activated receptor-2
PBS	Phosphate buffered saline
PCP	Planar cell polarity
PCR	Polymerase chain reaction
PDB	Paget's disease of bone
PDGF-AA	Platelet-derived growth factor-AA
PDGF-AB	Platelet-derived growth factor-AB
PDGF-BB	Platelet-derived growth factor-BB
PDGFRα	Platelet-derived growth factor receptor alpha
PDGFRβ	Platelet-derived growth factor receptor beta
PE	Phorbol ester
PGE ₂	Prostaglandin E_2
PI	Propidium iodide
Pi3K	Phosphoinositide-3OH kinase
PICP	Carboxy-terminal propeptide of type I procollagen
PINP	Amino-terminal propeptide of type I procollagen
PKA	Protein kinase A
РКС	Protein kinase C
PTH	Parathyroid hormone
RA	Rheumatoid arthritis
RANK	Receptor activator of nuclear-factor kappa B
RANKL	Receptor activator of nuclear-factor kappa B ligand
RNA	Ribonucleic acid

RT-PCR	Reverse transcription polymerase chain reaction
SCF	Stem cell factor
SD	Standard deviation
sFRP-1	Secreted Frizzled-related protein-1
sFRP-2	Secreted Frizzled-related protein-2
sFRP-3	Secreted Frizzled-related protein-3
sFRP-4	Secreted Frizzled-related protein-4
siRNA	Short interfering ribonucleic acid
SOST	Sclerostin
SQSTM1	Sequestosome 1
sRANKL	Soluble RANKL
STS	Staurosporine
TACE	TNF-α convertase enzyme
TBS	Tris buffered saline
TCF	T-cell factor
TGFβ	Transforming growth factor-beta
ТМВ	3,3'5,5' tetramethylbenzidine
TNFR	Tumour necrosis factor receptor
ΤΝFα	Tumour necrosis factor-alpha
Tph1	Tryptophan hydroxyalse I
TRAIL	TNF-related apoptosis-inducing ligand
TRANCE	TNF-related activation-induced cytokine
TRAP	Tartrate resistant acid phosphatase
tsALP	Total serum alkaline phosphatase
UBA	Ubiquitin-associated
VDR	Vitamin D receptor
VEGF	Vascular endothelial growth factor
VSCC	Voltage-sensitive calcium channel
WIF-1	Wnt inhibitory factor-1
WISP	Wnt-induced secreted protein

UNITS OF MEASUREMENT

g	Gravitational force
g	Gram
mg	Milligram
μg	Microgram
ng	Nanogram
L	Litre
mL	Millilitre
μL	Microlitre
Μ	Molar
mM	Millimolar
μΜ	Micromolar
nM	Nanomolar
cm	Centimetre
mm	Millimetre
μm	Micrometre
nm	Nanometre
U/ml	Units per millilitre