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Abstract: Software simulators that emulate equivalent behavior of physical micro-
controllers play an important role in the process of software development for embed-
ded systems from an early development stage (e.g. when no target hardware is avail-
able) to the final verification process (e.g. used in combination with formal methods).
Thus, much reliance is put on the correctness of these simulators. This paper presents
a practicable approach to test auto-generated and custom microcontroller simulators
(both closed and open-source) against a physical device. We show how to set up a
test oracle that allows to run the simulators in parallel, validate individual runs based
on a comparison of their accumulated state-space, and — in case an error is found —
finger-point to the root cause of the error, thus giving valuable support for fixing the
discrepancies. A case study shows that the presented testing framework was able to
reveal non-trivial bugs in several implementations.

1 Introduction

A microcontroller (MCU) software simulator emulates the functional and (occasionally)
temporal execution environment offered by a physical microcontroller. In practice, MCU
software simulators are used both by computer scientists and electronics engineers through-
out different product development stages for various different activities (e.g., debugging,
profiling, testing and verification). For example, firmware development can start prior to
the availability of a functional physical target board, using the simulator for debugging
purposes. An orthogonal example of an MCU simulator application is the [MC]SQUARE
binary code verification framework, cf. [SchO8]. The model-checker of [MC]SQUARE re-
lies on dedicated microcontroller simulators to construct the state-space out of a given
binary program image. The state space is then traversed to prove the validity of given
properties.

Even though there is no theoretical limitation to precisely imitate a target microcontroller
by a software simulator (by the Church-Turing thesis), a faithful simulator is hard to obtain
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in practice. Thus, a vexing question arises in the context of simulation based verification:
How “correct” is the simulation of the respective physical microcontroller?

1.1 Behavioral equivalence among heterogeneous MCU implementations

The execution environment of a MCU simulator is typically made up of a linear address
space that contains: general purpose CPU registers, the stack, special function registers
(for the peripherals, the I/O subsystem and the interrupt controller), and the program and
data memory (RAM, EEPROM, Flash, etc.). The simulator executes every instruction of
a program in this emulated execution environment, mimicking the behavior of the instruc-
tions of the physical MCU. Note that, the simulator does not necessarily need to emulate
all the internals of a physical implementation (e.g. how a specific timer is implemented
internally); it is usually sufficient to have an equivalent behavior on the register level ac-
cessible via the programs’ instructions. In contrast, however, an MCU simulator often
implements additional means, e.g., to model the environment and thus provide input to the
MCU simulator from the outside.

We evaluate the equivalence of a physical MCU and the respective simulator by their
configurations Cp and Cs as follows: Let Addr = {0 < z < |Mem| : z € Ny}
denote the set of memory locations of the microcontroller, where Mem represents the
(linear) address space of the microcontroller memory. We assume a memory mapped I/O
architecture (e.g. Intel MCS-51), thus, registers and special function registers reside within
Mem. In the following, let N, = {0,...,k — 1}. A configuration C of a microcontroller
is a tuple (pc, m) € Locs x (Addr — Nyw ), where Locs is a finite set of program counter
values, and m : Addr — Nsw is a map from memory locations (with bit-width w) to
memory configurations. The state space of the program is thus a subset of Locs x (Addr —
Naw ). The initial microcontroller configuration C° is (0x00,m") where m° represents
the configuration of all memory locations after power-up and 0x00 is the assumed reset
vector. Two arbitrary configurations C (pc,m) and C' (pc’, m'} are considered equivalent
if the program counters as well as the memory configurations of C and C’ are identical, thus
pc = pc’ A m = m/' holds for all combinations of valid and invalid instruction executions.

1.2 Related Work

Commercial and freely available MCU simulators are either manually coded — see e.g.
[LDG™08] — or auto-generated from some high-level description, see e.g. [GBK10]. Ap-
plications of software simulators in practice are manifold, e.g.:

 debugging when no target hardware is available, e.g., in an early development stage
to shorten the time-to-market

* firmware profiling to optimize performance, lower memory or power consumption,
or for execution time analysis to verify real-time properties, see e.g. [MOZB10]
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* evaluation of sensor-networks with regard to their timing behavior, power consump-
tion, interoperability, etc., see [TLP05, EOF+09]

« evaluation of multiprocessors with regard to performance, etc., see [GKKT08]

» formal verification as used by the [MC]SQUARE model-checker, to verify properties
of binary firmware applications, see [RHS*10]

From the above list it becomes obvious that an incorrect emulation by the MCU simulator
of the physical implementation may eventually lead to hazardous outcomes.

Related work in [MPRBO9] reports on testing IA-32 CPU emulators, i.e., QEMU, VAL-
GRIND, PIN and BOCHS. Their approach relies on fuzz-testing, that is they set both Cp
and Cg to a synthetic state, execute one random instruction, and compare the resulting
state. Using this approach, they were able to uncover several behavioral deviations in all
considered CPU emulators.

A method for verifying instruction-level simulators via step-by-step register state compar-
ison to a hardware implementation is reported in [GLO1]. They were able to verify two
SPEC benchmarks on a MIPS 12000 CPU simulator.

Other related literature on MCU simulator verification shows that, even carefully engi-
neered CPU simulators do deviate from their silicon counterpart [Fer06, RKKO07]. Formal
verification, such as model checking [CGP99, BK08], equivalence checking by e.g. mul-
tiway decision graphs [BT98], or interactive theorem proving [Bon10], seems to be well
suited to cope with this kind of verification problem, however, often fail when applied to
reasonably-sized real-life instances. Besides, formal approaches often need a clear under-
standing and insight into verification goals and the desired correctness criteria.

[Mon00] proposes a black-box testing method that relies on hardware analysis for test-
case generation. The validation method aims at both determining the accuracy of the
simulator and to pinpoint simulator errors for improving the accuracy. Based on their
method they were able to improve the NEC V850 CPU core simulator from an average
error rate of 11.2% down to 1.3%.

1.3 Contribution

In contrast to the related work, we propose a lightweight verification framework for mi-
crocontrollers that allows to run various simulators against each other and a hardware im-
plementation as oracle that allows to vote over the individual simulation runs. Whenever
a deviation is detected, the framework is able to highlight differences in the corresponding
data memory dumps, guiding the test engineer to the root cause of the error. We use a
mature microcontroller IP-core as a reference device along with a dedicated test-interface
to perform the information exchange with a host computer. The presentation in this paper
targets the Intel MCS-51 microcontroller architecture, however, is easily transferable to

other platforms.
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To summarize, the paper makes the following contributions:

* a fully automated testing methodology targeting MCU simulators
* an effective algorithm to generate test-programs stressing the simulators under test
* aprototype implementation of our testing methodology for Intel MCS-51 simulators

* an extensive testing of an auto-generated, several open-source and one commercial
closed-source Intel MCS-51 simulators that resulted in the discovery of several de-
fects and several serious bugs

In the remainder of this paper we first describe our test-framework in section 2 before we
present a case-study to evaluate our approach in section 3. Section 4 concludes our paper.

2 Test Framework

The proposed framework consists of two modules, i.e., (i) a hex-file generator to provide
the respective (random) test cases, and (ii) the execution and evaluation unit.

2.1 Test-case Generation

To generate test cases we apply two strategies (a) random program generation and (b)
custom program generation. The output of both approaches are executable hex files, con-
taining the test cases as a sequence of individual assembly instructions. Whereas in (a) the
instructions and data are randomly generated, (b) adopts a test-pattern known from CPU
testing, with the aim of adopting a strategy known from everyday software testing, i.e.,
equivalence classes partitioning, cf. [AO08, p. 150].

2.1.1 Random Input Generation

Random input generation is a well known paradigm in the area of software testing [BMS83,
CS04]. A microcontroller instruction typically consists of an opcode followed by one or
more operands. Especially on CISC based machines, the total length of an instruction
(opcode and operands) may vary. In our approach, we first use a random generator to
generate an opcode. An internal data structure provides a lookup-table to map to each
opcode the total length of the instruction as well as the structure of the remaining operands.
For example consider the arithmetical instruction for the Intel MCS-51 microcontroller
family:
ADD A, f#C

that adds a constant #C to the accumulator A. The datasheet [Int94] states that the opcode
for the instruction is 50010.0100 and the constant (i.e., the operand) is allowed to be in the
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range of 0 < #C < 2™, where n is the bitwidth of the microcontroller, which in case of
the Intel MCS-51 is 8. Whenever the random generator creates the opcode 50010.0100,
the random generator is constrained to return a number in the range of 0 < #C < 27”.

Pure random testing does not require any manual work, however, it comes with some
well-known drawbacks:

* Many sets of input values (instructions and data) may lead to exactly the same ob-
servable behavior and are thus redundant.

* The probability of selecting particular inputs that cause buggy behavior may be very
low [OH96].

* It performs poor when inputs need to adhere to a certain structure or pattern. Con-
sider the code fragment in Lst. 1 that triggers on specific input data. The probability
of detecting the erroneous function ERROR () drastically depends on the size of
the integer data type, which varies for different target platforms. Suppose the inte-
ger parameter x is 32 bits wide, the probability of detecting the error evaluates to

Pe = 333

1 void function_to_test (int x) {
2 if (x == 12345) {

3 ERROR () ;

4 }

5}

Listing 1: A C-code snippet subject to random testing.

For our MCU verification framework we implemented a random hex file generator for test-
case generation. In contrast to fuzz-testing, our random generator takes the syntactical
specification of the respective microcontroller’s instruction-set into account. Thus, only
valid programs are created that, when parsed correctly, can be executed on the target.
Figure 1 depicts the idea of the actual implementation.
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Figure 1: Random hex file generator

For the sake of portability we implemented the random hex file generator as a command
line application in JAVA. The arguments are sn.str pool (a list of opcodes the random gen-
erator should choose from; in case when this argument is not given the full instruction set
is used), #instr, . (an upper bound for the randomly chosen number of total instructions
to be included in the hex-file), and #n (the total number of hex-files to be generated).
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2.1.2 Custom Input Generation

In contrast we also experimented with handcrafted input generation. Handcrafted input
generation may outperform random input generation in cases where the faulty behavior
only exhibits as a consequence of some previously taken actions. On the downside, a clev-
erly designed handcrafted program requires a skilled test engineer with a deep insight into
the particularities of the target MCU, and may therefore be time intensive to create. Hand-
crafted input generation may easily take the side-effects of an instruction into account,
such as setting and deleting status flags, stack pointer modifications, etc. To illustrate,
consider the following instruction sequence:

ADD A, #C
ADDC A, #C2

where again the first line adds the constant #C to the accumulator and the second one per-
forms an add with carry instruction. The semantics of the ADDC instruction additionally
takes the carry flag into consideration when calculating the sum, thus, the result of the
operation depends on whether the preceding ADD instruction causes an overflow of the
accumulator or not. Such implications are hard to check with random input sampling.

2.2 Execution and Evaluation Unit

The execution unit is basically a set of scripts for different OS platforms that streams
the previously generated instruction snippets in form of hex-files to the respective MCU
simulator or the physical MCU via a suitable interface and controls their execution, cf.
Figure 2. The configurations of the MCU simulators or physical MCU are dumped to files
and evaluated for equivalence by subsequent evaluation scripts. On success the respective
tests are marked as ‘pass’; otherwise ‘fail’ is logged along with the information allowing
to pin-point to the discrepancies.

Algorithm 1 Single stepping for one MCU simulator or physical MCU.
1: forl =1 — #n + #m do

2 C+CY%

3. create(file');

4 for i = 1 — #instr,,.. do
5: C « simStep();
6

7
8:

file! < C;
end for
end for

For #n random and #m custom generated hex-files, the algorithm first resets the simu-
lator or physical MCU to a defined ‘initial’ configuration C° and than executes repeatedly
(up to #instr,,.) one instruction at a time (sim.Step()) and dumps the program counter,
the registers, and the memory to a log-file (where ‘<’ denotes concatenation), cf. lines
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Figure 2: Execution and Evaluation Unit

4-7 of Algorithm 1. Herein, the first set of instructions of every test-program perform
some startup-sequence that initializes the memory with random bit-patterns. We execute
this sequence for the physical MCU and every simulator under test. Afterwards, we use
standard diff tools to cross-check the log-files for discrepancies, see Algorithm 2. Hereby,
our test approach outputs a verdict that either marks the differences as ‘fail’ with a referral
to the respective assembly instruction of the respective test-program (line 6) or when all
dumps are equal a simple ‘pass’ statement. The entire test execution is fully automated,
with the exception of reasoning and categorization of the findings.

Algorithm 2 Comparing simulator and physical MCU memory dumps.

for!l =1 — #n+ #mdo

1:
2 out < “pass”;
3. load(filel, filek);
4 for i = 1 — #instry,q,, do
5: if i, # C% then
6 out K “fail” + 1;
7 end if
8 end for
9:  print(out);
10: end for

2.3 Register and Memory Dumps

One restriction of our automated approach is that the simulators under test should possess
an interface to control execution of the test-programs and dump the registers and memory
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information to a log-file. This is easily accomplished when some command-line interface
is provided, requires, however, some GUI automation when this is not the case. All dumps
are written in a common format, following the one used by the Unix HEXDUMP utility.

For likewise execution and evaluation of the test-programs on the physical MCU (an IP-
core running on an FPGA platform) we re-use some test-circuitry that interfaces via a
high-speed USB 2.0 interface to our host, see [RSM™ 11] for details.

3 Case Study

In the following, we show the feasibility of our framework by a case study in which we
instantiate seven different implementations of the Intel MCS-51. All experiments were
performed on a Intel Core i5 CPU equipped with 4 GB of RAM, running Linux. We have
conducted the experiments with the expressed aim of answering the following questions:

Q1 Is the framework presented a practicable method to increase confidence in the cor-
rectness of MCU simulators?

Q2 What kind of errors can be found with (a) random input programs and (b) hand-
crafted test programs?

3.1 Simulators

Even though our framework is applicable to a wide range of simulators, we based our ex-
periments on the Intel MCS-51 architecture. The main motivation for selecting this MCU
was to increase confidence in the respective simulators that are used within [MC]SQUARE.
These simulators are used to create state spaces from binary programs, which are later
checked by the actual model checking algorithm for property violations. Hence, an in-
correct simulation would result in incorrect state spaces, and could therefore culminate
in either errors being missed by the model checker, or false alarms for actually sound
programs.

For our experiments in this section, we examined the following set of simulators:

* [MC]SQUARE

— C51SI1M (S5;) A handwritten, thoroughly tested simulator [Rei09] that was cre-
ated with the intention of building state spaces for model checking Intel MCS-
51 binary programs.

— MCS51SIM (S;;) A synthetic simulator created from a hardware description,
compiled by the simulator compiler [GBKI10] contained in [MC]SQUARE.
During its development, it was compared with the already existing C51SIM
by running several case study programs simultaneously in both simulators.
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* Open Source

— pCSIM (S;;;) A console based simulator that supports various microcontroller
targets. We used the Intel MCS-51 port, version 0.5.4, which is part of the
SDCC framework. Available from http://sdcc.sourceforge.net

— GSI1M51 (S;,) A console based simulator originating from a student project,
version 1.1. Available from http://gsim51.sourceforge.net

- EMU8051 (S,) This console based simulator, of which we used version 1.1.0,
has been under development since 1999. Available from
http://www.hugovil.com/fr/emu8051

* Industrial Strength

- KEILC51 (S,;) A commercial, industrial-strength simulator, shipped with the
Keil pVision3 v 3.23 IDE. Further details about this tool are available at
http://www.keil.com/c51

* FPGA based

— OREGANO (S,;;) The Oregano Systems 8051 IP core is a parameterizable,
synthesizable circuit description of the Intel MCS-51 intended to run on an
FPGA. Available from http://www.oregano.at

3.2 Benchmarks

We used two distinct benchmark sets I'r and Iy with the expressed aim to cover a wide
range of valid opcodes.

Random I'z: A set of random hex files generated by the random hex file generator
introduced in section 2.1.1.

Handcrafted I';:  We adopted a benchmark set! which was generated at the University
of California at Riverside for a synthesizable VHDL Model of the Intel MCS-51 in course
of their Dalton project [VGO1].

Note that, [MC]SQUARE has no explicit real-time model, thus the simulators C51SIM and
Mcs51SIM do not implement timers and interrupts in the same manner as stated in the
datasheet [Int94]. For example, an expired timer will generate two successor states, one
representing the entry into the interrupt service routine and the second for the state follow-
ing the call to the interrupt handler, therefore, deviate from common simulator implemen-
tations. We thus did not aim to find errors depending on certain interrupt configurations,
as they are not comparable to the [MC]SQUARE simulators in a 1:1 manner.

! Available at http: //www.cs.ucr.edu/ dalton/i8051/i8051syn
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The benchmarks I'r and Iy are subsequently loaded into the execution unit of our frame-
work. Test cases that become tagged with a ‘fail’ verdict by the execution unit are manually
inspected to figure out the root cause of the deviation.

3.3 Results

Table 1 states the results generated by the framework when running benchmark sets I'r
and I'y. The entry #TC is the number of test cases generated, i.e., the number of hex files
and #Instr is the number of instructions traversed by the test case. The column Dump size
states the size of the corresponding memory dumps for a single simulator, whereas Time
is the total execution time of the test run.

Benchmarks Test cases passed Dump size | Time
Name | #TC | #Instr | S; | Sis | Siss | Si Sy | Sui [MB] [s]
I'y 20 2531 |16 | 12 | 13 12 | 11 | 20 2.0 2:27
Iy 3 952 |2 0 0 0 0 3 0.7 0:41
Total 23 3483 | 18 | 12 | 13 12 | 11 | 23 2.7 3:08

S; ... C51smm Siii ... pCsSIM S, ... EMuU8051
Sii ... MCS51SIM Siv ... GSIM51 Svi ... KEILCS51

Table 1: Experimental results for benchmarks I'r and I'y.

At a first glance the number of 23 different test-programs seems rather low — and is in fact
far from exhaustive. Nevertheless, we found several errors and deviations compared to the
physical MCU in all simulator implementations except one, the KEILC51 simulator. Both
benchmark sets were able to reveal implementation bugs. We classify the found deviations
into (a) wrong status flag updates, (b) illegal state modifications, (c) corner cases, and (d)
exceptions. In the following we will give some examples of the bugs being found by our
framework.

Wrong status flag updates. The Intel MCS-51 architecture holds status flags that reflect
additional information about the executed instruction (such as over- and underflow infor-
mation) in the program status word (PSW)?. Missed or wrongly set status flag may have
severe effects on both the control flow as well as the configuration. For example consider
the instruction JNZ CY, C:0x100 that jumps to address 0x100 iff the carry flag CY
is set. Suppose a simulator wrongly clears the CY flag after, say, an overflowing ADD in-
struction, then execution will continue at the program counter location following the JNZ
CY, C:0x100 instruction, thus, skipping parts of the intended control flow.

* Overflow Flag (OV) not set. The instruction ADDC A, B simultaneously adds the
content of register B, the carry flag and the accumulator contents, leaving the results

2The respective flags in the PSW are: [CY|OV|FO|RS1|RS0|OV|-|P]
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in the accumulator [Int94]. Consider the following instance of the instruction, where
the values 0xBO and 0x3A together with the carry flag are added: While the result

o.ll
o v ﬂ A — OxEB
A > 0xBO e PSW — 5.00001000

—— [ADDC A, #0x3A1] o'
PSW +— 0.10001101 w_H X A — OxEB
PSW +— 0.10001100

of the addition is correct, however, the remaining bit values in the PSW are not. The
faulty implementation does not clear neither the CY nor the OV flag. The semantic
definition of status flag updates of the ADDC A, B reads as follows: “The carry and
the auxiliary carry flags are set, respectively, if there is a carry-out from bit 7 or bit
3, and cleared otherwise ... OV is set if there is a carry-out of bit 6 but not out of bit
7, or a carry-out of bit 7 but not out of bit 6, otherwise OV is cleared”. Analyzing
the addition on hardware level, reveals that there is only a carry out from bits 4 and
5, thus, the correct implementation needs to clear both the CY as well as the OV flag.

* Add with Carry without Carry. An akin deviation we found, is that — occasionally —
the carry flag does not enter the addition, causing the accumulator to hold the value
of (A+R0) instead of (A+R0O+CY).

n

ag
A 0x15
A — 0x0A s Y7 pswes b.01000001
RO — 0x0A [aADDC A,RO ] o'
PSW ~— b.10000000 R A Ox14
X ML PSW — 5.10000000

It is notable that this is a particularly delicate bug. One of the test cases contained
the sequence:

) ADDC A, RO
2) SUBB A, #0x15

) JZ C:0064

In the faulty implementation, executing (1) yields the state o’ as above, (2) subtract-
ing the constant #0x15 from #0x14 causes an overflow and leaves OxFF in the
accumulator. Hence, the faulty implementation will reach (3) with 05(A — O0xFF)
whereas a correct implementation will yield 0§ (A — 0x00). Obviously, the latter
will take the true branch of the conditional jump at location (3), whereas the former
will erroneously take the false branch.
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* Subtraction using addition. Subtraction can be implemented by using two’s com-
plement and an addition operation. Hence, it is tempting for simulator developers
to reuse the existing code for addition. However, this has undesired side effects on
the flags. For instance, on the 8 bit architecture MCS-51, the two’s complement of
0x01 is OxFF — 0x01 + 0x01 = OxFF. Adding O0xFF to A will therefore have
the same effect on the data as A — 1, but will cause an overflow, and therefore may
result in flags being set differently.

o_ll
- Y A+ 0x09
e PSW + 5.00110000

A 5 Ox0A
——> [ SUBB A, 0x01] o'
W A+ 0x09
X PSW > b.11110000

PSW — 5.01110000

In the scenario above, the value of A is decremented from 0x0A to 0x09. Similarly
to the previous example, the incorrect values of the carry and auxiliary carry flag in
o' may result in data errors after subsequent arithmetic operations, and finally lead
to incorrect control flow.

Illegal state modifications. Wrong or missing status flag updates mostly cause a change
of the program flow (as the conditional of branches are often status flags). However, we
also found severe bugs in various implementations that lead to real data faults. In the
following, we will show some representative examples:

» Writing the data pointer. The data pointer on the Intel MCS-51 architecture is a
double word, thus, internally stored in two distinct 8 bit registers, i.e., DPH and
DPL. Moving a constant to the data pointer requires the simulator to load the high
byte of the constant into DPH and the low byte into DPL. Even though this seems
to be easily implemented, it is indeed the case that one of the simulators wrongly
ignores the high byte of the constant that is meant to be shifted into the register DPH.
Wrongly setting the data pointer may have several severe consequences. Switch

n

g
o v DPH — 0xD8
yd DPL — 0x5B
o_l
N

DPH ~ 0x00 — > [MOV DPTR, #D85B]
DPL +— 0x00 ’
DPH — 0x00

X DPL — 0x5B

case statements are often efficiently translated to jump tables. The entries of the
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tables (e.g. the comparison value, the jump targets) are then loaded at run time from
the program memory where the program memory is addressed by the sum of the
accumulator value and the data pointer. Another scenario is when one loads, e.g.,
a value table of a trigonometric function from the program memory into the RAM.
If the data pointer is corrupted, the involved instruction will likely interpret some
random program bytes as the value table.

» Writing automatically updated memory. Certain memory locations are updated au-
tomatically on the physical device. For instance, the parity flag is set to 1 after each
instruction iff the number of 1 bits in A is odd. Thus, instructions writing the parity
flag should have no effect. A few simulators did not abide by this, creating states
that are logically inconsistent. Programs relying on the value of this flag would
therefore operate on flawed data.

Corner Cases.

* Popping a byte into the SP. After popping a value from the stack the stack pointer
(SP) is decremented to point to the next element on the stack. The Intel MCS-
51 instruction set explicitly allows to pop a value from the stack into the register
holding the SP. In this case the stack pointer is overwritten with the value from
the stack and not decremented afterwards [Int94]. However we could reveal two
different implementations of the POP SP command.

"
2
I

SP +— 0x08

/ r"(
S
SP — 0x0A
0x0A — 0x08 —— [POP SP ]~ X SP — 0x07
l‘\\jﬂ o 1
X WL SP s 0x09

One implementation wrongly decremented the stack pointer yielding o', another one
even incremented the stack pointer yielding o'’.

Exceptions. Loading the HEX files we used for the tests was possible with all simulators
except for one. For the generated simulator, we discovered a problem with programs
starting at addresses greater than 0. The simulator always expected this start address and
would yield an exception in any other case, thus preventing simulation. Therefore, we
implemented a workaround that allowed this simulator to execute our tests.
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4 Conclusion & Future Work

In this paper we present a methodology to check the functional equivalence of microcon-
troller simulators with its physical counterpart. Our (mostly automated) approach relies on
auto-generated random and/or custom hex-files that are fed to both the simulators and the
physical implementation, respectively. After the execution of every single instruction the
actual configuration, consisting of the program counter, the registers and the data memory
is dumped to log-files. After the execution of the test-cases, every simulators’ log-files
are compared with the physical MCU’s log-files that serve as test-oracle. Differences are
marked and cross-referenced with the involved instructions, allowing the test-engineer to
determine the actual cause(s) thereof. Experiments conducted with auto-generated, closed-
and open-source Intel MCS-51 simulators revealed several flaws and even severe bugs in
almost all implementations.

Future work needs to work on mechanisms to ease the interpretation of the results and
to rule out repetitive occurrences of the same encountered bugs that show-up multiple
times under different input conditions. Furthermore, the presented approach will benefit
by the provision of a test-coverage, a more efficient handling of the state spaces (e.g.,
by relying on state-changes rather than entire states), and a speed-up of the execution.
One obstacle for the latter, however, is the lack of standardized interfaces to control the
simulators (especially when only a GUI is available).
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