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ABSTRACT

This paper presents an extension to the dual-window-length
Real-Time Iterative Spectrogram Inversion phase estima-
tion algorithm (RTISI). Instead of a transient detection in
advance, the phase estimator itself determines the correct
window length when the phase information for all window
lengths have already been estimated. This way, we get sig-
nificant improvements compared with the previous method.
Additionally, we extend this estimator to configurations with
three or more window lengths.

1. INTRODUCTION

The reconstruction of missing phase information is an impor-
tant step to get an audio signal from a magnitude short-time
Fourier transform (STFT) spectrogram and enables audio
effects to work just on the spectrogram magnitude. However,
the quality of this approach suffers from the time/frequency
resolution tradeoff, similarly to other spectrogram-based au-
dio manipulation methods. In audio coding, window switch-
ing is a well-known method to improve this tradeoff. In a
previous paper, [1], we already presented an implementation
of a phase estimator using window switching between two
analysis windows.

Lukin and Todd [2] proposed a different method to per-
form arbitrary spectrogram-based audio effects with different
spectrogram lengths: They process audio frame-wise in par-
allel with different window length and decide afterwards,
frame by frame, which process has performed best. However,
this approach needs the knowledge of the phase information.
This paper proposes a method to estimate it.

Dual-resolution phase estimation with window switching
has some problems which do not occur with the Lukin/ Todd
approach:

• Errors in transient detection lead to a sub-optimal time/
frequency resolution for the recent audio frame. The
decision which resolution is correct is not trivial.

• Algorithms which modify the resulting spectrum do
not get the whole spectrogram for processing. Instead,

they get only the frames the transient detector has allo-
cated to them. This can be a disadvantage, e. g. when
they need complete statistics for correct processing.

• It is not guaranteed that an optimal decision before
the spectrum modification remains optimal during the
modification.

This motivates us to create a multi-window-length STFT
phase estimator not based on window switching, but on paral-
lel processing, similar to the Lukin/Todd processing scheme.
One important difference: In the original paper [2], a co-
efficient mixing is proposed to determine the final signal.
Since such a mixing can lead to phase cancellations, we per-
form a strong decision for every frame which time-frequency
resolution is most appropriate.

As phase estimation algorithm, we use the Real-Time
Iterative Spectrogram Inversion (RTISI) [3], with the im-
provements from [4]. To our knowledge, there are no other
phase estimators available that could handle multi-window-
length spectrograms. RTISI itself is a localized variation of
the classic Griffin/Lim algorithm [5]. An alternative would
be the phase estimator of Le Roux et al [6]. Unfortunately,
unlike RTISI, this phase estimator operates only in frequency
domain, while we need the time-domain representation of in-
termediate signals to synchronize the buffers (see below for
details). Unlike in [1], this synchronization must happen after
every committed frame to avoid drifting phase estimations.

This paper is organized as follows. Section 2 gives an
overview over the whole processing scheme. Section 3 in-
troduces the phase estimation and synchronization scheme.
Section 4 shows how the best estimation is selected. Section
5 generalizes the scheme to more window lengths than two.
Section 6 contains the experiments and results. Here, the new
method is also compared with [1]. The paper finishes with
the conclusions.

2. PROCESSING OVERVIEW

Figure 1 shows how the overall processing is performed.
From the original waveform s[n], we generate two magnitude
spectrograms with different window lengths L1 and L2 and
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the same overlap (typically 75%) using the STFT. We call
the resulting hop lengths S1 and S2. The ratio L1/L2 must
be a power of two. As window function, we use the scaled
Hamming window from [5].
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Figure 1: General overview. The evaluation step compares
all phase estimations frame-wise with all spectrograms and
decides with a minimax principle.

Those magnitude spectrograms can be modified in an ar-
bitrary way. After that, two RTISI algorithms [3] re-estimate
the phase spectra. As explained in Section 3, one RTISI
buffer is used for each window length, respectively. For each
frame of length L1 except the first one, S1

S2
frames of length

L2 are estimated, so that the number of estimated samples is
the same.

The result of the short-window-length phase estimation
is re-windowed such that it is implicitly windowed with the
long window. When the estimated samples are available
for both window lengths, we rate them using the procedure
explained in Section 4 to get the best estimation. The best
estimated frame is committed, so that a final overlap-add
procedure can collect the committed frames to construct the
final modified audio signal.

To ensure that the initialization data of the RTISI buffers
are the same, the data of the chosen RTISI buffer must be
copied to the other one every time when a frame is committed.
Finally, the buffers are set to the next frame. Thus, the next
long-window frame, and the next S1

S2
short-window-frames

are processed, and so on.

3. PHASE ESTIMATION

Central data structure for our phase estimator is a combi-
nation of two two-dimensional buffers longB and shortB, one
for each window length. The buffers are basically illustrated
in Figure 3 with two modifications: The number of rows in
the long-window-length RTISI buffer is actually 7, with the
commit frame in the center. Additionally, each buffer row
stores the target magnitude spectrum.

Mathematically, we can interpret these buffers as two-
dimensional arrays (not matrices) (BMN), which are illus-
trated in Figure 2. On each buffer B, we define the following
operations. To help understanding, operations returning a
complete row are overlined, whereas operations returning
only a vector of the window size are marked with a degree
symbol. The symbol i denotes a row index, a denotes an
external vector.

• Addition, Subtraction, Multiplication, Division are de-
fined element-wise.

• B. ˚CROP(i, a): Shortens the row vector (a1, · · · ,aN) to
(al , · · · ,ar), with l := iS and r := l +L.

• B.GET(i): Returns the row vector (Bi1, · · · ,BiN).

• B. ˚GET(i) := B. ˚CROP(i, B.GET(i))

• B. ˚SET(i, a): Sets the row vector (Bil , · · · ,Bir) to
B. ˚CROP(i,a), with l and r defined as for the ˚CROP
operation.

• B.SET(i, a): Sets the row vector (Bi1, · · · ,BiN) to a.

• B.SUM: Calculates the sum of the matrix rows as a
row vector

(
∑M

i=1 Bi1, · · · ,∑M
i=1 BiN

)
.

• B. ˚SUM(i) := B. ˚CROP(i, B.SUM(i))

For convenience, we also associate following functions
with the buffer which return additional data:

• B.MAG(i): Returns the target magnitude spectrum of
row i.

• B.W: Returns the discrete window function the mag-
nitude spectra are inherently calculated with.

RTISI, introduced in [3], is an online-capable algorithm,
which works on a frame-after-frame basis. The phase esti-
mation consists of two steps: an initialization and several
iterations of an (improving) update rule.

The initialization depends on the window length: The
short-window buffer is always initialized with zeros. The
long-window buffer is initialized with a propagated phase of
the previous frames, as proposed in [4], to exploit the phase
continuity of steady-state signals.

The update rule is the same on both buffers. It is pro-
cessed on a buffer row and works as follows:
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Figure 2: Single phase estimation buffer. Every sketched
cell contains S elements, whereas S denotes the hop length
between adjacent frames.

• Calculate the sum frequency spectrum for the current
row i by taking the according part of the buffer sum, re-
windowing this part and applying an Discrete Fourier
Transform.

• Project all coefficients of this spectrum onto the unit
circle. The result is equivalent to the phase. Multiply
this result with the target magnitude (M-Constrained
transform).

• Transform the result of this combination into the time
domain, window it, and store it back into the current
row.

In short:

B. ˚SET(i,B.W ·
(

IDFT

(
B.MAG(i) · DFT(B. ˚SUM(i))

|DFT(B. ˚SUM(i))|

))
),

(1)
where DFT denotes the Discrete Fourier Transform, and
IDFT its inverse.

The order of the buffer row updates is determined by the
energy of the rows — first the loudest row is updated, then
the second loudest, and so on, until all rows between the last
and the commit row have been processed [4]. After a certain
number of iterations, the frame is committed, and the buffer
is synchronized to the next audio frame.

After each commit of the long-window buffer and S1
S2

commits of the short-window buffer, we must decide which
configuration is better (see Section 4). After that, the result is
copied from the “winning” buffer srcB to the “losing” buffer
tgtB as follows:

• Calculate the buffer sum.

• Divide the buffer sum by the sum of the squared win-
dow functions for all rows so that the buffer sum is
implicitly windowed with a rectangle window.

Long-window-
length RTISI

buffer

Short-window-
length RTISI
buffer

Buffer sum

Buffer sum with window sum error compensation

Figure 3: Two RTISI buffers with different window lengths
without target magnitude spectra and without look-ahead
frames. To transport audio data between the buffers, the
algorithm calculates the buffer sum, compensates the window
sum error, and windows the result for each target buffer row.
The dotted lines denote the window function the audio data
in the buffer are implicitly multiplied with.

• For each target buffer row, window the according part
of the buffer sum. Copy the windowed buffer sum part
into the target row.

To express this mathematically, we consider the RTISI
buffers longW and shortW which are filled with the squared
windows such that longW. ˚GET(i) = longB.W2 for all i, and
shortW. ˚GET(i) = shortB.W2 for all i. We denote the “window
buffers” with the source and target window length as srcW
and tgtW, respectively. Then the synchronization becomes

tgtB. ˚SET(i,
(

tgtW. ˚GET(i) ·tgt B. ˚CROP(i,
srcB.SUM
srcW.SUM

)

)
)

(2)
for all i.
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4. DETERMINING THE OPTIMAL WINDOW SIZE

To find the optimal window size, we have to compare the
phase estimation for each window length with the magnitude
spectrograms, also for each window length. Let M̃ be the
position index of the commit frame. As comparison criterion,
we use the signal-to-error ratio (in dB) in the magnitude
spectrogram domain:

SER = 10log10

M̃+ξ
∑

m=M̃−ξ

(
L−1
∑

k=0
|X [mS,k]|2

)

M̃+ξ
∑

m=M̃−ξ

(
L−1
∑

k=0
(|X [mS,k]|− |X ′[mS,k]|)2

) (3)

From the RTISI buffer with the window length Lu to
evaluate, we calculate the actual magnitude spectrogram X ′

from the buffer sum on the commit frame ±ξ additional
rows; see Section 6.2 why a choice n = 2 can be considered
optimal. For this spectrogram calculation, we use the window
length Lv of the target spectrogram to compare. We denote
this SER as SERu,v which means: “Calculate the signal-to-
error ratio of the spectrogram of the phase estimation with the
length Lu, but use length Lv for the spectrogram calculation
and thus set S= Lv/4 for 75% overlap. Compare the resulting
spectrogram with the target magnitude stored in the RTISI
buffer of the length Lv.”

The four signal-to-error ratios SERu,v for one long and
one short window can be summarized in a matrix:

(
SER1,1 SER1,2
SER2,1 SER2,2

)
(4)

To get a final decision from these four SER values, we
derive a minimax approach comparable to the Haussdorff
distance [7] as follows: Low SER values for a short refer-
ence window length Lv correspond to artifacts manifesting
in the time domain, usually time-domain smearing. These
artifacts are audible especially in transient regions. On the
other hand, low SER values for a long reference window
length correspond to errors in the frequency domain, e. g.
modulation effects. They are usually audible at steady-state
signals, especially at low frequencies. Since our goal is the
reduction of audible artifacts, we dump the estimation with
the worst SER and favor the time-domain signal estimation
which does not produce this worst SER.

As the SER is also the optimization criterion for RTISI,
the SERs on the main diagonal of the matrix are optimized,
so they are always better than other SER values. For that
reason, the worst SER is either SER1,2 or SER2, 1. Thus,
we can simply decide: If SER1,2 > SER2,1, we choose L1,
otherwise L2.

5. GENERALIZATION TO MORE WINDOW
LENGTHS

The extension of this approach to multiple window lengths is
now straightforward. For every used window length except
the longest one, we employ one separate RTISI buffer and
treat it as a short-window case. The longest-window-length
buffer is treated as the long-window-length buffer in the
previous sections.

To determine the correct window length after estimation,
we also generalize the avoid-the-worst-SER approach. For
every window length, we compare the phase estimation result
with each reference spectrogram and find the worst SER. We
choose the window length where the worst SER is best:

U = argmax
u

(
min

v
(SERLu,Lv)

)
(5)

6. EXPERIMENTS AND RESULTS

In order to evaluate these improvements, we use a test set
based on the Sound Quality Assessment Material (SQAM)
from the EBU [8]. Our test set consists of 70 files contain-
ing speech, singing vocals, and instruments. The sampling
frequency is 48 kHz. For spectrogram generation and phase
estimation, we use the scaled Hamming window from [5]
with L = 4S, yielding an overlap of 75%. For phase estima-
tion, we use RTISI with three look-ahead frames (see also
the remarks to Fig. 3). As evaluation measure, we use the
mean signal-to-error ratio (in dB) of the magnitude spectro-
grams of the phase-reestimated signal versus the original,
respectively, as defined in Equation (3).

Like in Section 4, this SER measure operates on STFT
magnitudes and thus depends on its own window length.
Also, this SER window length determines the operating point
of the measured time-frequency resolution tradeoff. To ana-
lyze the phase estimation performance over the whole range
of time/frequency resolutions, the SER values are plotted
against this window length. A high-quality phase reestima-
tion should achieve high SER values for all window lengths
to show that it avoids artifacts in both time and frequency
domain.

6.1. General Results

Figure 4 shows the SER results of a single-resolution RTISI
phase reestimation with the window lengths 512, 1024, and
2048 samples, respectively. Note the peaks at the window
lengths; here the evaluation criterion is identical to the op-
timization criterion. Additionally, this figure shows the re-
sults of dual-length phase estimation with transient detection
and with post-estimation decision. As a transient detection
measure, we use the maximal energy compaction principle
described in [2]. We see that our post-estimation decision
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Figure 4: Average SER for different phase estimation meth-
ods on the standard EBU set against the measure window
length. The crosses on the solid (red) line denote the measure
points. The peaks marked with black-filled balls result from
the fact that, on this window length, the evaluation criterion
matches the optimization criterion.

outperforms the transient detection approach except on very
large windows. It delivers also better results than each of
the single-resolution estimations, even when evaluation and
estimation window length match. The outlier peaks here are
smaller than in the single-resolution case; an obvious reason
is that the optimization result is a compromise between two
window lengths.

6.2. Number of frames to analyze in a buffer

Figure 5 shows which number of frames ξ to analyze in the
buffer should be chosen. As a general rule we can follow,
the higher the number of frames, the better the estimation.
An interesting exception arises when we choose the com-
plete buffer (seven frames, e. g. commit frame ±3 frames).
Here the results are worse compared with the five-frames
evaluation.

To explain this decline, we recall that all magnitude spec-
tra are implicitly windowed with w[n]. In the state of con-
vergence, the M-constrained transform does not change any-
thing, so due to the following windowing step the data in the
buffer are implicitly windowed with w2[n]. This window is
compensated in the rectification step.

If the state of convergence is not achieved, the M-con-
strained transform does perform changes and tends to neu-
tralize the previous windowing step. As a result, after the
following windowing step, the data in the buffer are implic-
itly windowed with something between w[n] and w2[n]. The
rectification over-compensates this windowing step, thus dis-
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Complete Buffer

Commit frame ±2 frames

Figure 5: Average SER with respect to the number of long-
size buffer frames to take into account for minimax evalua-
tion.

torting the buffer sum especially at the edges. When this
edge is also considered for determining the correct window
size, this error leads in some cases to wrong decisions and
finally to lower SER values than possible.

6.3. Distance between Window Lengths

Figure 6 shows the influence of the difference between the
window lengths. One window length – 2048 samples – is
fixed, the other one varies between 256 and 2048 samples. As
we can expect, the temporal resolution becomes better with
increasing difference. On the other hand, in this case the SER
values above a window length of 2048 become worse. We
can conclude that the time/frequency resolution tradeoff in a
certain way also holds for multi-resolution phase estimation.

6.4. Extension to multiple window lengths

The results of using more than two window lengths are pre-
sented in Figure 7 and 8. Generally, it makes sense to com-
pare the 512/2048 dual-resolution curve with the 512/1024/
2048 triple-resolution curve, and the 256/4096 dual-resolu-
tion curve with the 5-resolution curve. In both cases, the
SER for the reference window lenghts between L1 and L2
are better when more than two resolutions are considered.
On the other hand, the SER at very long windows becomes
smaller. A comparison between the 5-resolution and dual-
resolution 256/2048 samples (green, solid curve) shows that
the SER gain for the 5-resolution for long window lengths is
also limited; for short window lengths the dual-resolution is
even better.
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Figure 6: SER for dual window length with one window
length (2048 samples) kept fixed.
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Figure 7: Average SER for triple resolution.

7. CONCLUSIONS

We have generalized the method of [1] to a signal process-
ing scheme that allows switching between different window
lengths without relying on a (better or worse) transient de-
tector. Additionally this scheme allows the usage of more
than two window lengths. Applications for this technique are
all algorithms which operate on magnitude-spectrums only,
like time/pitch modification or source separation. While the
new approach performs significantly better than the previous
method [1], the results for three or more window lengths
indicate that in this case the window length decision method
gives room for additional research.
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Figure 8: Average SER for 5 different window lengths com-
pared with 256/2048 and 256/4096 dual-window length.
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