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Abstract 

Monitoring changes in freshwater availability is critical for human society and sustainable economic development. To 

identify regions experiencing secular change in their water resources, many studies compute linear trends in the Total 

Water Storage (TWS) anomaly derived from the Gravity Recovery And Climate Experiment (GRACE) mission data. 

Such analyses suggest that several major water systems are under stress (1-6).  

TWS varies in space and time due to low frequency natural variability, anthropogenic intervention, and climate-change 

(7, 8). Therefore, linear trends from a short time series can only be interpreted in a meaningful way after accounting 

for natural spatiotemporal variability in TWS (9, 10). In this study, we first show that GRACE TWS trends from a 

short time series cannot determine conclusively if an observed change is unprecedented or severe. To address this 

limitation, we develop a novel metric, Trend to Variability Ratio (TVR), that assesses the severity of TWS trends 

observed by GRACE from 2003–2015 relative to the multi-decadal climate-driven variability. We demonstrate that the 

TVR combined with the trend provides a more informative and complete assessment of water storage change. We show 

that similar trends imply markedly different severity of TWS change, depending on location. Currently more than 3.2 

billion people are living in regions facing severe water storage depletion w.r.t past decades. Furthermore, nearly 36% 

of hydrological catchments losing water in the last decade have suffered from unprecedented loss. Inferences from this 

study can better inform water resource management. 

Keywords: GRACE, linear trends, spatiotemporal variability 

1. Introduction 

The total amount of rainfall received by a river system and its 

spatial variability depends on the climate zone(s) through 

which it flows (11). Precipitation also has a temporal 

variability dominated by an annual cycle that moves 

approximately 6000 ± 1400 Gt of water every year between 

land and oceans (12). On multi-annual timescales this water 

movement is primarily driven by ocean-atmosphere 

interactions characterized by climate indices such as the El 

Niño-Southern Oscillation (ENSO), North Atlantic 

Oscillations (NAO) or Atlantic Multidecadal Variability 

(AMV) (8, 13, 14). Interannual variability, operating at sub- 

to multi-decadal timescales, is responsible for unusual 
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precipitation that can lead to floods and droughts. Since 

precipitation is related to water storage change via the water 

budget equation, Total Water Storage (TWS) exhibits similar 

sub- to multi-decadal temporal variability (7, 14, 15). TWS is 

defined as the sum of water stored near the surface of the Earth 

in the form of soil moisture, snow water equivalent, surface 

water, canopy water storage, frozen reservoirs and 

groundwater aquifers (16, 17). 

Understanding the cause and effect of spatiotemporal 

variability in TWS is essential to our assessment of global 

water security. It is understood that changes in TWS are driven 

primarily by natural variability and human exploitation of 

water resources, and are also evolving due to anthropogenic 

climate change (13). Given natural variability and human 

intervention, the rate of depletion in TWS sometimes exceeds 

the rate of replenishment and vice-versa. However, if the rate 

of depletion exceeds the rate of natural replenishment for 

significantly longer than the characteristic timescale of natural 

variability, then the water body is likely to be under stress due 

to external secular forcing.  

The amount of publicly-shared in-situ hydrological 

information is limited and often decreasing due to political and 

financial pressures (6, 16), making it a challenge to monitor 

global water-systems efficiently. A partial solution to this 

problem has been provided by recent developments in satellite 

remote sensing. In particular, the launch of the Gravity 

Recovery And Climate Experiment (GRACE) satellite 

mission in 2002 allowed global measurement of the TWS 

anomaly for the first time (18-20). GRACE data have since 

been used to identify and understand the dynamics of the 

hydrosphere, including groundwater depletion, shrinking 

glaciers and ocean mass change (18, 19). Typically, the TWS 

time series from several years of GRACE data is decomposed 

into a seasonal signal and a linear trend computed using least-

squares regression. The magnitude of any negative trend is 

then used as a measure of the severity of water loss to identify 

and rank regions in order of water storage stress (5, 6, 16). 

There are two issues with this approach:  

a) the GRACE satellite mission provides a relatively short 

time series of approximately 17 years, which, depending on 

the region and the time-period, can be dominated by either 

natural variability, human intervention or anthropogenic 

climate change (9, 21). Without knowledge of the amplitude 

and the characteristic timescales of individual sources of 

variability, it is impossible to determine the driver, and 

consequently the significance, of GRACE-derived trends.  

b) in general, each region has a distinct natural interannual 

variability, of sub- to multi-decadal time scale, which means 

the same negative trend cannot be used to infer the same 

degree of TWS stress. In other words, the magnitude of the 

TWS trend alone is not a measure of its severity.  

These issues are illustrated in Figure 1, where we plot natural 

variability in TWS from a calibrated Land Surface Model 

(LSM) and select three different time-periods (10, 7 and 13 

years, respectively) in the latter half of the 20th century to 

infer a linear trend, while the trend for the complete time series 

from the calibrated LSM is negligible in each case. We can 

see that the natural variability for different catchments is 

different and even large trends from short time series (such as 

obtained from GRACE) might be driven by natural variability 

for some catchments. More details on the data and processing 

strategy used to generate Figure 1 – which is only for 

illustrative purposes – can be found in the supplementary 

information. To this end, we can conclude that a 

comprehensive assessment of the severity of TWS trends 

cannot be obtained from GRACE observations alone, and 

additional information on multi-decadal natural variability is 

needed. In this study we address this issue and develop a new 

metric that when used along trends can help us infer the 

severity of TWS change. 

2. Trend to variability ratio 
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Determining when a trend exceeds the expected internal 

variability is a fundamental problem in many disciplines. 

Similar issues have been identified by studies concerning the 

emergence of climate change signal in Earth system model 

simulations where it is easier to separate internal variability by 

changing the initial condition and forcing (22, 23). For 

example, in the context of ocean heat content, a warming trend 

is only detectable from a time series longer than 27 years, 

while trends from shorter time series are likely dominated and 

contaminated by natural variability (24).  By normalizing the 

trend against the standard deviation of the internal variability, 

we can assess when the trend emerges above the system’s 

natural variability. In this study we apply this basic idea to 

study the severity of TWS change by normalising TWS trends 

and devising a dimensionless metric to help quantify their 

magnitude relative to natural variability. We use the ratio 

between the total change, obtained by multiplying the overall 

TWS trend by the length of the time series, and 1 σ of natural 

interannual variability. We call this metric the Trend to 

Variability Ratio (TVR), written as  

TVR =  
𝑡 · 𝑛 

σ
. 

In the context of TWS, the numerator represents the TWS 

change in 𝑛 years with a trend 𝑡 given in 𝑚𝑚/𝑦𝑟, the 

denominator σ is the standard deviation (in 𝑚𝑚) of the multi-

decadal natural interannual variability. A TVR between +2 

and −2 means that the TWS change is within the 90th 

percentile (5-95th percentile for a Gaussian distribution) 

expected range due to multi-decadal natural variability and the 

trend is not exceptional. If the TVR is between −2 and −3 or 

+2 and +3, the region is experiencing an extreme event albeit 

one that it has likely experienced in the past and lies within 

approximately 98% credible range. However, if the TVR 

exceeds ±3, the TWS change can be considered exceptional 

and unlikely to have been experienced in the recent past. 

Therefore, TVR along with trends can help us assess the 

severity of ongoing TWS change in the context of previous 

decades, which is imperative for developing policy for 

countering likely water-stress in the near future. Time of 

emergence studies focus on estimating when the secular signal 

will surpass the natural variability, while we are focusing on 

understanding the severity of trends from short GRACE time 

series in context of past TWS natural variability. Therefore, 

TVR is not a statistical significance metric like 𝑅2, 

Spearman’s rho test, Mann-Kendall test, or Innovative trend 

analysis method (25), but a tool to put the trend from a short 

observation time series in the context of past natural 

variability. 

3. Natural TWS variability 

A key challenge of this approach is to obtain an estimate of 

natural interannual variability of the TWS anomaly from a 

multi-decadal time series that adequately captures long-term 

TWS behaviour. One option is to use output from global 

numerical models that simulate multi-decadal time series of 

various components of TWS. These global hydrology models 

can be categorized into Land Surface-hydrology Models 

(LSMs), such as the Global Land Data Assimilation System 

(GLDAS) Noah, and Global Hydrological and Water 

Resource Models (WGHRMs), such as the WaterGap 

Hydrological Model and PCR-GLOBWB. LSMs exclude 

natural groundwater cycles and are poorly constrained in data-

sparse regions, resulting in large uncertainties that vary in 

space and time (26), while WGHRMs include groundwater 

storage and estimates of human abstractions making it hard to 

use model estimates as a representative of natural variability 

alone. Furthermore, it has been shown that both types of global 

hydrological models tend to underestimate trends in TWS 

(27). Therefore, outputs from these state-of-the-art are not the 

best representation of natural inter-annual variability. For this 

reason, we use a novel statistical model output, GRACE-REC, 

that has been shown to capture climate driven TWS 

interannual variations with good accuracy (28). GRACE-REC 

time series have been shown to perform better than the state-

of-the-art models when tested against independent evaluation 

datasets such as the sea level budget, large-scale water balance 

from atmospheric reanalysis, and in situ streamflow 

measurements.  
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GRACE-REC is generated by a statistical model that uses 

meteorological data, such as precipitation and surface 

temperature, as input and is trained by GRACE observations 

to reconstruct past TWS anomalies. The model is calibrated 

using GRACE time series but with the linear trend and 

seasonal signal removed, which helps eliminate anthropogenic 

signals and emphasise inter-annual variability to a large extent 

(28). The model efficacy has been shown to be of poor quality 

for a few grid cells (such as central Asia, North Africa) (28), 

but at catchment scale the efficacy would be better. The model 

output is available from 1901 to mid-2019, providing a long 

time series. The statistical model has six variants that arise 

from choice of using training data from two GRACE 

processing centers and three meteorological forcing time 

series. Thus GRACE-REC provides six reconstructions of 

interannual TWS time series and each reconstruction has 100 

ensemble members. Since some meteorological forcing 

datasets such as MSWEP and ERA5 are only available from 

1979 onwards, four GRACE-REC reconstructions start from 

1979. We thus compute the mean from all 100 ensemble 

members of six GRACE-REC reconstructions from 1979 to 

2019, providing us with a robust estimate of climate-driven 

interannual TWS over the last four decades. We note that the 

efficacy of GRACE-REC is low in some areas, such as 

Highland of Tibet, Saudi Arabia, and Northern Sahara (28). 

Therefore, we have not computed TVR over these regions. 

Nevertheless, for readers interested in these regions, we 

provide an additional TVR plot in supplementary information 

Figure S1. 

4. GRACE time series 

The TWS time series from GRACE is decomposed using STL 

(Seasonal and Trend decomposition using LOESS) to obtain 

an annual and interannual signal (29). The climate-driven 

interannual time series from GRACE-REC, referred to from 

here on as the normal TWS variability, is assumed to be free 

from a direct human intervention signal. Figure 2 (b) shows 

the standard deviation of the normal TWS variability for 3° 

grid cells, and Figure 3(b) shows the same metric by river 

catchment. It is evident that normal TWS variability varies 

markedly from one catchment to another, by as much as a 

factor 10. The interannual signal consists of long wavelength 

signal (year to year variations including the trend signal). 

Therefore, trend over a given period is obtained from a linear 

fit to the interannual signal. Please note that GRACE trends 

can be assumed to represent TWS change when other signals, 

such as tectonics and GIA in glaciated regions, have been 

accurately taken care of. Hence, TWS trends might be affected 

by residual tectonic effects and GIA signal in glaciated regions 

and by post-seismic signals in regions affected by large 

Earthquakes. Therefore, reader’s discretion is required. 

Furthermore, GRACE products are known to have a coarse 

spatial resolution that is approximately 3° (30), thus they are 

more accurate when used for catchment-scale analysis. It has 

been shown that the accuracy of GRACE time series improves 

as the catchment area increases (31). Therefore, we analyse 

GRACE products at two spatial scales: at a global 3° grid-

scale and at a catchment-scale. We study 160 catchments that 

are larger than the minimum recommended area of 

approximately 65,000 km2  (31). The catchment-scale results 

are important for understanding the health of river systems, 

while grid-scale results help identify spatial variability within 

catchments and other regions. 

5. Results 

We subsequently calculate and plot TVR at both the grid-scale 

(Figure 2(c)) and catchment-scale (Figure 4). Figure 4 also 

serves to illustrate the concept. The uncertainty in TVR is 

shown in supplementary Figure S2. The TVR plots inform us 

about the severity of the GRACE trend signal with respect to 

the last four decades of hydrological variability. Looking at 

the TWS trend maps (Figure 2(a) or Figure 3(a)) alongside the 

corresponding TVR map (Figure 2(c) or Figure 4), we can see 

that Alaska, the Caspian Sea, Northern India, Argentina, 

Chile, the Eastern Amazon, the High Plains Aquifer and 

California are hotspots of TWS loss. The drivers for the trends 

in these regions have been investigated and discussed 

previously (1-6, 16, 19): glaciers are losing mass in Alaska; 
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the Caspian Sea is losing water at an unprecedented rate; 

Northern India, California and the High Plains Aquifer are 

experiencing unprecedented groundwater abstraction; and 

Argentina, Chile and the Eastern Amazon all suffered from 

drought in the last decade. Introducing the TVR alongside the 

TWS trend additionally reveals that Iran, North-East China, 

Kazakhstan, South-East Asia, and several catchments in 

Southern Africa are also experiencing abnormal TWS loss. 

Furthermore, the TVR also helps us to assess the relative stress 

between two catchments in a quantitative manner. In 

Supplementary Table 1 we list all the catchments with a 

negative TWS trend in order of decreasing magnitude and 

their respective TVR. This rank order changes considerably if 

we choose TVR as the metric for water storage stress instead 

of the TWS trend value. This is further demonstrated in Figure 

5, where we have plotted the relationship between the ranked 

order of the catchments when sorted by trend versus when 

sorted by TVR. If TVR offers no additional information, the 

points would have a 1:1 relationship and fall on the diagonal; 

yet as Figure 5 shows there are substantial deviations. Taking 

an arbitrary threshold of ±20 in rank change, we have 

highlighted those regions and catchments that would be 

categorised significantly different when using TVR instead of 

trend magnitude.  Blue dots in the figure represent less sever 

TWS change compared to that perceived by trend magnitude 

while red dot represent more sever TWS change. For example, 

the Colorado river in Argentina and the Jequitinhonha river 

catchment in Brazil both have a strong negative TWS trend of 

around −18.8 mm/yr, but the TVR of the Colorado river basin 

(−5.7) suggests a severe and exceptional water loss and is 

much higher than that of the Jequitinhonha basin (−1.6). This 

finding is supported by research discussing the major drought 

event between 2010 and 2015 in the central Andes in 

Argentina (32), with no similar events reported for the 

GRACE period in the Jequitinhonha river catchment.  

On a continental scale, the TVR metric indicates that there is 

more water stress in Asia than would be inferred from TWS 

trends alone (6, 16). For example, the Tigris river basin in Iraq 

has a TWS trend of  −18 mm/yr and a TVR of −3.4, which 

suggests an exceptional water loss in the region due to recent 

droughts and anthropogenic water exploitation in the middle-

East (33, 34). River catchments in Iran have a negative TWS 

trend and large TVR  value (the Zagros, South Iran, and Karun 

river catchments with TWS trends of −22.6, −8.9, −16.3 

mm/yr  and a TVR of −11.1, −6.9, and −3.9 respectively), 

suggesting severe TWS loss, which is supported by research 

that reports that Iran lost water at a rate of 25 ±  3 Gt/yr 

between 2003 and 2012, of which 14 ±3 Gt/yr (56%) was 

found to be anthropogenic (33). Similarly, the Brahmaputra 

has a negative TWS trend value (−14 mm/yr), lower than both 

the Tigris and Colorado, but its TVR (−13.3) suggests that it 

is experiencing an exceptional change, which is primarily 

driven by a steep and unprecedented decrease in rainfall over 

the last decade that has been attributed to anthropogenic 

climate change (6, 35). The Yellow River in China has a small 

trend of −4.2 mm/yr but its TVR is −3.7, while the Volga 

River in Russia has a trend of −5.1 mm/yr and a TVR of −2. 

The Brazos, Ganges, and Yukon rivers have a strong linear 

trend of approximately −12 mm/yr but a TVR of −3.2, −4.2, 

and −8.0 respectively.  

TVR normalizes the global TWS trend map with respect to the 

natural variability, which identify regions experiencing 

abnormal and severe TWS change irrespective of their TWS 

trend magnitude. For example, the TVR map shows that 

densely populated regions of the Indian subcontinent are 

experiencing exceptional TWS loss, which is supported by 

recent reports (36). In 2018, a planning body of the 

Government of India reported that 600 million people in India 

are facing severe water stress and approximately 200,000 

people die every year due to inadequate access to safe water 

(36). It is projected that by 2030 the water demand in India 

will double owing to population rise and economic 

development (36). Currently more than 1.4 billion people 

depend on water from the Indus, Ganges, Brahmaputra, 

Yangtze, and Yellow rivers (37). We find that all these rivers, 

except for the Yangtze, are experiencing abnormal TWS 
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decline. We use population data provided by the 

Socioeconomic Data and Applications Center (SEDAC) (38) 

and the global grid-scale TVR map to estimate that in 2015 

more than 3.2 billion people worldwide (~43% of the total 

global population) were living in regions experiencing severe 

decreasing TWS trends, i.e. with a TVR less than −3. 

Therefore, strict and urgent measures are required to avoid a 

profound and pervasive water crisis in the future. 

Conversely, several catchments have a strongly positive TVR. 

Anthropogenic climate change and direct human intervention 

(e.g. water impoundment) may be the reasons behind such a 

net positive change. For example, the Yangtze river has shown 

a strong positive TWS trend due to the filling up of the Three 

Gorges and other reservoirs (6, 39), which explains a TVR of 

+2.2 despite a weakly positive TWS trend of +2.6 mm/yr. 

Similarly, the Zambezi (TVR = +2.6), Volta (+4.6), 

Okavango (+4.4) and Niger (+4) catchments in Africa, and 

the Amazon (+2.4) catchment in South America all exhibit an 

increase in TWS and a positive TVR, which can largely be 

explained by an intensifying water cycle due to anthropogenic 

climate change (13, 40, 41). 

From these results, it is clear that many catchments with 

similar TWS trends have markedly different TVR values, 

including many river catchments that have a moderate 

negative TWS trends but that are revealed to be losing water 

at an exceptional rate after accounting for natural variability, 

and vice versa.  

We conclude that using TVR provides a complementary and 

meaningful metric for assessing the severity of TWS trends. 

The GRACE mission, decommissioned in 2017, has provided 

unique insights into global TWS variability over the last 15 

years. The successful launch of the GRACE-Follow-On 

mission in May 2018 offers the potential to continue the global 

observational record of TWS for another decade or more. This 

provides us with an opportunity to track global water storage 

stress and inform water-management decisions and policy for 

sustainable development. Until GRACE observations provide 

longer time series, GRACE TWS trends alone cannot 

definitively evaluate the severity of TWS loss or gain, and the 

use of the TVR metric allows for a more informative 

interpretation of the trends. We further believe that the concept 

behind the TVR can benefit other disciplines that rely on 

signal detection and trend analysis from relatively short time 

series. 

 

Table 1. List of selected catchments with (a) TVR ≤ 

-3 or (b) TVR >+3, sorted by TVR. Catchments with 

small TWS trends (TWS trend <-5 or TWS trend >+5, 

respectively) but with high TVR (i.e. those unlikely 

to be identified as having severe water loss or 

water abundance using TWS trend alone) are 

highlighted. 

 

 (a)  

Catchment 
Name 

Trends 
(mm/yr) 

TVR 
(dimensionless) 

Caspian Sea  -20.4 ± 1 -15.7 ± 0.8 
Brahmaputra -14 ± 1.7 -13.3 ± 1.6 
Zagros (Iran)  -22.6 ± 3.9 -11.1 ± 1.9 
Copper River -60.7 ± 2.6 -8.8 ± 0.4 
Kura -18.7 ± 1.8 -8.8 ± 0.9 
Yukon River -12.2 ± 1.2 -8 ± 0.8 
Thelon River -8.6 ± 1.5 -7.1 ± 1.2 
South Iran  -8.9 ± 1.6 -6.9 ± 1.3 
Churchill -9 ± 1.9 -6.1 ± 1.3 
Colorado 
(Argentina) 

-18.9 ± 2.3 -5.7 ± 0.7 

Kuskokwim 
River 

-13.8 ± 2.2 -5.7 ± 0.9 

Negro 
(Argentina) 

-13.8 ± 2.5 -5.1 ± 0.9 

Luan He -8.4 ± 1.6 -4.6 ± 0.9 
Huai He -13.7 ± 4.7 -4.3 ± 1.4 
Ganges -12.1 ± 2.5 -4.2 ± 0.9 
Indus -7.6 ± 1.9 -4.1 ± 1 
Karun -16.3 ± 3 -3.9 ± 0.7 
Mackenzie 
River 

-3.7 ± 1 -3.9 ± 1 

Salado -13.7 ± 3.3 -3.7 ± 0.9 

Page 6 of 14AUTHOR SUBMITTED MANUSCRIPT - ERL-109500.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Journal XX (XXXX) XXXXXX Vishwakarma et al  

 7  
 

Colorado River 
(Caribbean) 

-11.9 ± 2.6 -3.7 ± 0.8 

Irrawaddy -8.3 ± 2.4 -3.7 ± 1.1 
Yellow River -4.3 ± 1.3 -3.7 ± 1.1 
Argentina  -14.3 ± 3.2 -3.6 ± 0.8 
Fraser River -10.6 ± 2.4 -3.3 ± 0.7 
Brazos River -12.3 ± 2.9 -3.2 ± 0.7 
Aral Sea  -3.9 ± 0.9 -3.1 ± 0.7 
Gobi  -1.2 ± 0.6 -3.1 ± 1.7 
Tigris -18 ± 3.9 -3.4 ± 0.7 
Don -12.5 ± 1.7 -3 ± 0.4 
Euphrates -11 ± 2.1 -3.7 ± 0.7 
Atacama  -3.4 ± 2.2 -3 ± 1.9 

 

(b) 

Catchment 
Name 

Trends 
(mm/yr) 

TVR 
(dimensionless) 

Niger     5 ± 1.1 6.8 ± 1.5 
Saguenay    7.9 ± 2.1 5.7 ± 1.5 
Nottaway   7.8 ± 2.1 5.2 ± 1.4 
Nelson River 11.9 ± 1.6 4.7 ± 0.6 
Volta 11.1 ± 2.2 4.6 ± 0.9 
Okavango   12.4 ± 2.3 4.4 ± 0.8 
St.Lawrence   8.5 ± 1.5 3.5 ± 0.6 
Moose River    7.5 ± 2 3.3 ± 0.9 
Nile     3 ± 1.2 3.3 ± 1.3 
Sanaga   2.1 ± 2.5 3.3 ± 3.9 
Comoe   9.3 ± 2.2 3.2 ± 0.8 
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Data availability 

The data used in this study are available free of 

cost from various sources: the GRACE spherical 

harmonic coefficients used were downloaded 

from 

ftp://ftp.tugraz.at/outgoing/ITSG/GRACE/ITSG-

Grace2016/monthly/monthly_n90, accessed on 05 

September 2017. We have made use of C20 and 

degree 1 spherical harmonic coefficients available 

at grace.jpl.nasa.gov accessed on 10 September 

2017,  and catchment boundaries available at 

http://www.bafg.de/GRDC/EN/02srvcs/22gslrs/2

21MRB/riverbasinsnode.html, accessed on 30 

September 2016. The GIA ICE-6GD model data 

was downloaded from 

http://www.atmosp.physics.utoronto.ca/~peltier/d

ata.php on 08 February 2018. GRACE JPL Mascon 

data are available at http://grace.jpl.nasa.gov, 

supported by the NASA MEaSUREs Program, 

accessed on 05 February 2019. The GRACE-REC 

time series were accessed on 25 September 2019 

from https://figshare.com/articles/GRACE-

REC_A_reconstruction_of_climate-

driven_water_storage_changes_over_the_last_cent

ury/7670849. 

Code availability 

MATLAB scripts for obtaining data-driven 

leakage corrected GRACE TWS time series at 

catchment scale are freely available at 

https://www.gis.uni-

stuttgart.de/en/research/downloads/. The 

MATLAB script to process GRACE-REC data, 

include GIA adjustments to GRACE time series, 

time series analyses and TVR computation will be 

made available by BDV upon reasonable request.  
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Figure 1: Interannual TWS time series for six different river catchments from GLDAS model output (blue 

dots and line) and GRACE data (orange dots and red line). Dots represent the signal after removing the 

dominant annual signal from the time series and the lines represent the LOESS fit. The linear trend from 

the interannual signal for four time periods is shown by the black lines and they have been shaded 

(colours chosen arbitrarily) to highlight how short time series can suggest markedly different, and in 

some cases misleading, TWS trends.  
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Figure 2: (a) Maps of 3° gridded JPL release 06 mascon trends, (b) standard deviation of GRACE-REC at 3° 

grid resolution, and (c) the grid-scale TVR map.  
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Figure 3: (a) Linear TWS trend signal from GRACE fields; (b) standard deviation of TWS interannual 

variability from GRACE-REC. 
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Figure 4: Catchment-scale TVR for the 160 catchments investigated. Inset time series plots are shown to 

illustrate the method for seven river catchments. In these, the green and pink bands represent the 1- 

and 3-sigma of the normal TWS variability, respectively. Catchments that exceed the normal TWS 

variability of 3-sigma have a TVR value that suggests exceptional change. 
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Figure 5: Scatter plot between catchment rank order when sorted by trend value and when sorted by 

TVR. If TVR adds no additional information all the catchments would lie on the diagonal. Catchment 

whose rank changes by more than 20 (arbitrary threshold) are highlighted as blue or red dots. Red (blue) 

dots represent those catchments and regions where TVR suggests that TWS change is more (less) 

alarming compared to inferences from trends.  
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