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Abstract 231 

Characterising genetic influences on DNA methylation (DNAm) provides an opportunity 232 
to understand mechanisms underpinning gene regulation and disease. Here we 233 
describe results of DNA methylation-quantitative trait loci (mQTL) analyses on 32,851 234 
participants, identifying genetic variants associated with DNAm at 420,509 DNAm sites 235 
in blood. We present a database of >270,000 independent mQTL of which 8.5% 236 
comprise long-range (trans) associations. Identified mQTL associations explain 15-17% 237 
of the additive genetic variance of DNAm. We reveal that the genetic architecture of 238 
DNAm levels is highly polygenic and DNAm exhibits signatures of negative and positive 239 
natural selection. Using shared genetic control between distal DNAm sites we construct 240 
networks, identifying 405 discrete genomic communities enriched for genomic 241 
annotations and complex traits. Shared genetic factors are associated with both DNAm 242 
levels and complex diseases but only in a minority of cases these associations reflect 243 
direct causal relationships from DNAm to trait or vice versa indicating a more complex 244 
genotype-phenotype map than previously anticipated.  245 
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Main 246 

The role of common inter-individual variation in DNA methylation (DNAm) on disease 247 
mechanisms is not yet well characterised. It has, however, been hypothesised to serve 248 
as a viable biomarker for risk stratification, early disease detection and the prediction of 249 
disease prognosis and progression.1 Because genetic influences on DNAm in blood 250 
have been shown to be widespread2-4, a powerful avenue into researching the 251 
functional consequences of changes in DNAm levels is to map genetic differences 252 
associated with population-level variation, identifying DNA methylation quantitative trait 253 
loci, (mQTL) that include both local (cis mQTL) and distal (trans mQTL) effects. We can 254 
harness mQTL as natural experiments, allowing us to observe randomly perturbed 255 
DNAm levels in a manner that is not confounded with environmental factors5,6. In this 256 
regard, mapping even very small genetic effects on DNAm is valuable for gaining power 257 
to evaluate whether its variation has a substantial causal role in disease and other 258 
biological processes.  259 
 260 
To date, only a small fraction of the total genetic variation estimated to influence DNAm 261 
across the genome has been identified7, and the proportion of trans heritability 262 
explained by trans mQTL (defined as more than 1Mb from the DNAm site) is much 263 
smaller than the proportion of cis heritability explained by cis mQTL. Therefore, the 264 
majority of genetic effects are likely to act in trans, have small effect sizes5,7-9, while 265 
being potentially more informative in the biological insights they provide.8,10 Much larger 266 
sample sizes are required to map associations involving small genetic effects in order to 267 
permit greater understanding of the genetic architecture and the biological processes 268 
underlying DNAm7. To this end, we established the Genetics of DNA Methylation 269 
Consortium (GoDMC), an international collaboration of human epidemiological studies 270 
that comprises >30,000 study participants with genetic, phenotypic and DNAm data.  271 
 272 
Importantly, the unrivalled sample size and coverage of our study enables us to identify 273 
a large number of cis and trans mQTL to gain biological insights that were previously 274 
impossible. First, we use this extensive resource to uncover the genetic architecture of 275 
DNAm and to study natural selection pressures. Second, we learn about how cis- and 276 
trans-acting variants and DNAm sites interact through the development of new network 277 
approaches. Third, we interrogate the potential role of DNAm in disease mechanisms by 278 
exhaustively mapping the causal relationships of DNAm with 116 complex traits and 279 
diseases in a bi-directional manner. A database of our results is available as a resource 280 
to the community at http://mqtldb.godmc.org.uk/. 281 

Genetic variants influence 45% of tested DNAm sites  282 

In order to map genetic influences on DNAm, we established an analysis workflow that 283 
enabled standardized meta-analysis and data integration across 36 population-based 284 
and disease datasets with genotype and DNAm data. Using a two-phase discovery 285 
study design, we analyzed ~10 million genotypes imputed to the 1000 Genomes 286 
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reference panel11 and 420,509 DNAm sites measured by Infinium HumanMethylation 287 
BeadChips in whole blood derived from 27,750 European participants (Figures 1A and 288 
S1-S5, Table S1-S2, Supplementary Note 1, Supplementary Information).  289 
 290 
Using linkage disequilibrium (LD) clumping, we identified 248,607 independent cis-291 
mQTL associations (p < 1e-8, < 1Mb from the DNAm site, Figure S4) with a median 292 
distance between single nucleotide polymorphisms (SNP) and DNAm sites of 36kb 293 
(IQR=118 kb, Figure S3A). We found 23,117 independent trans mQTL associations 294 
(using a conservative threshold of p < 1e-147, Figure S4, Supplementary 295 
Information). These mQTL involved 190,102 DNAm sites, representing 45.2% of all 296 
those tested (Figure 1B) which is a 1.9x increase of sites with a cis association (p<1e-297 
8) and 10x increase of sites with a trans association (p<1e-14) over a previous study 298 
whose sample size was 7x smaller8. As expected, mQTL effect sizes for each DNAm 299 
site (the maximum absolute additive change in DNAm level measured in standard 300 
deviation (SD) per allele) were lower for sites with a trans association (as compared to 301 
sites with a cis association (per allele SD change = -0.02 (s.e.=0.002, p=2.1e-14, 302 
Figure S6). The differential improvement in yield between cis and trans associations is 303 
revealing in terms of the genetic architecture – relatively small sample sizes are 304 
sufficient to uncover the majority of large cis effects, whereas much larger sample sizes 305 
are required to identify the polygenic trans component.  306 
 307 
The majority of trans associations (80%) were inter-chromosomal. Of the intra-308 
chromosomal trans associations, 34% were >5 Mb from the DNAm site, Figure S7). We 309 
then compared the rate of inter-chromosomal trans associations to the rate of intra-310 
chromosomal trans associations (excluding chromosome 6) and found a substantially 311 
lower number of inter-chromosomal trans associations per 5 Mb region (1.59) than intra-312 
chromosomal associations (>1 Mb: 7.95; >6 Mb 4.81).  313 
 314 
Next, using conditional analysis12 we explored the potential for multiple independent 315 
SNPs operating within the locus of each mQTL, identifying 758,130 putative 316 
independent variants. Each DNAm site, for which a mQTL in cis had been detected, had 317 
a median of 2 independent variants (IQR=4 variants, Figure S8). For all subsequent 318 
analyses, we used index SNPs from clumping procedures to be conservative and 319 
unbiased due to the non-independence of genetic variants.  320 
 321 
The microarray technology used in the majority of cohorts limited us to analyse <2% of 322 
sites across the genome13, which are biased to promoters and strongly 323 
underrepresented regulatory elements. To explore the impact of expanding the 324 
coverage of arrays, we calculated the linear relationship between the median number of 325 
probes by gene on the 450k array and the median number of cis and trans mQTL. For 326 
each probe, we found an increase of 0.76 cis mQTL (p<9.03e-16) and 0.05 trans mQTL 327 
(p<1.47e-05) (Figure S9). A similar increase was seen in non-genic regions. This 328 
indicates that expanding coverage will increase mQTL yield although this will depend on 329 
the genetic contribution of the DNAm site and cell type specificity. 330 
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 331 
We sought to replicate the mQTL using the Generation Scotland (GS) cohort (n = 5,101) 332 
for which mQTL results were previously generated using an independent analysis 333 
pipeline (Supplementary Information, Supplementary Note 1). Data were available to 334 
allow us to test for replication of 188,017 of our discovery mQTL (137,709 sites) and we 335 
found a very strong correlation of effect sizes for both cis and trans effects (r=0.97, 336 
n=155,191 and 0.96, n=14,465 at p<1e-3, respectively; Figure 1C); 99.6% of the 337 
associations had a consistent sign (further discussion in Supplementary Information). 338 
At an approximate Bonferroni corrected threshold of 0.05/188,017, 142,727 of the 339 
discovery mQTL replicated in the GS cohort (76%); the replication rate for cis and trans 340 
mQTL were 76% and 79%, respectively. To evaluate whether our replication rate was in 341 
line with expectations given the smaller replication sample size, we estimated that under 342 
the assumption that the discovery mQTL are true positives 171,824 mQTL would be 343 
expected to replicate at a nominal threshold of 1e-3. In very close agreement we found 344 
that the actual number of mQTL replicating at this level was 169,656, indicating that the 345 
majority of our discovery mQTL are likely to be true positives (Table S3, 346 
Supplementary Information). Our findings support that there is little between-study 347 
heterogeneity in our analysis and that genetic effects on DNAm are highly stable across 348 
cohorts (Figure S2, Table S2).  349 
 350 
Overall, the variance explained by replicated genetic effects was small. For 99% of the 351 
associations in cis and trans, mQTL explained less than 21% and 16% of the DNAm 352 
variation respectively (Figure S10). Aggregating across all 420,509 tested DNAm sites, 353 
our replicated mQTL associations explain 1.3% of the total assayed DNAm variation, 354 
8% of this being due to trans-associations. Restricting to sites that have at least one cis-355 
effect or trans-effect, however, we explain 4.2% and 2.5% of the DNAm variance, 356 
respectively.  357 
 358 
We then investigated how much of the heritability of variable DNAm can be explained 359 
by our mQTL associations on the 450k array using family-based heritability studies of 360 
DNAm2,14. We found a strong positive relationship between variance explained by 361 
replication mQTL estimates (127,680 sites in GS) and heritability for both studies 362 
(family: r=0.41 across, 121,582 available sites; twin: r=0.37 across 118,955 available 363 
sites) (Figure 1D, Table S4). The mQTL that we identified explain 15%-17% of the 364 
additive genetic variance of DNAm (Figure S11). Finally, there were strong positive 365 
relationships between the heritability of DNAm levels at a DNAm site and the number of 366 
independent mQTL (Figure S12), heritability and effect size (Figure S13), variance 367 
explained and the number of independent mQTL (Figure S14) and variance explained 368 
and distribution of DNAm levels (Figure S15). Overall, our results support a mixed 369 
genetic architecture of polygenic genome-wide effects and larger cis effects.  370 
 371 
The coverage of the mQTL search in this study was limited by the computational 372 
necessity of a multiple stage study design (Figure S16). Those mQTL that we 373 
discovered with r2 less than 1% are likely a small fraction of all the mQTL in this 374 
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category expected to exist (Figure S17). Across these DNAm sites, and within the 375 
range of mQTL detected in our study (r2 > 0.22%) we estimate that there are twice as 376 
many cis mQTL and 22.5 times more trans mQTL yet to discover (Figure S17). This 377 
would likely not explain all estimated heritability, indicating that a substantial set of the 378 
heritability is due to causal variants with smaller effects than those detectable given our 379 
study size or due to rare variants not represented in our imputed genotype data.  380 
 381 

Cis and trans mQTL operate through distinct mechanisms 382 

We analysed how inter-individual DNAm changes are associated to genetic variation in 383 
a context way which has so far mainly focused on cis mQTL7,8,15-17. The statistical power 384 
of the mQTL analysis allowed us to identify SNPs only associated with DNAm in cis 385 
(n=157,095, 69.9%), only associated with DNAm in trans (n=794, 0.35%), or associated 386 
with DNAm in both cis and trans (n=66,759, 29.7%). Similarly, of the 190,102 DNAm 387 
sites influenced by a SNP, 170,986 DNAm sites (89.9%) were cis-only, 11,902 DNAm 388 
sites (6.3%) were cis+trans, and 7,214 DNAm sites (3.8%) were trans-only. This 389 
categorisation allowed us to infer biological properties of trans-features that were not 390 
due to their cis-effects.  391 
 392 
Here, we first compared the distribution of DNAm levels (weighted mean DNAm level 393 
across 36 studies (defined as low (<20%), intermediate (20%-80%) or high (>80%) 394 
between the cis and trans DNAm sites (Figure 1B). We then performed enrichment 395 
analyses on the mQTL SNPs and DNAm sites using 25 combinatorial chromatin states 396 
from 127 cell types (including 27 blood cell types)18 and gene annotations (Figure 2A, 397 
S18-S21, Tables S5-S8). Consistent with previous studies7,8,17, we found that cis only 398 
sites are represented in high (32%), low (28%) and intermediate (40%) DNAm levels 399 
and these sites are mainly enriched for enhancer chromatin states (mean OR=1.37), 400 
CpG islands (OR=1.25) and shores (OR=1.26).  401 
For cis+trans sites, we found that the majority of these sites (66%) have intermediate 402 
DNAm levels. By replicating this finding in two isolated white-blood-cell subsets (Figure 403 
S22), we showed that this is due to cell-to-cell variability18,19 or sub cell type differences 404 
which may indicate that these loci contribute to the divergence into further sub cell 405 
types. In line with the observation that intermediate levels of DNAm are found at distal 406 
regulatory sequences20,21, these sites were enriched for enhancer (mean OR=1.65) and 407 
promoter states (mean OR=1.41). However for trans only sites, we found a pattern of 408 
low DNAm (for 55% of sites) and enrichments for promoter states (mean OR=1.39) 409 
especially TssA promoter state (mean OR=2.03). We demonstrated that these 410 
inferences about cis and trans enrichments were not sensitive to the definition of trans 411 
associations, by showing that the patterns were consistent if we restricted to only inter-412 
chromosomal associations (Supplemental Information, Figure S23).  413 
 414 
We continued by analysing the differences in properties between SNPs that have local 415 
versus long-range DNAm influences. We found that cis only and cis+trans SNPs were 416 
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enriched for active chromatin states and genic regions whereas trans only SNPs were 417 
enriched for intergenic regions and the heterochromatin state (Figure 2A, S20-S21, 418 
Tables S7-S8). Our analysis shows that trans-only sites and SNPs have different 419 
properties as cis+trans SNPs and sites, indicating that enrichments of general trans 420 
categories are dominated by their cis functionality. Overall, these results highlight that a 421 
complex relationship between molecular features is underlying the mQTL categories 422 
and the biological contexts are substantially different between cis and trans features. 423 
 424 
We found that these inferences were often shared across other tissues. For example, 425 
DNAm sites with low or intermediate DNAm levels have similar DNAm distributions in 426 
12 tissues (Figure S24-26). However, while SNP and DNAm site enrichments were 427 
typically present in multiple tissues, enrichments were stronger in blood datasets for the 428 
enhancer states (SNP: difference in mean OR=0.055, p=0.038; sites: difference in 429 
mean OR=0.21, p < 2e-16) and DNAse state (SNP: difference in mean OR=0.13, 430 
p=0.004; sites: difference in mean OR=0.41 p=9.65e-16) indicating some level of tissue 431 
specificity for mQTL in these regions (Figure S18, S20, S27).  432 
 433 
To investigate the question of tissue specificity further, we compared the correlation of 434 
effect estimates of cis and trans mQTL in blood against adipose tissue (n=603)22 and 435 
brain (n=170)9 (Supplementary Information, Table S9). We found a larger extent of 436 
QTL sharing of blood and adipose tissue as compared to blood and brain which might 437 
be explained by shared cell types in line with cis eQTL findings23. Generally, the 438 
between tissue effect correlations were high, in line with a recent comparison of cis-439 
mQTL effects between brain and blood24. However, we found that the highest 440 
correlations were for associations involving trans-only sites (Adipose rb=0.92 (se 441 
=0.004); Brain rb=0.88 (se=0.009)) despite having on average smaller effect sizes than 442 
cis only associations, implying that they are less tissue specific than cis effects (Adipose 443 
rb=0.73 (se =0.002); Brain rb=0.59 (se=0.004)) which is line with the notion that 444 
promoters are less tissue-specific. Stratifying the mQTL categories to low, intermediate 445 
and high DNAm, showed that the brain-blood correlations are the lowest for 446 
intermediate DNAm categories and adipose-blood correlations are lowest for high 447 
DNAm categories, which may suggest cellular heterogeneity for high DNAm levels 448 
(Table S9). These results show the value of large sample sizes in blood to detect trans 449 
mQTL regardless of the tissue. 450 

Trans mQTL SNPs and DNAm exhibit patterned TF binding 451 

Recent studies have uncovered multiple types of transcription factor (TFs)/DNA 452 
interactions with DNAm including the binding of DNAm-sensitive TFs25-27. Epigenetic 453 
editing studies have revealed that local methylation and demethylation activities are 454 
affected by TF binding and cooperativity between TFs26,28. To gain insights into how 455 
SNPs induce long-range DNAm changes, we mapped enrichments for DNAm sites and 456 
SNPs across binding sites for 171 TFs in 27 cell types29,30. We found strong 457 
enrichments for the majority of TFs amongst DNAm sites with a trans association 458 
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(cis+trans: 55%; trans only: 80%; cis only: 18%) which is in line with the observation that 459 
loss of DNAm at promoters is usually associated with gene activation31, and amongst 460 
cis-acting SNPs (cis only: 96%, cis+trans: 91%, trans only: 1%) (Figures 2B, S28, S29). 461 
Consistent with the observation that trans only DNAm sites are enriched for CpG 462 
islands (Figure S19), sites that overlap TFBS were relatively hypomethylated 463 
independent of tissue (weighted mean DNAm levels = 21% vs 52%, p<2.2e-16) (Figure 464 
S30) and we found that generally the TFBS enrichments were not tissue specific (Table 465 
S10-11, Figure S28-29).  466 
Next we investigated a possible mechanism that may be responsible for these trans 467 
mQTL. We hypothesized that if a trans mQTL is driven by TF activity8,10 then particular 468 
TF-TF pairs may exhibit preferential enrichment32. A mQTL has a pair of TFBS 469 
annotations30, one for the SNP and one for the DNAm site. Using a novel approach 470 
(two-dimensional functional enrichment, Figure S31), we evaluated if the annotation 471 
pairs amongst 18,584 inter-chromosomal trans-mQTL were associated to TF binding in 472 
a non-random pattern (Supplementary Information). We found that 6.1% (22,962 of 473 
378,225) of possible pairwise combinations of SNP-DNAm site annotations were more 474 
over- or under-represented than expected by chance after strict multiple testing 475 
correction (Supplementary Information, Table S12, Figure 2C-D).  476 
 477 
After accounting for abundance and other characteristics, the strongest pairwise 478 
enrichments involved sites close to TFBS for proteins in the cohesin complex, for 479 
example CTCF, SMC3 and RAD21, as well as TFs such as GATA2 related to cohesin33. 480 
Bipartite analysis showed that these clustered due to being related to similar sets of 481 
SNP annotations (Figure 2C). Other clusters were also found, for example, sites close 482 
to TFBS for interferon regulatory factor 1 (IRF1), a gene for which trans-acting 483 
regulatory networks34, and enrichment amongst causally interacting caQTL35 have been 484 
previously reported were more likely to be influenced by SNPs near TFBS for EZH2, 485 
SMC3, ATF3, BCL3, TR4 and MAX. The relationship between IRF1 and these other 486 
proteins has been documented previously36-38. For example EZH2 mediates the 487 
silencing of IRF139; BCL3 and IRF1 are co-down-regulated during inflammation36; and 488 
ATF3 is a negative regulator of cytokines which themselves induce IRF137,38.  489 
 490 
Previous studies have indicated chromosomal interactions (genomic regions that have 491 
been shown to spatially colocalise within the cell40) as alternative mechanism for trans 492 
coordination8,41. We compared the locations of inter-chromosomal trans mQTL 493 
(n=18,584) to known regions of chromatin interactions. We found 1175 overlaps for 637 494 
SNP-DNAm site pairs (3.4%) where the LD region of the mQTL SNP and the 495 
corresponding site overlapped with any interacting regions (525 SNPs, 602 sites) as 496 
compared to a mean of 473 SNP-DNAm site pairs in 1000 permuted datasets 497 
(OR=1.36, pFisher=6.5e-7, pempirical<1e-3) (Figure S32). To summarise, our results show 498 
that trans mQTL are in part driven by long-range cooperative TF interactions and, that 499 
for a small proportion of interchromosomal trans mQTL the spatial distance in vivo is 500 
likely to be small. 501 
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Communities of DNAm sites are identified by shared trans-genetic 502 

effects 503 

Genetic variation can perturb chromatin activity32,35,41, DNAm8 or gene expression42 504 
across multiple sites in cis and trans revealing coordinated activity between regulatory 505 
elements and genes. Trans-mQTL provide an opportunity to infer how distal genomic 506 
regions are functionally related, but the polygenic nature of DNAm variation could lead 507 
to apparent shared genetic effects that arise from distinct causal variants rather than 508 
shared genetic factors. We observed that there were 1,728,873 instances where a SNP 509 
acting in trans also influenced a cis DNAm site (before LD pruning). Genetic 510 
colocalization analysis indicated that 278,051 of these instances were due to the cis and 511 
trans sites sharing a genetic factor, representing 3,573 independent cis-trans genomic 512 
region pairs, of which 3,270 were inter-chromosomal (Table S13, see Supplementary 513 
Information for sensitivity analysis for the colocalization method used in the context of 514 
the two-stage mQTL discovery design). These pairs consisted of 1,755 independent 515 
SNPs and 5,109 independent DNAm sites across the genome, indicating that some 516 
sites with cis associations shared genetic factors with multiple sites with trans 517 
associations revealing distal coordination between mQTL. From the cis-trans pairs we 518 
constructed a network linking these genomic regions which elucidated 405 519 
“communities” of genomic regions that were substantially connected (Supplementary 520 
Information). Fifty-six of these communities comprised 10 or more sites, and the 521 
largest community comprised 253 sites (Figure 3A).  522 
 523 
We hypothesised that cis sites were causally influencing multiple trans sites within their 524 
communities (i.e. a causal chain of mQTL to DNAm at a cis site to DNAm at a trans 525 
site). We evaluated whether the estimated causal effect (obtained from the trans-mQTL 526 
effect divided by the cis-mQTL effect i.e. the Wald ratio) of the cis site on the trans site 527 
was consistent with the observational correlation between the cis- and trans-site. While 528 
there was an association, the relationship was weak (r=0.096, p=1.73e-6, Figure S33), 529 
indicating that changes in cis sites causing changes in trans sites is likely not the 530 
predominant mechanism. We did observe that the cis-trans DNAm levels were more 531 
strongly correlated than we would expect by chance (Figure S34), which supports the 532 
notion that they are jointly regulated without generally being causally related. 533 
 534 
To gain functional insights into these communities, we evaluated if DNAm sites within 535 
each community were enriched for regulatory annotations and/or gene ontologies 536 
(Table S14-S17, Figure S35-36). Multiple communities showed enrichments (FDR P 537 
<0.001); for example community 9 DNAm sites were strongly enriched for TFBS 538 
annotations relating to the cohesin complex in multiple cell types, community 22 DNAm 539 
sites were enriched for NFKB and EBF1 in B lymphocytes and community 76 DNAm 540 
sites were enriched for EZH2 and SUZ12 and bivalent promotor and repressed 541 
polycomb states (Figure 3B). Community 2 (comprising 253 sites) was enriched for 542 
active enhancer state in 3 cell types and for lymphocyte activation (GO:0046649 FDR p 543 
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= 0.016) and multiple KEGG pathways including the JAK-STAT signalling pathway 544 
(I04630: FDR p=8.53e-7) (Table S16, Table S17).  545 
 546 
Regulatory features within a network may share a set of biological features that are 547 
related to complex traits. We performed enrichment analysis to evaluate if the loci 548 
tagged by DNAm sites in a community were related to each of 133 complex traits 549 
(Table S18), accounting for non-random genomic properties of the selected loci. 550 
Restricting the analysis to only the 56 communities with ten or more sites, we found 551 
eleven communities that tagged genomic loci that were enriched for small p-values with 552 
22 complex traits (FDR < 0.05) (Figure 3C, Table S19). Blood related phenotypes were 553 
overrepresented (11 out of 23 enrichments being related to metal levels or 554 
haematological measures, binomial test p-value = 4.2e-5). Amongst the communities 555 
enriched for GWAS signals, community 16 was highly associated with iron and 556 
haemoglobin traits. Community 9 was associated to plasma cortisol (p = 8.27e-5). 557 
Finally, we performed enrichment analysis on 36 blood cell count traits43 and found 558 
enrichments for two communities. Community 16 was enriched for hematocrit (p=4.34e-559 
10) and hemoglobin concentration (p=1.99e-8) and community 5 was enriched for 560 
reticulocyte traits (p=1.67e-6) (Figure S37). The enrichments found for these DNAm 561 
communities indicate that a potentially valuable utility of mapping trans-mQTL is to 562 
indicate how distal regions of the genome are functionally related. 563 

mQTL can be used to identify shared genetic influences with 564 

disease 565 

The majority of GWA loci map to non-coding regions44 and cis mQTL are enriched 566 
amongst GWA16,45,46. Here we investigated the value of the large number of mQTL 567 
especially trans mQTL to annotate functional consequences of GWA loci. We first 568 
tested genome-wide enrichment of GWAS associations (SNPs at p < 5e-8 for a given 569 
complex trait) amongst mQTL SNPs, performing separate analysis for mQTL acting in 570 
cis, cis and trans and trans. We utilized genome-wide summary statistics for 37 571 
phenotypes related to 11 disease/trait categories with 41 publicly available GWAS 572 
datasets (Table S20). After accounting for non-random genomic distribution of mQTL47 573 
and multiple testing, we identified enrichments for 35% of the complex traits (Figure 574 
S38, Table S20, Supplementary Information) mainly for studies with a larger number 575 
of GWA signals. The cis+trans mQTL were most strongly enriched for low p-values 576 
across multiple traits. Six phenotypes across 4 disease categories were associated with 577 
cis mQTL, nine phenotypes across 5 disease categories were associated with cis+trans 578 
mQTL. Inflammatory bowel disease and Crohn’s disease were associated with both 579 
sets. Height was associated across all three categories of mQTL but interestingly was 580 
depleted for mQTL in the trans only group (OR=0.354, p=7.31e-8). The distribution of 581 
enrichment effect estimates (ORs) of trans mQTL was substantially closer to the null or 582 
in depletion when compared to mQTL that included cis effects (Figure 2E). These 583 
enrichments correspond to the results reported earlier, in which trans-SNPs were 584 
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typically depleted for enhancer and promoter regions, whereas complex trait loci are 585 
enriched for coding and regulatory regions48. 586 
 587 
Though the mQTL discovery pipeline adjusted for predicted cell types49,50 and non-588 
genetic DNAm PCs, there is a possibility that residual cell-type heterogeneity remains. 589 
We performed another set of GWAS enrichment analysis, this time using 36 blood cell 590 
traits43, and found enrichments. These were strongest amongst cis+trans mQTL, as 591 
seen in the previous enrichments (Figure S39). Interrogating this further, we found that 592 
for 98.9-100% of the mQTL, mQTL SNPs explained more variation in DNAm than they 593 
explain variation in blood cell counts suggesting a causal chain of mQTL to blood trait51. 594 
Alternatively, a systematic measurement error difference could explain these 595 
observations, where DNAm captures blood cell counts more accurately than 596 
conventional measures. 597 
 598 
The enrichments suggest that overlaps are not due to chance which motivated us to a 599 
much more in-depth analysis on a much larger number of traits/diseases. We searched 600 
for instances of DNAm sites sharing the same genetic factors against each of 116 601 
complex traits and diseases, and initially found 23,139 instances of an mQTL strongly 602 
associating with a complex trait (Figure 4). To evaluate the extent to which these were 603 
due to shared genetic factors (and not, for example, LD between independent causal 604 
variants), we performed genetic colocalization analysis52 (Table S18, Table S21). 605 
Excluding genetic variants in the MHC region, we found 1,373 putative examples in 606 
which at least one DNAm site putatively shared a genetic factor with at least one of 71 607 
traits (including 19 diseases). Those DNAm sites that had a shared genetic factor with a 608 
trait were 6.9 times more likely to be present in a community compared to any other 609 
DNAm site with a known mQTL (Fisher’s exact test 95% CI 4.8-9.7, p =9.2e-19). Next, 610 
we evaluated how often the DNAm site that colocalised with a known GWAS hit was the 611 
closest DNAm site to the lead GWAS variant by physical distance. Notably, in only 612 
18.1% of the cases where a GWAS signal and an assayed 450k DNAm site colocalised, 613 
was that DNAm site the closest DNAm site to the signal. This finding is similar to results 614 
found for gene expression53, but the converse has been found for protein levels54. 615 
 616 
It has previously been difficult to conclude whether genetic colocalisation between 617 
DNAm and complex traits indicates a) a causal relationship where the DNAm level is on 618 
the pathway from genetic variant to trait (vertical pleiotropy) or b) a non-causal 619 
relationship where the variant influences the trait and DNAm independently through 620 
different pathways (horizontal pleiotropy)55. In Mendelian randomisation (MR) it is 621 
reasoned that under a causal model, multiple independent genetic variants influencing 622 
DNAm should exhibit consistent causal effects on the complex trait56. Amongst the 623 
putative colocalising signals, 440 (32%) involved a DNAm site that had at least one 624 
other independent mQTL. We cannot determine with certainty the causal relationship of 625 
any specific site with a trait. To test if there was a general trend of DNAm sites causally 626 
influencing a trait we evaluated if the MR effect estimate based on the colocalising 627 
signals were consistent with those obtained based on the secondary signals. There 628 
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were substantially more large genetic effects of the secondary mQTL on respective 629 
traits than expected by chance (70 with p < 0.05, binomial test p = 2.4e-16). However 630 
only 41 (59%) of these had effect estimates in the same direction as the primary 631 
colocalising variant, which is not substantially better than chance (binomial test p = 632 
0.19). Twelve of the 41 mQTL were located in the HLA region. Of the remaining mQTL, 633 
27 were associated with anthropometric (ESR1 and birth weight), immune response 634 
(IRF5 and systemic lupus erythematosus) and lipid traits (TBL2 and triglycerides). We 635 
then performed systematic colocalization analysis of all mQTL against 36 blood cell 636 
traits43. Here we discovered 94,738 instances of a DNAm site and a blood cell trait 637 
sharing a causal variant. In 28,138 instances the colocalising DNAm site had an 638 
independent secondary mQTL, and with these associations we again tested for a 639 
general trend of DNAm sites causally influencing the blood trait. The association 640 
between independent signals was very weak (R2 = 0.008), suggesting that the general 641 
causal model is not supported. Together, across the sites that were analysable in this 642 
manner, these results indicate that those blood measured DNAm sites that have shared 643 
genetic factors with traits cannot be typically thought of as mediating the genetic 644 
association to the trait (Figure S40-S41, Table S22). Instead, if DNAm is a coregulatory 645 
phenomenon then the colocalising signals between DNAm sites and complex traits may 646 
be due to a common cause, for example genetic variants primarily acting on TF 647 
binding.8,10  648 

The influence of traits on DNAm variation 649 

Previous studies have not been adequately powered to estimate the causal influences 650 
of complex traits on DNAm variation through MR, as the sample size of the outcome 651 
variable (DNAm) is a predominant factor in statistical power52,57. We systematically 652 
analysed 109 traits for causal effects on DNAm using two-sample MR58,59, where each 653 
trait was instrumented using SNPs obtained from their respective previously published 654 
GWAS (Supplemental Note 2, Table S18). Included amongst the traits were 35 655 
disease traits, which when used as exposure variables in MR must be interpreted in 656 
terms of the influence of liability rather than presence/absence of disease. The sample 657 
size used to estimate SNP effects in DNAm was up to 27,750 (Figure 4). 658 
 659 
We initially identified 4785 associations where risk factors or genetic liability to disease 660 
influences DNAm levels (multiple testing threshold p < 1.4e-7). However, MR analysis 661 
on omic variables can lead to false positives due to violations in assumptions. We 662 
developed a filtering process involving a novel causal inference method to help protect 663 
against these invalid associations (Supplementary Information, Supplementary Note 664 
2, Figure S42). This left 85 associations (involving 84 DNAm sites) in which DNAm 665 
sites were putatively influenced by 13 traits (nine risk factors or four diseases) (Table 666 
S23). Further filtering that would exclude traits that were predominantly instrumented by 667 
variants in the HLA region or driven by one SNP would reduce the total number of 668 
associations substantially from 84 to 19. We replicated five associations for triglycerides 669 
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influencing DNAm sites near CPTA1 and ABCG160 and found associations for 670 
transferrin saturation/iron influencing DNAm sites near HFE. 671 
 672 
We next evaluated if there was evidence for small, widespread changes in DNAm levels 673 
in response to complex trait variation, by calculating the genomic control inflation factor 674 
(GCin) for the p-values obtained from the MR analyses of each trait against all DNAm 675 
sites. Five traits (fasting glucose, age at menarche, cigarettes smoked per day, 676 
immunoglobulin G index levels, serum creatinine), showed GCin values above 1.05 677 
(Figure S43). A high GCin value can be the result of the trait that has an influence on a 678 
few sites or has a widespread effect on DNAm. GCin calculations were performed at 679 
each chromosome singly for each trait (Figure S44) and in a leave-one-chromosome-680 
out analysis (Figure S45). The GCin remained consistent (except for immunoglobulin G 681 
index levels), indicating that the traits have small but widespread influences on DNAm 682 
levels across the genome. 683 
 684 
While most of the traits (n=105, 96%) tested did not appear to induce genome-wide 685 
enrichment this does not rule out the possibility of them having many localised small 686 
effects. For example, the smallest MR p-value for the analysis of body mass index on 687 
DNAm levels was 2.27e-6, which did not withstand genome-wide multiple testing 688 
correction, and GCin was 0.95. However, restricting GCin to 187 sites known to 689 
associate with body mass index from previous epigenome-wide association studies 690 
(EWAS)19 indicated a strong enrichment of low p-values (median GCin = 3.95). A similar 691 
pattern was found for triglycerides, in which genome-wide median GCin = 0.94 but the 692 
10 sites known to associate with triglycerides from previous EWAS61 had an MR p-value 693 
of 8.3e-70 (Fisher’s combined probability test). These results indicate that traits causally 694 
influencing DNAm levels in blood is the most likely mechanism that gives rise to these 695 
EWAS hits. It also indicates that the general finding that there were very few filtered 696 
putative causal effects of risk factors or genetic liability to disease on DNAm could be 697 
due to true positives being generally very small, even to the extent that our sample size 698 
of up to 27,750 individuals was insufficient to find them. 699 

DNAm sites influenced by genetic variation are under selection 700 

Natural selection has modified the allele frequency of complex trait associated variants 701 
through their beneficial or deleterious effects on fitness62-65. Here we investigate 702 
whether mQTL SNPs are frequent targets of natural selection utilizing selection scores 703 
acting through different timescales and mechanisms to each SNP in 1000G: a 704 
population differentiation method (global Fst), several haplotype-based methods 705 
(integrated haplotype score (iHS), Cross Population Extended Haplotype Homozygosity 706 
(XPEHH) and the singleton density score (SDS) (Table S24, Supplementary 707 
Information). 708 
 709 
We then tested whether there is enrichment of mQTL associations (Bonferroni adjusted 710 
p <0.01) among SNPs that show evidence of positive selection for each metric while 711 
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controlling for non-random genomic distribution47 (excluding two regions (HLA and LCT) 712 
known to be under high selective pressure).  We found enrichments of positive selection 713 
signatures among SNPs with cis only (Fst: p=7.87e-23, OR=1.31, SDS: p=4.43e-10, 714 
OR=1.42) and cis+trans (Fst: p=7.1e-21, OR=1.35, SDS: p=4.35e-11, OR=1.53, XPEHH 715 
(CEU vs CHB): p=7.7e-7, OR=1.53) associations (Figure 2F, Table S25). The strong 716 
enrichments for cis+trans (n=107-1585) and cis only (n=1186-4980) indicating that 717 
positive selection is most likely to operate on cis acting variants. However, there is less 718 
power to detect these enrichments for trans only SNPs (n=14-102). 719 
 720 
We next examined whether there was a relationship between the mQTL effect sizes 721 
(allele frequency adjusted) and the selection scores as a proxy for the estimated 722 
strength of selection. Using a linear model for each of the selection metrics (accounting 723 
for the number of proxies, distance to TSS, CpG and GC frequency), we found that the 724 
strongest mQTL effect size was positively associated with Fst (p<1.1e-05) but not with 725 
recent changes in allele frequency (measured by SDS) with consistent directions across 726 
the mQTL categories (cis only, cis+trans and trans only) (Figure S46). These results 727 
may indicate that DNA sites might either the primary target of selection or the mQTL 728 
SNP have pleiotropic effects on fitness66. 729 
 730 
Enrichment of Fst amongst mQTL could also be due to negative selection. Evidence for 731 
negative selection can be inferred from the strong negative relationship between mQTL 732 
SNP effect size and MAF (difference in mQTL SNP effect size=-0.56, p=2.2e-308, 733 
Figure S46). To confirm that this relationship is not an artefact of having defined the 734 
SNP effect via the maximum effect each SNP has on any DNAm site, we developed a 735 
novel method (Supplementary Information, Figure S47) to quantify the relationship 736 
for the strongest acting SNPs at a given frequency, allowing for a majority of unselected 737 
SNPs. SNPs with a higher frequency have a smaller average effect (S=0.4, CI 0.325-738 
0.475), where S=0 corresponds to no selection and S=1 corresponds to strong negative 739 
selection. We found similar relationships across the mQTL categories (cis only, 740 
cis+trans and trans only) (Figure S48) though there was insufficient power to quantify 741 
selection for trans only SNPs. These results can be interpreted that predominantly 742 
genetic regions that regulate DNAm are under negative or balancing selection66,67 and 743 
thus, retain the ancestral DNAm structure. However, a minority of regions containing 744 
DNAm sites have experienced positive selection. 745 
 746 
Alleles showing evidence of selection are likely to be biologically meaningful68. To 747 
investigate whether genetic variants underlying DNAm implicated in selection are linked 748 
to diseases/traits, we examined whether GWAS-associated variants from 42 datasets 749 
across 11 disease categories were enriched for cis mQTL SNPs overlapping extreme 750 
SDS scores. After accounting for non-random genomic distribution47, we found that 751 
GWAS-associated variants from 19/42 traits were overlapping with at least one cis 752 
mQTL SNP with extreme SDS. We found an enrichment of mQTL SNPs overlapping 753 
extreme SDS scores (p<2.6e-3) among variants associated with five traits including 754 
extreme height (OR=17.2, p=1.08e-7), Crohn’s disease (OR=11.3, p=4.42e-5), height 755 
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(OR=1.99, p=6.76e-5), schizophrenia (OR=5.28, p=1.21e-3) and cardiovascular disease 756 
(OR=9.85, p=1.67e-3) (Table S26). A comparison showed that the genetic variance for 757 
cardiovascular disease associated mQTL or height associated mQTL with extreme SDS 758 
was higher when compared to all trait associated SNPs (Figure S49). To summarize, 759 
our results provide the first evidence that selection may have shaped the landscape of 760 
DNAm values of the 450k sites although the mechanism for the selection signals that 761 
exist at these loci remains unknown.  762 

Implications 763 

A map of hundreds of thousands of genetic associations has enabled novel biological 764 
insights related to DNAm variation. Using a rigorous analytical framework enabled us to 765 
minimise heterogeneity and expand sample sizes for large omic data. This revealed a 766 
genetic architecture of DNAm that is polygenic. Given the diverse ranges of age, gender 767 
proportions and geographical origins between the cohorts in this analysis, the minimal 768 
extent of heterogeneity across datasets indicates that genetic effects on DNAm are 769 
relatively stable across contexts. We show that cis and trans mQTL operate through 770 
distinct mechanisms, as their genomic properties are distinct. A driver of long-range 771 
associations may be co-regulated through TF binding and nuclear organisation.  772 
 773 
Though we found substantial sharing of genetic signals between DNAm sites and 774 
complex traits, we were able to demonstrate that this was not predominantly due to 775 
DNAm variation being on the causal path from genotype to phenotype. While our results 776 
include <2% of the DNAm sites in the genome and are limited by the two-phase design, 777 
these findings have several implications especially in the context of EWAS studies that 778 
are often based on the same tissue and DNAm array. First, we anticipate that some 779 
previously reported EWAS associations are likely due to reverse causation e.g. the risk 780 
factor or genetic liability to disease state itself alters DNAm and not vice versa, or 781 
confounding. Second, having found there are strong negative and positive selection 782 
pressures acting on mQTL, this may be explained through selection acting on complex 783 
traits first. Third, the genetic effects on DNAm that overlap with complex traits likely 784 
primarily influence other regulatory factors which in turn influence complex traits and 785 
DNAm through diverging pathways. Fourth, DNAm might be on the causal pathway in a 786 
disease-relevant cell type or context. Fifth, if the path from genotype to complex traits is 787 
non-linear, for example involving the statistical interactions between different regulatory 788 
features15, then our results indicate that large individual-level multi-omic datasets will be 789 
required to dissect such mechanisms. 790 
 791 
Future studies may be more fruitful in finding causal relationships with complex disease. 792 
Either EPIC arrays13 or low-cost sequencing technologies69 will expedite detailed 793 
interrogations of enhancer and other regulatory regions. Especially, single molecule 794 
long-read sequencing promises to expand the genetic and epigenetic spectrum by 795 
allowing the detection of complex genetic variation such as allele specific DNAm and 796 
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structural variation and different types of DNA modifications. However, as disease 797 
relevant signals and regulatory regions may be cell type specific, new analytical tools 798 
are required to infer cell type specific mQTL from bulk tissue. Given our projection of 799 
mQTL yields expected for future studies, pleiotropy involving mQTL is likely to be 800 
increasingly important to model when interpreting genotype-trait pathways. 801 
 802 
Overall our data and results have resulted in the most comprehensive atlas of genetic 803 
effects to date. We expect that this atlas will be of use to the scientific community for 804 
studies of genome regulation, contribute to the control of confounding in EWAS and to 805 
perform causality analysis.  806 
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Figure 1: Discovery and replication of mQTL 

a) Study Design. In the first phase, 22 cohorts performed a complete mQTL analysis of 
up to 480,000 sites against up to 12 million variants; retaining their results for p<1e-5. In 
the second phase, 120 million SNP-DNAm site pairs selected from the first phase, and 
GWA catalog SNPs against 345k DNAm sites, were tested in 36 studies (including 20 
phase 1 studies) and meta-analysed. b) Distributions of the weighted mean of 

DNAm across 36 cohorts for cis only, cis+trans and trans only sites. Plots are 
coloured with respect to the genomic annotation. Cis only sites showed a bimodal 
distribution of DNAm. Cis+trans sites showed intermediate levels of DNAm. Trans only 
sites showed low levels of DNAm. c) Discovery and replication effect size estimates 

between GoDMC (n=27,750) and Generation Scotland (n=5,101) for 169,656 mQTL 
associations. The regression coefficient is 1.13 (se=0.0007). d) Relationship between 

DNAm site heritability estimates and DNAm variance explained in Generation 

Scotland. The regression coefficient for the twin family study was 3.16 (se=0.008) and 
for the twin study 2.91 (se=0.008) across 403,353 DNAm sites. The variance explained 
for DNAm sites with missing r2 (n=277,428) and/or h2=0 (Twin family: n=80,726 Twin: 
34,537) were set to 0. 
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Figure 2: Cis and trans mQTL operate through distinct mechanisms 

a) Distributions of enrichments for chromatin states and gene annotations among 

mQTL sites and SNPs. The heatmap represents the distribution of odds ratios for cis 
only, trans only, or cis+trans sites and SNPs. Significance has been categorised as: 
*=FDR<0.001;**=FDR<1e-10;***=FDR<1e-50 b) Distributions of enrichment for 

occupancy of TFBS among mQTL sites and SNPs. Each density curve represents 
the distribution of odds ratios for cis only, trans only, or cis+trans sites (left) and SNPs 
(right). c) A bipartite graph of the two-dimensional enrichment for trans-mQTL. 
SNPs annotations (blue) with pemp < 0.01 after multiple testing correction co-occur with 
particular site annotations (red). d) Distribution of two-dimensional enrichment 

values of trans-mQTL. There was substantial departure from the null in the real 
dataset for all tissues indicating that the TFBS of a site depended on the TFBS of the 
SNP that influenced it. e) Distributions of enrichment of mQTL among 41 complex 

traits and diseases. Each density curve represents the distribution of odds ratios for 
cis only, trans only, or cis+trans SNPs. f) Enrichment of selection signals among 

mQTL SNPs. Radial lines show odds ratios for the different selection metrics (Fst, SDS, 
iHS, XPEHH (CEU vs CHB) and XPEHH (CEU vs YRI) by site annotation (cis any, cis 
only, cis+trans, trans only, trans any). Dots in the inner ring of the outer circle denote 
enrichment (if present) at thresholds p<1e-11 (outermost) to p<1e-14 (innermost). 
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Figure 3: Communities constructed from trans-mQTL. a) A network depicting all 
communities in which there were twenty or more sites. Random walks were used to 
generate communities (colours), so occasionally a DNA site connects different 
communities. b) The relationship between genomic annotations, mQTL and 
communities. Communities 9 and 22 are comprised of DNAm sites that are related 
through shared genetic factors. The sankey plots show the genomic annotations for the 
genetic variants (left) and for the DNAm sites (right). The DNAm sites comprising these 
communities are enriched for TFBS related to the cohesin complex and NFkB, 
respectively. c) Enrichment of GWA traits among community SNPs. The genomic 
loci for each of the 56 largest communities were tested for enrichment of low p-values in 
133 complex trait GWAS (y-axis). The x-axis depicts the -log10 p-value for enrichment, 
with the 5% FDR shown by the vertical dotted line. Enrichments were particularly strong 
for blood related phenotypes (including circulating metal levels). 
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Figure 4: Identifying putative causal relationships between sites and traits using 
bi-directional MR. Aggregated results from a systematic bi-directional MR analysis 
between DNAm sites and 116 complex traits. The top plot depicts results from tests of 
DNAm sites colocalising with complex traits. The light grey points represent MR 
estimates that either did not surpass multiple testing, or shared small p-values at both 
the DNAm site and complex trait but had weak evidence of colocalisation. Bold, 
coloured points are those that showed strong evidence for colocalisation (H4 > 0.8). The 
bottom plot shows the -log10 p-values from MR analysis of risk factor or genetic liability 
of disease on DNAm levels. Extensive follow up was performed on DNAm site-trait pairs 
with putative associations, and those that pass filters are plotted in bold and colored 
according to the trait category. A substantial number of MR results in both directions 
exhibited very strong effects but failed to withstand sensitivity analyses.
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