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Experimental Path-Following of Equilibria Using Newton’s Method.

Part I: Theory, Modelling, Experiments
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Abstract

Modern numerical path-following techniques provide a comprehensive suite of computational

tools to study the bifurcation behaviour of engineering structures. In contrast, experimental

testing of load-bearing nonlinear structures is still performed using simple force control (dead

loading) or displacement control (rigid loading). This means that established experimental

methods cannot trace equilibrium manifolds in their entirety because structures snap to

alternative equilibria at limit points in the forcing parameter and because branch switching to

alternative equilibria cannot be controlled and performed reliably. To extend current testing

methods, in Part I of this paper, we implement an experimental path-following method that

uses tangent quantities (stiffness and residual forces) and Newton’s method to continue along

stable and unstable equilibrium paths and traverse limit points. In addition to enforcing

the displacement at primary load-introduction points, the overall shape of the structure is

controlled via secondary actuators and sensors. Small perturbations of the structure using

the secondary actuators allow an experimental tangent stiffness to be computed, which

is then used in a control algorithm. As a pertinent test case, the experimental method

is applied to a transversely loaded shallow circular arch. Due to the complexity of the

test setup, the experiment is first designed using a virtual testing environment based on

a surrogate finite element model. Experimental results demonstrate the robustness of the

proposed experimental method and the usefulness of virtual testing as a surrogate, but also

highlight that experimental efficiency and the effects of noise and sensor uncertainty is of
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particular concern. In Part II, we present perspectives on future research directions and

novel testing capabilities that are enabled by extending the methodology to pinpointing of

critical points, tracing of critical boundaries, and branch switching.

Keywords: experimental path-following, experimental Newton’s method, nonlinear

structures

1. Introduction

Structural lightweighting is a design driver in many engineering applications. For instance,

lighter aircraft are more fuel efficient, and are thus more economical for airlines and less

damaging to the environment. However, it is well known that lightweighting and optimisa-

tion can be ‘generators of instability’ [1]. In extreme cases these design strategies lead to

‘naive optimisation’, whereby a structure that is optimised to fail with simultaneously occur-

ring failure modes becomes sensitive to imperfections and fails much earlier than expected.

Similarly, the objective to reduce mass typically leads to thin-walled monocoque structures

that are susceptible to buckling instabilities. Common effects of instabilities are reductions

in stiffness, sudden drops in load-carrying capacity, or large undesired deflections. Hence,

the focus of engineers has generally been to prevent instabilities in order to avoid potentially

catastrophic consequences.

Over the last decade, an alternative perspective has developed that treats ‘well-behaved

nonlinearities’ [2] and elastic instabilities as opportunities for additional functionality. In

this manner, the traditional (negative) notion of ‘buckliphopia’ is juxtaposed with a contem-

porary (positive) view of ‘buckliphilia’ [3]. In the realm of buckliphilia, buckling has been

used for applications as diverse as energy harvesting [4, 5], reversible shape-adaptation [6, 7],

surface texturing [8], actuation [9], self-encapsulation [10], auxetic materials [11], and energy

dissipation [12].

∗Corresponding author: j.shen@bristol.ac.uk
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The physics of structural instability is driven by bifurcations, either saddle-node (limit

point) or branching (pitchfork/transcritical) bifurcations. In particular, the limit point

plays a special role in governing the instability of real (imperfect) engineering structures. In

engineering applications, the response of a structure is characterised by equilibrium curves

of force vs a chosen metric of the displacement field. When the structure reaches a limit

point in the loading parameter (force or displacement), its stability changes—a previously

stable equilibrium becomes unstable, or vice versa. This means that in a structure that

is loaded by a slowly evolving, yet monotonously increasing load (force or displacement),

an instability triggers a dynamic event upon reaching a limit point, thereby causing the

structure to ‘snap’ to another equilibrium state. Although the force(s) or displacement(s) at

the loading point(s) is(are) prescribed, the rest of the structure is free to move dynamically,

and this facilitates either additional functionality (e.g. shape adaptation) or the loss of

functionality (e.g. collapse).

Numerous numerical methods have been developed to detect and traverse limit points

in an analytical environment. A common method, broadly classified under numerical path-

following (or numerical continuation), is based on the predictor-corrector scheme of New-

ton’s method. To traverse limit points, force(s) and displacement(s) is(are) decoupled at the

main load-introduction point(s) by introducing an arc-length constraint equation [13, 14].

Additionally, more advanced path-following algorithms coupled to finite element (FE) solvers

can: detect branching points, branch switch to additional equilibrium branches, and trace

the loci of limit and branching points in parameter space [2, 15].

In contrast, progress in experimental testing of nonlinear structures is significantly lag-

ging behind numerical methods. The standard quasi-static experimental methods—displacement

and force control—break down at the first limit point of the respective loading parameter,

thereby leaving parts of the force-displacement equilibrium curve experimentally inacces-

sible (see Fig. 1). As a result, many classic FE problems (e.g. [16]) remain experimen-
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Figure 1: The limits of force- and displacement-controlled test methods.

tally unverified even though they have been used as computational benchmark problems for

decades [17]. Moreover, experimental output data are limited to displacements and reaction

forces at the main actuation points, and/or deformations at specific points where additional

sensors (e.g. strain gauges) are placed. Additional quantities, such as the tangent stiffness

matrix, which is useful for ascertaining information about the nonlinear behaviour of the

structure and intrinsic bifurcation properties, are not available. Finally, researchers work-

ing on well-behaved nonlinear structures [2, 6] lack the experimental methods to verify the

full mechanical behaviour of their designs. One particularly instructive example are mor-

phing (shape-changing) structures for the aerospace industry, which must meet stringent

requirements for commercial certification. While the growing research interest into mor-

phing aerospace structures has led to a plethora of concepts and prototypes [18], very few

designs have made their way onto flying aircraft.

The motivation for this work is to level the capabilities between numerical and experimen-

tal methods, i.e. between analysing/designing and testing/validating nonlinear structures.

In this regard, an analogue technique to nonlinear numerical methods, i.e. an ‘experimen-

tal path-following’ technique, can provide researchers with a platform to validate concepts

experimentally and bring these a step closer to industrial implementation.

In recent years, a number of innovative experimental methods have been developed to
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explore the stability of nonlinear structures. Wiebe and Virgin [19] used hammer impacts

to trigger the dynamic snap-through of a shallow arch, and were able to infer the location

of unstable equilibria from the saddles visible in the arch’s dynamic phase space. While

this method does not require a priori information about the structure being tested, the

experiment must be performed multiple times to capture the full range of behaviours. Fur-

thermore, the large dynamic deformations incurred may not be desirable when testing ex-

pensive, large-scale components. Virot et al. [20] used a ‘poker’ to laterally perturb an

axially loaded cylinder. This particular technique was chosen to detect unstable edge states

surrounding the stable pre-buckling equilibrium. An unstable equilibrium was found when

the reaction force on the probe vanished; this condition being equivalent to the unprobed

cylinder. Because the poker could only push, and not pull, the cylinder could not be held on

the unstable edge state, and hence path-following of the unstable equilibrium with varying

axial compression was not possible. Van Iderstein and Wiebe [21] stabilised the unstable

equilibria of a curved beam, which was buckled into shape using an axial load. Generally

speaking, a post-buckled beam can snap-through symmetrically or asymmetrically when

loaded by a transverse load. Under displacement-controlled transverse loading, the asym-

metric snap-through configuration is stable for most arch geometries and can be observed

in practice. By introducing additional control points and implementing a control algorithm

based on an experimental ‘tangent stiffness matrix’, the unstable symmetric path was also

traced. However, their particular implementation of the control algorithm breaks down at

a displacement limit point where the tangent stiffness becomes singular.

The present authors recently presented an experimental path-following technique [22]

based on the concept of ‘shape control’ [23]. A shallow arch was loaded via rigid loading

(displacement control) at the mid-span (main actuation point), while the overall shape of

the structure was controlled via two coupled probe points at the quarter- and three-quarter

span. The main actuation point was used to step away from a known equilibrium. The
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coupled control points were then moved upwards/downwards until a new equilibrium was

found—identified by a zero reaction force reading. This rudimentary ‘step-scan’ approach

can traverse displacement limit points and path-follow unstable equilibria, but has certain

limitations. Namely, with increasing structural complexity (e.g. from arch to shell), the

number of probe points to control the structure increases correspondingly. Therefore, a

practical experimental path-following setup under these circumstances requires a more so-

phisticated control algorithm; ideally, one that moves a set of control points concertedly

based on the non-zero reaction force readings at all probe points, i.e. an experimental ana-

logue to numerical path-following.

In the related yet distinct field of structural dynamics, Sieber et al. [24, 25] have devel-

oped the methodology known as Control-Based Continuation (CBC). CBC allows dynamic

continuation of periodic orbits through a fold, i.e. tracking of stable and unstable orbits,

and thereby permits tracing of the full nonlinear backbone curve beyond a resonance peak.

These methods rely on computing the Jacobian of the root-finding control signal. Ways to

estimate the Jacobian in the naturally noisy environment of experiments are discussed by

Schilder et al. [26] and Renson et al. [27, 28].

The work presented in this multi-part paper establishes the same capability but in the

field of statics, i.e. tracing of equilibria or stationary solutions. We generalise the use of

shape control to compute an experimental tangent stiffness matrix. By choosing pertinent

control algorithms based on Newton’s method, the experimental stiffness matrix allows (i)

path-following of stable and unstable equilibria, including traversal of limit points; and (ii)

detailed stability analyses such as pinpointing of critical (singular) points, branch switching

to alternative equilibrium paths, and tracing of critical points through parameter space.

With this approach, many of the features of numerical path-following of stationary solutions

can be replicated experimentally. In particular, Part I of this paper focuses on point (i)

above: path-following of stable and unstable equilibria and traversal of limit points. Control
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algorithms tailored to detailed stability analyses (point (ii) above) are addressed in Part II

[29].

The remainder of Part I is structured as follows. Section 2 provides a brief explanation of

the concept of shape control and outlines the control algorithms used to path-follow stable

and unstable equilibria and traverse limit points. To determine optimal control parameters

for robust path-following, we introduce a ‘virtual testing’ environment in Section 3. The

virtual testing environment uses an FE surrogate of the experiment (e.g. in Abaqus) and

facilitates designing of the experiment by elucidating the effects of experimental noise and

optimal location of control points. Section 4 considers practical challenges in implementing

a robust control algorithm based on the experimental tangent stiffness. In Section 5 we

demonstrate an experiment of the developed algorithms using a transversely loaded shallow

arch and compare the results to our simulations of the experiment. Sources of experimental

error and the effect of noise and sensor uncertainty during the experiments is discussed in

Section 6 before conclusions are drawn in Section 7.

2. Theory

Before outlining the details of the control algorithms for experimental path-following, we

revisit the principles of shape control, previously introduced in [23].

2.1. Shape Control

To illustrate the underlying concepts of shape control, we employ a simple structure that

exhibits the salient features of nonlinear behaviour with limit points: the von Mises truss

connected in series with linear springs (Fig. 2). This structure features an arch-like arrange-

ment of two inclined linear springs, with a third spring suspended from the apex (Fig. 2b).

For a load applied to the bottom of the vertical spring (denoted as actuation point a), the

force-displacement (Fa vs ua) response describes a general sigmoidal shape. The character-

istics of this sigmoidal equilibrium curve are defined by the geometric arrangement (inclina-
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Figure 2: (a) The equilibrium path of the von Mises truss connected in series with linear springs
with the geometry presented in (b) with the spring ratio k1/k2 = 2 and H0/L0 = 4/5.
Solid circles labelled with Lf and Ld represent force and displacement limit points,
respectively. The equilibrium path with a red dashed line is unstable under either
force or displacement control. The central section of the plot highlights three equilibria
(points i, ii, and iii) with the same actuation displacement (ua/H0 = 1) but different
reaction forces. (c) The truss deformation shapes with the same actuation displacement
ua/H0 = 1 corresponding to points i, ii and iii in (a). Note that Fa and ua in (b)
represent the force and displacement applied on the actuation point in force-controlled
loading and displacement-controlled loading respectively; Rp and up are the reaction
force and displacement at the probe point.

tion α0, and spring-length L0) and stiffness ratio of the inclined vs vertical springs (k1/k2).

For certain arrangements, the equilibrium curve features both force and displacement limit

points (see Fig. 2a).

With reference to Fig. 2a, under force control, the truss snaps dynamically upon reach-

ing the force limit points Lf . With a displacement-controlled testing method, the portion

of the equilibrium path that can be measured extends to the limit points Ld. Hence, us-

ing conventional testing techniques, the best one can achieve is to trace the solid lines.

Conversely, the statically unstable dashed segment remains experimentally inaccessible. To

path-follow along the entire equilibrium manifold, a method for simultaneously controlling

the force and displacement at the actuation point is needed. The experimental challenge is
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that force and displacement are inherently linked through elasticity: an applied force results

in a displacement, and an applied displacement induces a reaction force.

For an applied actuation point displacement of ua/H0 = 1, the von Mises truss features

three equilibria, highlighted as i, ii, and iii in Fig. 2a, with different reaction force readings

Fa. What differentiates the three reaction force readings is the associated shape of the truss

as shown in Fig. 2c. These shapes provide a key insight to experimentally decouple force

and displacement at the actuation point; namely, to introduce a third control variable—the

overall geometric shape. In a displacement-controlled experiment using any set of actuation

points, controlling the equilibrium shape determines the corresponding reaction force(s)

at the actuation point(s), and therefore distinguishes between different equilibria on the

equilibrium manifold.

The shape of the structure can be readily controlled by introducing additional control

points (or so-called ‘probe’ points). In the case of the von Mises truss, the probe point p

controls the displacement of the apex (up). Hence, each unique equilibrium of the truss is

determined by the position of the actuation point (ua) and the relative position of apex and

actuation point. For clarity, ua and up are indicated in Fig. 2b.

The purpose of the probe point is threefold. First, the probe stabilises statically unstable

equilibria by providing the stabilising reaction force against perturbations. Second, the probe

position can be used to select different equilibria that exist for a fixed actuation displacement;

Each unique equilibrium state of the unprobed structure must correspond to zero reaction

force at the probe (Fp = 0). Finally, apart from the zero-force control signal, the probe can

be used to evaluate an experimental tangent stiffness matrix.

2.2. Experimental Path-following Algorithm using Tangent Quantities

In numerical path-following, variables are typically divided into state variables, u, that

describe the configuration of the system, and forcing parameters, Λ, which control the state.

In classic finite element solvers with displacement degrees-of-freedom (dofs), the state is
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given by the displacements (and sometimes rotations) at the discretisation nodes, and the

forcing parameters are the applied forces and tractions (which are generally converted into

nodal forces and moments). However, it is also possible that one of the state variables

becomes an active parameter that controls the other state variables. This is the case in rigid

(displacement-controlled) loading, which is often chosen in experimental settings.

For experimental path-following using displacement-controlled inputs, it is therefore con-

venient to let the state u be a vector of displacements at N specified control points (Na main

actuation points plus Np probing control points). These points are analogous to nodes in

a finite element setting as their position can be controlled to define the global shape of the

structure. Initially, we focus on a single-parameter system such that the parameter set Λ

becomes a single scalar variable λ. The displacements at the main actuation points (actual

loading of the unprobed structure) are henceforth denoted by ua, and the displacements at

the probing control points (to stabilise unstable equilibria and control the overall shape) are

denoted by up. Thus, u = [u>p u
>
a ]>.

For a conservative structural system, an equilibrium state is given by a balance of the

internal forces, f int, and the external forces, f ext. Analogous to the state variables, u, the

internal and external forces are vectors that describe the respective forces at the specified

control points (‘nodes’). Equilibrium is obtained when all externally applied forces at control

points are equal to the internal loads, i.e. the residual vanishes:

R(u, λ) = f int(u)− f ext(λ)=0. (1)

Formally speaking, except passive reaction forces, no external active forces are applied

in a displacement-controlled experimental path-following setup (f ext ≡ 0). However, at all

main actuation points, a reaction force is naturally induced when non-zero displacements

are applied, and these reaction forces play the role of external forces in the algorithm. The

displacements at the main actuation points are therefore defined implicitly through the
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forcing parameter λ. Specifically, the displacements at the main actuation points, ua, are

expressed as the product of an unchanging reference displacement vector, ûa, and a changing

scalar variable, λ. Hence, ua = λûa.

For the displacement-controlled system, each equilibrium configuration is defined by

non-zero internal forces at the main actuation points and zero internal forces at all probing

control points. Therefore, the unique identifier of an equilibrium state is the vanishing of

the control forces at all probing control points

Rp(up,ua(λ)) = fp
ctrl(up,ua(λ))=0. (2)

Because Rp is generally non-linear in u = (up,ua(λ)), we linearise the system to give

Rp(up + ∆up, λ+ ∆λ) = Rp(up,ua(λ)) +
∂Rp

∂up

∆up +
∂Rp

∂λ
∆λ+ · · · = 0. (3)

To a first-order approximation Eq. (3) reads

∂Rp

∂up

∆up +
∂Rp

∂λ
∆λ = −Rp(up,ua(λ)). (4)

At an equilibrium state Rp is zero. But for any non-equilibrium state stabilised by the

probing control points Rp is non-zero. Next, we consider the significance of the partial

derivatives in Eq. (4). In the first term,

∂Rp

∂up

=
∂fp

ctrl

∂up

= Kpp
T , (5)

which is the Np × Np direct tangent stiffness matrix relating tangent probe reaction forces

to incremental displacements at the probes. In the second term,

∂Rp

∂λ
=
∂fp

ctrl

∂λ
=
∂fp

ctrl

∂ua

∂ua

∂λ
= Kpa

T ûa, (6)

is a column vector of tangential forces induced by the reference displacement vector ûa. The

Np × Na coupling tangent stiffness matrix Kpa
T captures the tangent probe reaction forces
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induced by incremental displacements at the main actuation points. In aggregate, the total

probing tangent stiffness matrix of size Np × (Np +Na) is given by

Kp
T =

[
Kpp

T Kpa
T

]
. (7)

In a numerical setting, the tangent stiffness matrix Kp
T can be computed in two ways: (i)

the partial derivative of the internal forces can be computed analytically such that tangent

stiffness is computed exactly; or (ii) a finite difference approximation can be used. For the

latter, the ith column of the tangent stiffness matrix is given by

Kp,i
T ≈

fp
ctrl(u+ ε‖u‖2ei)− fp

ctrl(u)

ε‖u‖2
, (8)

where ei is a column vector with the ith component equal to unity and the rest equal to zero,

ε is a small scalar, and ‖u‖2 is the L2-norm of the displacement vector, i.e. ‖u‖2 = (u ·u)1/2.

Because an analytical expression of the tangent stiffness matrix is not generally available

in an experimental setting, we compute Kp
T using the finite difference approximation of

Eq. (8). In practice, this means that the ith control point in the total set of main actuation

points plus probing control points is displaced in turn by a small amount ε‖u‖2 and the

resulting internal forces (reaction forces) at the probing control points are measured. The

corresponding column of the tangent stiffness matrix is then computed by subtracting the

unperturbed reaction forces from these perturbed reaction forces and dividing by the small

perturbation ε‖u‖2. By repeating this procedure for each control point (i = 1 . . . N), an

experimental tangent stiffness matrix is assembled. Note that this procedure relies on the

assumption that the supports for the actuation points and probes are infinitely stiff and do

not deflect under the applied reaction loads.

Using the definition of the direct and coupling tangent stiffness matrices of Eqs. (5)
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and (6), and the implicit definition of ua(λ), we now rewrite Eq. (4) as follows:

Kpp
T ∆up +Kpa

T ûa∆λ = −Rp(up, λ). (9)

Equation (9) is solved by the control algorithm to increment away from a known equilibrium

with Rp = 0 (the predictor) and to iterate towards a new equilibrium with Rp 6= 0 (the

corrector).

Because the Np equations in (9) have Np + 1 unknown quantities—Np displacement in-

crements of the probing points, ∆up, and one displacement increment of the main actuation

points, ∆λ—an additional bordering equation is required to solve the linearised equilibrium

equation. This equation can take many forms but the critical requirement is traversal of

limit points. Following Riks [13], we use the simplest linear bordering equation

∆u(1,k)
p ·∆u(j,k)

p + β2∆λ(1,k)∆λ(j,k) = 0, (10)

where the dot refers to the scalar product, the superscript •(1,k) denotes the linear predictor

for load step k away from the converged equilibrium of load step k− 1, and the superscript

•(j,k) denotes the jth corrector iteration towards a new equilibrium of load step k. The

scalar β is a quantity that can be used to modify the relative magnitude of the probe and

actuation point displacements in the corrector.

Equations (9) and (10) can now be combined to solve for any equilibrium (∆u(j,k)
p ,∆λ(j,k)).

Following standard practice of numerical path-following [30], the control algorithm performs

this task most efficiently by splitting the increment at the probing control points into two

components: (i) dup, which is a corrector displacement arising from the residual Rp, and

(ii) δup, which is the ‘tangential’ probe displacement arising from the applied displacements

at the main actuation points. Namely, solving Eq. (9) for ∆up gives

∆u(j,k)
p = du(j,k)

p + ∆λ(j,k) · δu(j,k)
p , (11)
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where

du(j,k)
p = −Kpp−1

T R(j,k)
p , (12)

δu(j,k)
p = −Kpp−1

T Kpa
T ûa. (13)

The tangent stiffness components Kpp
T and Kpa

T can be updated at every iteration (j, k), i.e.

full Newton method, or only at the beginning of each load step (1, k), i.e. modified Newton

method. During the experiments, the finite difference procedure to compute Kpp
T and Kpa

T

was found to be the greatest time investment, such that the modified approach was used.

It may be assumed that the previous load step has converged to a small tolerance, such

that R(1,k)
p = 0. Therefore, only δup needs to be solved for the first increment of any

load step (the predictor). In this case, a value for ∆λ(1,k) is prescribed based on a desired

arc-length, ∆s:

∆s2 = ∆up ·∆up + β2∆λ2. (14)

Thus, for a specific defined arc-length, the predictor increment can be computed from

∆λ(1,k) =
∆s√

δu
(1,k)
p · δu(1,k)

p + β2

, (15)

where δu(1,k)
p is first calculated using Eq. (13). Furthermore, the predictor step size is

adapted to the convergence rate of previous load step, i.e.

∆λ(1,k) =

(
n(k−1)

ndesired

)0.25

∆λ(1,k−1), (16)

where n(k−1) is the number of iterations required to converge in the preceding load step k−1,

and ndesired is the desired number of iterations to achieve convergence.

To traverse limit points, the sign of the predictor ∆λ(1,k), and hence the direction of

the actuation incremental displacement, ∆u(1,k)
a = ∆λ(1,k)ûa, needs to be controlled. This

can be achieved by comparing the total displacement increment of the probes (predictor
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plus correctors) in the previous load step, ∆u(k−1)
p , with the current ‘tangential’ probe

displacement predictor δu(1,k)
p . If these two vector quantities point in the same direction,

then the movement direction of the actuation points, ∆u(1,k)
a , remains the same. Otherwise

the direction is reversed. Hence,

if ∆u(k−1)
p · δu(1,k)

p > 0

∆λ(1,k) = ‖∆λ(1,k)‖2

else

∆λ(1,k) = −‖∆λ(1,k)‖2,

(17)

where ∆λ(1,k) has first been determined using Eq. (15).

At the end of the predictor increment, the incremental displacements (∆u(1,k)
p ,∆u(1,k)

a )

are defined such that the main actuation points and probing points can be moved to new

positions. Because the predictor is a linear step, this new state is not necessarily an equilib-

rium, and this manifests as non-zero reaction forces at the probe points (Rp 6= 0). Hence,

the positions of the main actuation points and probing points need to be corrected.

For corrector increments, both δu(j,k)
p and du(j,k)

p are computed and the appropriate

∆λ(j,k) is found using (10). By substituting (11) into (10), we get

∆u(1,k)
p ·

(
du(j,k)

p + ∆λ(j,k)δu(j,k)
p

)
+ β2∆λ(1,k)∆λ(j,k) = 0, (18)

∆λ(j,k) = − ∆u
(1,k)
p · du(j,k)

p

∆u
(1,k)
p · δu(j,k)

p + β2∆λ(1,k)
. (19)

The corrector sequence iteratively applies (11) and (19) for n iterations until the algorithm

has converged to a new equilibrium. An equilibrium state is defined by the vanishing of the

reaction forces at the probing points. Numerically this is achieved when a norm of all the

probe point residuals falls beneath a specific threshold. Hence, ‖Rp‖2 < Rp,tol, where Rp,tol

is a specified tolerance.

The equations outlined in this section describe a general algorithm for experimental path-
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following of stable and unstable equilibria and traversal of limit points. For clarity, step-

by-step algorithmic details are elucidated in Appendix A. The algorithm is fundamentally

identical to an implementation in an FE setting, with the exception of the necessity of

calculating the experimental tangential stiffness matrix through finite differences. Note that

in the experiments presented on a transversely loaded shallow arch in Section 5, only one

main actuation point and one independent probe exists. In this case, the bold symbols used

above to represent vectors and matrices (e.g. ua, up, Kpa
T , Kpp

T , Rp, etc.) will be dropped

for roman symbols to reflect the scalar nature of the quantities (e.g. ua, up, Kpa
T , Kpp

T , Rp,

etc. but Kp
T = [Kpp

T Kpa
T ]).

In the following section, we introduce a virtual testing environment based on a surrogate

FE model to test the algorithm and determine probe locations that allow for robust experi-

mental path-following of a transversely loaded shallow arch. In Section 4 we present practical

modifications made to the controlling algorithm outlined above based on observations made

during virtual testing and the experimental testing campaign.

3. Virtual Testing Environment

The testing setup for experimental path-following is considerably more complex than for a

traditional approach using force- or displacement-control at one or multiple loading points.

For example, the main actuation and probe points need to be moved by independent actu-

ators and a controlling algorithm is required to coordinate the different inputs. For these

reasons, a virtual testing environment is valuable as it allows the experimenter to test control

algorithms, identify the optimum location of probe points, explore possible issues during the

experiment (e.g. the influence of noise), and ensure safe operation.

The virtual testing environment with the controlling path-following algorithm is im-

plemented in the FE software Abaqus using Python scripts. Displacement control at

the probes and the main actuation point is implemented by imposing nodal displacement.
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Experimental 
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algorithm Nonlinear FE model + General static solver

Fa, Fp

Δua, Δup

Figure 3: Virtual testing environment. The details of the path-following algorithm can be found
in Section 2.2.

Abaqus’ general static solver (nonlinear Newton solver without capability to traverse limit

points) is adopted to move the probe and main actuation points under displacement control,

thereby also deforming the rest of the arch. Thus, Abaqus’ general static solver acts as a

surrogate to simulate how the arch deforms when the probes and main actuations points

are moved, and determine the reaction forces expected at these points. The movement of

the probing and main actuation control points is synchronised so that the main actuation

point displacement can be continuously varied while maintaining zero reaction force on the

probe. Specifically, the control logic outlined in the preceding section for path-following

of equilibria is implemented in Python scripts, which then control the movements of the

control points in Abaqus, as shown in Figure 3.

To allow Abaqus to continuously change the boundary conditions that control the po-

sitions of the probes and main actuation point, the functionality known as restart analysis

needs to be adopted. A restart analysis allows a new analysis to continue from the point

where a previous analysis left off. This enables us to sequentially apply displacements at

the control points as dictated by the path-following control logic, where each increment in

the loading process is a new model in the restart analysis.

The test case chosen for the experimental implementation (Section 5) is a shallow circular

arch, pinned at two ends and loaded by a transverse mid-span load. Before testing the arch
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ua,Fa

up1,Fp1
up2,Fp2

(a) (b) (c)

ua,Fa

Figure 4: (a) Shallow circular arch studied in this paper. The edges of the arch are pinned.
Vertical displacement (ua) is applied at the mid-span and this displacement induces
a reaction force (Fa). Rotations and lateral translations are constrained at the mid-
span to preserve symmetry. (b) Additional control points provide shape control while
preserving left-right symmetry. A vertical displacement (up) is applied symmetrically
to the probes at a horizontal distance Lp from the ends. The probes are designed to
be minimally invasive to prevent reaction moments and horizontal reaction forces that
would perturb the equilibrium path. (c) Arch with multiple pairs of probes. Probes are
evenly and symmetrically distributed, where Ln = L/[2(n+ 1)] and n is the number of
probe pairs.

physically, we designed the experiment using the virtual testing environment. The geometry

of the arch is presented in Fig. 4a, with dimensions L = 205 mm, h = 20 mm, t = 1.57 mm,

and depth D = 4.68 mm (into the page). The constituent material is assumed to be linearly

elastic, homogeneous and isotropic, with Young’s modulus E = 3200 MPa and Poisson’s ratio

ν = 0.38. The arch is modelled using the in-plane linear beam element B21 in Abaqus,

which assumes Timoshenko beam theory.

A transversely loaded shallow arch has the tendency to snap-through asymmetrically, i.e.

to break left-right symmetry. Here, we focus on symmetric deformation modes because these

are sufficient to achieve the aims of this paper; namely, to path-follow stable and unstable

equilibria and traverse limit points. Left-right symmetry is enforced by preventing rotations

around the mid-span of the arch. In FE this is easily done by enforcing a boundary condition,

whereas in the experiments of Section 5 the mid-span point is prevented from rotating using

a rigid clamp, and symmetrically placed coupled probes.

Figure 5 shows the equilibrium manifold of the arch as derived from the quasi-static

Riks solver implemented in Abaqus. Note that the equilibrium manifold only shows the
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Figure 5: Nonlinear force-displacement equilibrium path of the shallow circular arch solved using
the quasi-static Riks solver in Abaqus. (a) Complete symmetric response. Also shown
are the arch shapes corresponding to the undeformed and inverted states. (b) Subset of
the response. The solid lines indicate the segments that a conventional displacement-
controlled testing protocol can obtain; dashed lines indicate the equilibria that are
inaccessible experimentally using standard displacement-controlled testing as they lie
beyond displacement limit points. Blue and magenta lines represent loading from the
undeformed to the inverted states and vice versa, respectively.

‘flower petal’ path corresponding to symmetric solutions. Symmetry-breaking paths are not

shown. A conventional displacement-controlled testing method could only trace a fraction

of the predicted response, shown by the solid lines in Fig. 5b. Upon loading from the resting

configuration, the arch would snap through into its inverted configuration at displacement

limit point L1. Conversely, upon unloading, the arch would snap back at limit point L2. The

aim of the experiments in Section 5 is to traverse limit points L1 and L2. To demonstrate the

capabilities of the virtual testing environment, however, it sufficient to focus on one segment

of the equilibrium manifold; namely, the blue lines in Fig. 5b.

3.1. Effect of Probe Locations

The layout of the probes is critical for successful implementation of the proposed experi-

mental path-following method, as it determines the fidelity to which the structural shape
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can be controlled. Within the virtual testing environment, a parametric study is conducted

to evaluate effective probe placement (in pairs to enforce symmetry). Results are shown

in Figure 6, where solid lines correspond to quasi-static Riks solutions from Abaqus (no

probes) and square markers denote load step increments computed using the virtual instan-

tiation of the experimental path-following setup (using probes and algorithm in Section 2.2).

Figures 6a–f show results for varying probe locations, from closest to furthest away from the

pinned supports, respectively. In each case, the final data point—marked by a red cross—

denotes the position where the experimental path-following algorithm fails to converge and

thus cannot path-follow any further.

All probe locations are capable of accurately replicating the numerical Riks solution

from Abaqus (no probes) and traversing the first displacement limit point. Prior to the

limit point, all equilibria are stable and this means that the probes can be removed without

causing the arch to snap to another equilibrium (provided that symmetry is prescribed at

the mid-span). The equilibria past the limit point, however, are unstable, which means

that once the probes are removed, the arch is free to snap to another inherently stable

equilibrium. This illustrates the key function of the probes: stabilising unstable equilibria.

Figures 6a–f are produced with identical numerical settings for the path-following al-

gorithm. Although convergence is affected by these settings, a physical limit to what the

algorithm can achieve is imposed by the nature of the problem. Physically, the lack of conver-

gence at the red crosses in Fig. 6 corresponds to the instance whence the probe loses control

authority to move the structure to the next equilibrium. Hence, more probe points would

be required to continue further along the equilibrium manifold; this problem is addressed in

further detail in Section 3.2. When the probes are close to the mid-span (and hence to the

actuation point), the algorithm struggles to converge immediately after traversing the limit

point. This is because the probes lose control authority over the unrestrained portions of the

arch, namely the parts between the boundary supports and the probes. Physically, during
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Figure 6: Virtual testing results for cases with different probe locations. The definitions of Fa,
ua and Lp can be found in Fig. 4b. The convergence tolerance for the total residual
reaction force at the probes is Rp,tol = 0.1 N. The arc-length parameter β = 0 for all
virtual testing in this section. Note that the squares represent the converged equilibria
from virtual testing; the solid line represents numerical results obtained using the quasi-
static Riks solver in Abaqus (no probes); and crosses denote the instance where the
experimental path-following algorithm fails to progress along the equilibrium path.
Identical numerical settings are adopted for the path-following algorithm in (a–f).

the perturbation process to find Kp
T, the unrestrained portions of the arch snap through

and, once the perturbation is reversed, the arch does not return exactly to its previous equi-

librium state, even though the probes return to their original position. This is also observed

experimentally in Section 5.

It should be noted that even though the path-following algorithm works well for probe

locations Lp/L ≤ 4/16, there exist portions of the equilibrium curve where the incremental

step size is fine. This range corresponds to the displacement turning points of the probes,

i.e. Kpa
T = 0, and this problem can be eliminated by adopting a relatively large value for β
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in the arc-length equation, more details of which can be found in Appendix B.3.

3.2. Multiple Independent Probes

Test setups with multiple independent probes are simple extensions of the system studied

in Section 3.1. With the capability of controlling multiple probes simultaneously, additional

displacement limit points along the ‘flower-petal’ manifold can be traversed.

Here, virtual testing with two and four pairs of probes is conducted (each preserving

symmetry about the mid-span). The probes are evenly distributed horizontally, as shown for

two pairs of probes in Fig. 4c, and each pair is controlled independently. Figure 7 shows the

virtual testing results compared to a quasi-static Riks solution from Abaqus (no probes). It

is evident that, with an increase in the number of probe pairs, more displacement limit points

can be traversed; i.e. the number of limit points traversed is equal to the number of probe

pairs. Due to the ability to traverse additional limit points, high-order deformation modes

can be controlled and stabilised. The higher-order modes displayed in Fig. 7 correspond to

the last converged load step (red cross).

3.3. Controlling Parameter Sensitivity Study

With the virtual testing environment, we can also conduct sensitivity studies on the

effects of primary controlling parameters in the algorithm (such as residual force tolerance

at the probes, maximum incremental displacement step size at the controlling points, per-

turbation size at controlling points to approximate the tangential stiffness matrix) and the

effect of measurement noise on experimental continuation so as to design the most feasible

and efficient testing scheme. A detailed parameter sensitivity study for experimental con-

tinuation of the circular shallow arch can be found in the Supplementary Materials. The

key findings can be summarised as follows:

1. Less stringent reaction force tolerance values, Rp,tol, can be balanced by decreasing the

maximum incremental displacement step size. Hence, if the force sensors on the probes
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Figure 7: Virtual testing results for (a) two pairs of probes; and (b) four pairs of probes. The
convergence tolerance for the reaction force at each pair of probes is Rp,tol = 0.1 N. Inset
are the arch deformations at the last converged load step (red cross) which illustrate
the need for multiple probes to control the deformed shape. Note that the probes are
evenly distributed, i.e. the horizontal distance between the probe pairs is equal, as
shown for two probe pairs in Fig. 4c.

have poor measurement accuracy, then the incremental displacement step size should

be reduced accordingly. There is, of course, a limit to how small displacement incre-

ments can be, due to limitations on actuator precision and backlash in components.

Thus, a compromise needs to be established between probe force sensor accuracy and

displacement actuator precision. Further trade-offs concern the total duration of an

experiment, achieving a balance between the time required to compute the tangent

stiffness and to execute the subsequent predictor-corrector steps.

2. To minimise the effect of noise, attention should be placed on the approximation of

the tangential stiffness matrix. The reaction force variation during the perturbation

process needs to be much larger than experimental noise. The effects of random noise

can be decreased by taking the average value of multiple perturbation measurements.

3. A smaller perturbation size leads to a better approximation of the tangential stiffness
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matrix (excluding the effects of measurement noise and uncertainty), thus leading to

a quicker convergence rate. There exists a lower-bound threshold for the perturbation

size below which Kp
T is not affected.

Note that a more thorough discussion based on the experiments can be found in Sections 4

and 5.

3.4. Optimal Probe Layout: Effective Independence Index

The role of probe points is to provide stabilising restraints as well as to monitor the real-time

stability characteristics of the structure through the experimental tangent stiffness matrix.

As the number of independent probes is increased, the size of Kpp
T increases accordingly,

meaning that the control authority over the structure also increases. As a result, a larger

set of critical eigenvalues and eigenvectors of the unprobed structure can be stabilised. The

layout of the probes should reflect the critical eigenvectors (the eigenvectors corresponding to

each zero eigenvalue at critical points) of the unprobed structure’s tangent stiffness matrix.

Accordingly, it is most effective if the probes are located at the maximum amplitudes of

the deformation mode corresponding to each critical eigenvector. As the apexes of different

eigenvectors are located at different points over the domain of the structure, a compromise

needs to be found that best satisfies the probe placement for all critical eigenvectors.

The effective independence method [31] is adopted to establish the most effect position

of the probes for control. The effective independence method was originally proposed to

determine the apexes of vibration modes for optimal sensor placement in structural dynamic

tests [32, 33]. For effective shape control, the incremental displacement of the probes at

displacement limit points, ∆ulp
p , should satisfy

∆ulp
p = Φ0

fpq =

[
φfp

lp,1

>
φfp

lp,2

> · · · φfp
lp,N

>
] [
qlp,1 qlp,2 · · · qlp,N

]>
, (20)

where Φ0
fp is a matrix comprising of all critical eigenvectors φfp

lp,i of a high-fidelity numeri-

cal tangential stiffness matrix Knum
T of the structure, partitioned to the degrees of freedom
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corresponding to the probes; and q is the targeted mode contribution vector. The number

of critical eigenvectors N extracted from a model may be larger than the number of inde-

pendent probes Np. Consequently, some columns in Φ0
fp may be linearly dependent. As

the effective independence method requires all columns to be independent, a redundancy-

reduction procedure is implemented to choose Np independent columns from Φ0
fp to form

Φfp

Φfp =

[
φ1
> φ2

> · · · φNp

>
]

=



φ11 φ21 · · · φNp1

φ12 φ22 · · · φNp2

...
...

. . .
...

φ1Np φ2Np · · · φNpNp


, (21)

where φi are the critical eigenvectors of Knum
T partitioned to the degrees of freedom re-

strained by the probes. Using Φfp, the Fisher information matrix Q can be formed

Q =

(
∂∆ulp

p

∂q

)>(
∂∆ulp

p

∂q

)
= Φ>fpΦfp. (22)

The determinant of Q corresponds to the effective independent index of the probe layout

scheme. The scheme with the largest effective independent index corresponds to the layout

where probes are located at, or nearest to, the apexes of the critical eigenvectors.

Currently, there is no facility implemented in the Riks solver of Abaqus to pinpoint

critical points and obtain the corresponding critical eigenvectors. Therefore, we adopted an

in-house FE code [2] to conduct numerical path-following on the shallow arch to pinpoint

all critical points (limit points) on the symmetric-deformation equilibrium path. In this

manner, the eigenvectors corresponding to all limit points of Knum
T along the equilibrium

path can be determined. Based on the critical eigenvector at the first displacement limit

point, the effective independence index for the shallow arch with different probe locations is

determined, as shown in Fig. 8. The probe location Lp/L = 1/4, which corresponds to the

apex of the first limit point eigenvector, has the greatest effective independence index.
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Figure 8: The effective independence index for the arch with different probe locations as shown
in Fig. 4b.

One drawback of the effective independence method is that it only accounts for the

incremental deformation in close proximity to the limit points; see Eq. (20). We must

also consider the factors discussed in previous sections in determining an optimal probe

layout. Moreover, the experimental tangent stiffness matrix Kpp
T should be well-conditioned

at non-critical equilibria, as any ill-conditioning leads to convergence problems. Generally

speaking, the effective independence method provides a good starting point for determining

a good probe layout. However, additional parametric studies by means of virtual testing

are essential to optimise this layout. Overall, the probe location scheme with Lp/L = 1/4

is suggested as the the best trade-off between the different requirements.

4. Tailoring the Control Algorithm to the Experimental Test Case

The virtual testing environment outlined in the previous section can provide recommen-

dations for the optimal probe layout, maximum displacement increments and perturbation

sizes. However, in practice experiments are affected by more factors than can be feasibly

simulated in a virtual testing environment, e.g. the control capability of the actuators, ma-

terial creeping, friction and slip at connections, manufacturing errors, etc. Moreover, the
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restart functionality, which works well in a numerical setting to restart the algorithm after

a failed convergence attempt, is difficult to implement in an experimental setting due to

hysteresis in the test setup. Hence, in this section, an outline of practical refinements to the

control algorithms presented previously in Section 2 are introduced, based on experimental

observations made during preliminary testing:

1. It is convenient to perturb probe points only (rather than probes and main actuation

points, as suggested by Eq. (8)) to approximate the tangential stiffness matrix Kp
T.

This allows Kpa
T to be computed from Kpa

T based on the symmetry of the tangent

stiffness matrix. This expedience reduces the time required for the experiment by

one-third.

2. The tangent stiffness matrix should be approximated using linear least-squares fitting

from the perturbation history (rather than using the initial and final perturbed states

via a finite difference approach, as suggested by Eq. (8)). This can relax the require-

ment for a small perturbation displacement (to ensure linearity), thus reducing the

relative effect of experimental noise.

3. The perturbation size is increased in proximity of limit points and a control logic is

introduced to approximate the tangential stiffness matrix accurately when there is a

kink in the perturbation curve (Rp vs up). Note that the kink occurs due to the ability

of the arch to break left-right symmetry (a bifurcated path). A small perturbation size

or approximation without a control logic would lead to an inaccurate approximation

of the tangential stiffness matrix and thus cause convergence problems.

4. Instead of setting β = 0 as in the numerical setting, an adaptive scheme for varying β

in the arc-length equation Eq. (14) is adopted to solve the convergence problem arising

from the singularity of Kpa
T and Kpp

T . Specifically, when Kpa
T is close to singular, β is

set to a large value (we adopt 100 here) and the corrector is achieved by moving the

probe points only; when Kpp
T is close to singular, β is set to zero and the corrector is
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achieved by moving the main actuation point only.

5. An upper limit on the incremental displacement at the control points is set to prevent

the control points from overshooting beyond limit points as well as prevent the arch

specimen from physically breaking.

6. The predictor displacement at the probes is determined purely from the ‘tangential’

component arising from the applied displacements at the actuation point, ua, in the

regions where the arch deviates from the actual equilibrium after perturbation due to

hysteresis and friction at connections. This effectively prevents potential convergence

problems caused by the reaction force at the probes exceeding the tolerance after the

perturbation step.

7. The predictor direction reversal at limit points is determined based on the sign change

in Kpp
T only. In the current one-probe system, the sign change in either Kpa

T or Kpp
T

leads to this sign change in direction, referring to Eq. (17). However, only the sign

change in Kpp
T corresponds to a traversal of a limit point in the actuation point dis-

placement.

A detailed exposition of these refinements can be found in Appendix B. These modifications

highlight the importance of fine-tuning the experimental path-following algorithm to specific

applications, much like numerical path-following algorithms must be fine-tuned for individual

simulations to efficiently achieve desired results.

5. Experimental Setup and Results

Having established an algorithmic framework as well as a virtual testing environment for

experimental path-following, a symmetric shallow arch is tested using one pair of coupled

probes (to enforce symmetry). Even though this is a restriction in terms of the possible

equilibria that can be observed, it does not change the qualitative nature of the equilibria

that are indeed observed; namely, both stable and unstable equilibria, as well as limit points.
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5.1. Experimental Setup

The geometric and material properties of the arch are as presented in Section 3. Test pieces

were laser cut from sheets of arcylic; the mechanical properties were found from coupon test

results [22] with a Young’s modulus and Poisson’s ratio of E = 3200 MPa and ν = 0.38,

respectively. The nominal dimensions of the specimens are L = 205 mm, h = 20 mm,

t = 1.57 mm as per Fig. 4, and depth D = 4.68 mm. The test setup is shown in Fig. 9. To

connect the probes and the supports via pinned connections, loops are incorporated during

laser cutting; see Fig. 9d and f. Arches with probe locations at Lp = L/6, L/4 and L/3

were manufactured and tested to confirm the optimal probe location (Lp = L/4) established

during virtual testing.

Two independent displacement-controlled inputs—one for the main actuation point at

the mid-span and one for the probes—are used. A purpose-built experimental setup was

used to (i) provide pinned support to the arch at its edges, (ii) control the position of the

main actuation point, and (iii) measure the main actuation point reaction force. Specifically,

an SKF CARE 33 linear actuator, a Gefran PZ34-A-250 linear transducer and a ±250 N load

cell manufactured by Applied Measurement Ltd were used for the main actuation point. The

custom frame was fixed to the base of an Instron 8872 hydraulic test machine, which was

used to control the probe positions. An Instron Dynacell ±250 N dynamic load cell was used

to measure the reaction forces at the probes, i.e. the sum of the reaction forces at the two

linked, symmetrically placed probes.

The overall change of the probe reaction force throughout the loading cycle is close to

zero (the target for equilibria is Rp = 0), making the measurement sensitive to noise and

data drift of the load cell. Based on the manufacturer’s calibration report of the load cell

and preliminary testing, a mass with a weight of 20 N was added to the load cell as dead

load. With this pre-loading, the error in the measurement is smaller than 0.01 N and the

effects of data drift are minimised.
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Figure 9: Experimental setup: (a) LabVIEW laptop and electronics in front of the Instron uni-
versial testing machine; (b) the test frame with linear transducer, actuator and load
cell attached to the base of the Instron; (c) the deformed arch specimen with central
actuation point and probes attached; (d) the pins that attach the probes to the arch;
(e) the I-shaped plates clamping the arch midpoint to enforce symmetry; (f) the end
of the arch pinned at a support block.

The probes were attached to the arch using 2 mm diameter pins through loops in the

arch, as shown in Fig. 9d. The pins were designed to be as noninvasive as possible and were

lubricated to reduce the effects of friction. The probes were mounted on a linear rail (also

lubricated) to allow movement in the horizontal direction, while enforcing the same vertical

displacement. The midpoint of the arch (the actuation point) was clamped between two

plates (an I-shaped clamp) to prevent rotation, and thus enforce symmetry. The width of

the clamp area was 5 mm and two orthogonal rectangular slots ensured that the actuation

point is strictly located at the arch mid-span. The pinned end boundary conditions were
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implemented using 2 mm diameter steel pins through built-in loops on the arch and support

blocks, as shown in Fig. 9f. Compared with the wedged ends used in previous work [22], the

effects of slip and friction are smaller for the pinned configuration used here.

LabVIEW (version 14.0) was used to measure the reaction forces and control the dis-

placements of the main actuation point and the probes. The path-following algorithm and

supporting computations were also implemented in LabVIEW, and can be found as supple-

mentary material on the data repository of the University of Bristol [34]. In the controlling

algorithm, the perturbation size to determine the experimental tangent stiffness matrix is

set to 0.5 mm and 1.2 mm on stable and unstable equilibrium branches, respectively. The

incremental displacement at the controlling points is limited to 0.2 mm whenKpa
T falls below

a tolerance of 1.0 N/mm, and limited to 0.5 mm when Kpp
T falls below the same tolerance.

The total residual reaction force tolerance at the probes for equilibrium convergence is 0.2 N

for the arch with probes at Lp = L/6 and 0.1 N for the other two cases (Lp = L/4 and

Lp = L/3). The predictor displacement at the main actuation point in the first step is

0.5 mm. The desired number of iterations for convergence of each loading step is 3 (used to

automatically control the step size using Eq. (16)).

5.2. Experimental Procedure and Results

For each arch, the experiment was performed in two stages. In the first stage, the test

was performed with displacement control at the main actuation point only (no probes), as

indicated by the black curves in Figs. 10–12a. The actuation point displacement ua was

increased until the fully inverted arch shape was obtained. Only the stable portion of the

equilibrium path, up to the first displacement limit point L1, can be traced in this manner

because at limit point L1 the arch snaps down into the inverted configuration. Following

snap-through, ua was decreased to revert the arch back into the original unloaded position.

Upon decreasing displacement, the arch snaps back into the original configuration at limit

point L2. Thus, under the midpoint, displacement-controlled loading, the arch undergoes
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Figure 10: Experimental path-following results for the arch with linked probes at Lp = L/6.
(a) Comparison of the load-displacement equilibrium plots obtained by experimental
path-following and a quasi-static Riks solver in the FEM software Abaqus. (b–e)
Comparison of the tangent stiffness matrix components along the equilibrium path
obtained from experimental testing and the virtual testing environment; (b–c) starting
from S1 and (d–e) starting from S2. Arrows denote the loading direction.

snap-through at the two displacement limit points in ua, L1 and L2. In the second stage,

the arch was loaded to a position just before the limit point (S1 and S2 in Fig. 10–12) using

displacement-controlled loading at the mid-span. The probes were then attached to the

arch, and the path-following algorithm initiated. The experiment was performed from both

starting points S1 and S2 in order to traverse both L1 (from S1) and L2 (from S2). The

path-following algorithm was manually stopped after the limit point had been traversed.

Figures 10–12 present the results from the experimental path-following tests for the

three different probe locations, Lp = L/6, L/4 and L/3, respectively. The grey dotted lines

and blue hollow squares represent the predictor-corrector solution process and all converged

equilibria, respectively. In all three arch cases, limit points in ua are successfully traversed

and the unstable path beyond the the limit point is traced. For verification, results obtained
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using the quasi-static Riks solver implemented in Abaqus are presented by dashed lines.

The experimental results generally show good correlation with the FE benchmark. The

results are encouraging given the strong sensitivity to imperfections of nonlinear systems.

The main sources of experimental error and uncertainty stem from: (i) creep/relaxation

of the acrylic material during testing; (ii) geometric irregularities introduced from the laser

cutter during manufacturing of the specimens; (iii) drifting effects in the force measurement

system; (iv) local stiffening effects of the loops introduced to attach the probes; and (v)

friction and slip at, especially, the probe connections. These effects are discussed in more

detail in Section 6.1.

Panels b–e in Figs. 10–12 show the tangent stiffness components Kpp
T and Kpa

T computed

during the experiment at each converged equilibrium. Superimposed as blue hollow squares

are the results from virtual testing. Good correlation is demonstrated throughout. This in

turn validates the predictive capability and benefit of using the virtual testing environment

as a surrogate experiment.

Figure 13 presents the deformed shapes of the tested arch and the corresponding re-

sults from the FE simulation. Arch shapes observed on the two unstable portions of the

equilibrium path (points 3 and 4) match those from the FE simulation, both in terms of

the number and position of half-waves. For probe locations at Lp = L/3, the arch shape

at point 4 was not accessible as the arch snapped through near the limit point. From the

arch deformation shapes at stable equilibria (points 1 and 2), the tested arches deform less

than the FE model due to the fact that the loops created to connect the probes act as local

stiffeners.

Overall, by comparing the equilibrium paths and tangent stiffness quantities for the

three different probe locations presented in Figs. 10–12, probe location Lp = L/4 results in

the closest correlation with the FE benchmark for the equilibrium path and with the virtual

testing results for the tangent stiffness components. This confirms the preliminary conclusion
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Figure 11: Experimental path-following results for the arch with probe locations at Lp = L/4.
Subfigures (a–e) are as described in Fig. 10.
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Figure 12: Experimental path-following results for the arch with probe location Lp = L/3. Sub-
figures (a–e) are as described in Fig. 10.
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(3) (4)

Lp/L=1/6

Lp/L=1/4

Lp/L=1/3 N/A

Lp/L=1/6
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Lp/L=1/3
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Figure 13: Arch deformation shapes from the FE model and the experimental results at points
1–4 (defined in Figs. 10–12) for different probe locations. For the case of Lp = L/3,
the arch shape at point 4 is inaccessible due to snap-through near the limit point, as
shown in Fig. 12.

reported from virtual testing and effective independence index method that Lp = L/4 can

be considered as the best probe location for controlling the arch.

Figure 14 details the measurements near limit point L2 for the arch with probes at

Lp = L/4. Generally, the magnitude of the residual probe force at converged equilibria

is smaller than the prescribed convergence tolerance Rp,tol = 0.1 N. This means that the

experimental test setup would have supported a tighter convergence tolerance. However, as

previously established through virtual testing, accurate results can nonetheless be achieved

with greater values of the convergence tolerance with the benefit of shorter experimentation

time. To conclude, we note that the experimental results correlate better with the numer-

ical benchmark equilibrium curve than the previous experimental results of the ‘step-scan’

method [22].
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Figure 14: Details of experimental path-following results near limit point L2 for the arch with
probe locations at Lp = L/4. Segments of interest are highlighted: segments (a) and
(b) are stable, while (c) and (d) are unstable segments of the equilibrium path. The
subplots on the right show detailed views of the data in each area of interest. The
middle column of subplots (a1–d1) are zoomed-in views of the equilibrium curve (ua vs
Fa space). The right column of subplots (a2–d2) show the Fp vs up data collected from
the probes. The colours on subplots (a1—d2) indicate different algorithm states: black
dots are converged equilibria, cyan dots represent the predictor-corrector process. The
dashed red lines indicate the converged equilibrium tolerance |Fp| < 0.1 N. The blue
dot and red square indicate, respectively, the first and last data point logged in the
area of interest during the testing sequence.
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(b)(a)

Figure 15: Arch geometry (a) before and (b) immediately after a test. The probe location is
Lp = L/4 and residual deformations between the probe points are clearly visible.

6. Discussion

The good correlation between experimental path-following measurements and FE simula-

tions for the three different probe locations demonstrates the general robustness of the pro-

posed path-following algorithm. In this section, different sources for discrepancies between

the experimental results and FE predictions are discussed. Next, the cause of ‘spikes’ and

large corrector increments in proximity of limit points in ua is analysed, and the sensitivity

to probe locations is evaluated. Lastly, we comment on the application of the current work

to the design of future experiments.

6.1. Sources of Experimental Error

The discrepancy between the experiments and numerical predictions is primarily attributed

to creep in the acrylic arches, which is induced by the high strains imposed along the

unstable segments of the equilibrium path, where the arch is deformed into higher-order

modes (FE simulations for Lp = L/4 show maximum strains of 2.25e-2 after traversal of the

limit point). This conclusion is supported by the fact that, after testing, the specimens did

not immediately return to their original stress-free shape upon detachment of the probes, as

shown in Fig. 15. The acrylic material was selected for convenience of manufacture, rather

than for its mechanical properties.

Additional sources of experimental error stem from geometric imperfections introduced

during the manufacturing process. The arches are cut from sheets of acrylic using a laser

cutter. The heat produced expands the acrylic sheet non-uniformly, resulting in a variable
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arch shape. Measured geometric variables were used in the FE models, but local thickness

variation or details such as local stiffening at the probe points were not captured.

A further source of experimental error is sensor drifting in the force measurement sys-

tem. The measurement range of the load cell connected to the probes is ±250 N. However,

during experimental path-following, the reaction force range at the probes is only within

approximately ±4 N. Even though the load cell was zeroed before the test and a preload

of 20 N was placed on the load cell, the force reading at the linked probes did not return

exactly to zero when the arch was detached from the probes after the test.

Finally, hysteresis due to friction and slip at the connections also contributes to discrep-

ancies between theory and experiments. The connection loops on the arch are manufactured

to be as noninvasive as possible, and lubricant was sprayed on all connections. Nonethe-

less, it was observed that the arch did not return to the original equilibrium state after

the perturbation process to compute the tangent stiffness matrix. Specifically, the reaction

forces at the probe points were not the same before and after perturbation, especially in the

proximity of the limit points in ua and up.

6.2. Predictor-Corrector ‘Spikes’ and Large Corrector Increments

The ‘spikes’ observed on the solution paths near limit points L1 in Fig. 11 and L2 in Fig. 12

are caused by an incorrect determination of the sign of Kpa
T . The monitoring functionality

presented in Appendix C is able to detect and correct this error automatically.

Beyond limit points, there is a relatively large corrector step, corresponding to the region

where Kpa
T changes sign; see Fig. 11c,e. Consider, for example, the result of the arch with

probe location at Lp = L/4 loaded from point S1 onward. Figure 16a presents a perturbation

cycle to compute Kap
T for an equilibrium state just before a large corrector increment. Due

to material hysteresis and friction at connections, the loading path (adding a perturbation)

is different from the unloading path (removing the perturbation). Figure 16b presents the

relationship between the residual reaction force at the probes Rp and the displacement at
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the main actuation point ua, during the large corrector increments. Initially, the first two

corrector increments are ineffective and the reaction force actually increases, which implies

that the computed Kpa
T is of the wrong sign. As the actuation point moves further, Rp

decreases, implying that the computed Kpa
T is now of the the correct sign. The initial

ineffective corrector and the small magnitude of Kpa
T lead to large corrector increments

(so-called ‘spikes’).

One solution to this problem is to impose a less stringent tolerance for convergence so

that convergence can be reached after the predictor step. However, a less stringent tolerance

naturally leads to less accurate results and can cause the control algorithm to converge to

a different equilibrium branch. Another solution is to force corrective iterations to be made

by moving only the probes. However, as noted in Section 4, the residual reaction forces at

the probes after perturbation cause up to deviate from the actual equilibrium. Under these

circumstances the corrector process is also inefficient due to the initial positive stiffness

in the Rp vs up relationship. In conclusion, there appears to be no ideal solution for the

problem due to the property of the structure that the configurations for the sign change of

Kpa
T and Kpp

T are very close.

6.3. Probe Location Sensitivity

The experimental results confirm the hypothesis that the probe location Lp = L/4 is most

effective for traversal of the limit points considered here. When the probes move away from

this optimal location, the variation of the tangent stiffness matrix as well as the residual

reaction force during the predictor-corrector process increases. When moving the probes

closer to the supports (Lp = L/6), the effect of friction is larger, explaining the larger probe

residual reaction force tolerance (Rp,tol = 0.2 N for Lp = L/6 and Rp,tol = 0.1 N for Lp = L/4

and Lp = L/3). Alternatively, when the probes move towards the mid-span (Lp = L/3),

they lose ‘control authority’ over the arch such that the unsupported sections snap-through

dynamically. As shown in Fig. 12a, as the arch with Lp = L/3 is loaded from point S1,
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Figure 16: (a) Reaction force at the main actuation point vs the displacement at the probes
during the perturbation process to obtain the tangent stiffness matrix. The converged
equilibrium state corresponds to a state just before a large corrector increment as
shown in Fig. 11 (probe location is Lp = L/4 and loading is from point S1 onward).
The red line represents the fitted linear curve based on least squares to approximate
Kpa

T . Stars and crosses represent the start and end of the loading process. (b) The
residual reaction force at the probes versus the displacement at the main actuation
point during the corrector increments. Triangles represent the end of each increment.
The dashed line represents the tolerance for convergence.

the path-following process fails to converge on the original equilibrium path and jumps to

another branch immediately after traversing the limit point. In this case, the last converged

equilibrium state is in the proximity of the limit point of up, corresponding to a change in

sign in Kpa
T . The limit point in up is traversed during the perturbation process and the

unrestrained portions of the arch between the probe and the supports snap-through, as

shown in Fig. 17. Once the perturbation is reversed, the arch does not return exactly to

its previous equilibrium state, even though the probes themselves return to their original

position. In other words, the probes lose control authority over the arch and additional

probes are required to stabilise the unsupported portions of the arch.
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(b)(a)

Figure 17: Arch mode shapes (a) before and (b) after snap-through during the perturbation
process to obtain the experimental tangent stiffness matrix for the arch with probe
location Lp = L/3 and loading from point S1 onward. The red box indicates where
snap-through occurs. The snap-through process corresponds to the vertical grey line
in Fig. 12a.

6.4. Implementation in Future Experiments

The control algorithms outlined in Section 2.2 provide a general methodology for experimen-

tal path-following of nonlinear structures, which is independent of the underlying structure,

the number of probing points or their specific implementation (e.g. a rotational input). The

adjustments and refinements to the algorithm, presented in Section 4, to reduce the impact

of noise and measurement uncertainty were informed by the particular test case and exper-

imental implementation described in this work. Nonetheless, the algorithm maintains the

general predictor-corrector scheme of Newton’s method, and many lessons learned will be

applicable to future experiments on different structures that exhibit limit point instabilities.

It is important to emphasise that any experimental path-following implementation will need

to be tailored to the specific application, including fine-tuning of the algorithm parameters

to handle the effects of sensor noise and uncertain boundary conditions (i.e. friction, slack).

This is analogous to selecting appropriate parameters for numerical path-following in finite

element simulations of the same structures. The details outlined herein will therefore provide

guidance for the set-up of future experiments.

7. Conclusions

We have presented a new experimental testing method for nonlinear structures that mimics

the path-following capability provided in commercial FE codes. In addition to loading the

structure via the main actuation points, additional actuators and sensors are attached at
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so-called ‘probe points’. The purpose of the probe points is to control the overall shape of

the structure and stabilise otherwise unstable equilibria [22]. Furthermore, the probes are

used to compute an experimental tangent stiffness matrix. Access to this structural quantity

enables the use of well-established algorithms based on Newton’s method to successively step

away from a known equilibrium and iteratively converge to a new equilibrium state. Using

this feedback control system, we guide the structure along an equilibrium path such that

both stable and unstable equilibria can be path-followed, and limit points in the forcing

parameter traversed. The robustness of the control algorithm has been demonstrated by

applying the experimental path-following method to a transversely loaded shallow arch.

The experimental path-following method introduces increased complexity compared to

a conventional testing set up (additional actuators, sensors and control algorithms). Virtual

testing of the experiment via a computational surrogate proved crucial to determine the

optimal testing parameters. Another advantage of the presented virtual testing environment

is that additional features, such as increasing the number of control points on the structure,

can quickly be demonstrated in principle.

The developed experimental path-following methods enhance testing capabilities of multi-

functional structures, such as shape-adaptive structures, and could lead to a certification

platform that builds confidence in the safe operation of novel nonlinear or post-buckled

structures. At the same time, experimental path-following can be used as a tool to interro-

gate, through an experimental tangent stiffness matrix, the stability of structure under test,

and thereby lead to a non-destructive testing method for imperfection-sensitive thin-walled

constructions.

In Part II of this paper, we use the virtual testing environment to demonstrate that

more complex features typical of numerical path-following techniques can be replicated in

an experimental setting based on the fundamental building block of shape control and the

computation of an experimental tangent stiffness matrix. These advanced concepts include—
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but are not limited to—pinpointing of critical points, branch switching at symmetry-breaking

bifurcations, and tracing of critical points with respect to additional parameters.

Acknowledgments

R.M.J.G. is funded by the Royal Academy of Engineering under the Research Fellowship

scheme [Grant No. RF\201718\17178]. J.S. and A.P. are funded by the UK Engineering

and Physical Sciences Research Council [Grant No. EP/M013170/1].

Data Statement

Data are available at the University of Bristol data repository, data.bris, at https://doi.

org/10.5523/bris.932lqv3akioz2jrwngdxzshfo.

42

https://doi.org/10.5523/bris.932lqv3akioz2jrwngdxzshfo
https://doi.org/10.5523/bris.932lqv3akioz2jrwngdxzshfo


Appendix A. Control Algorithm

The procedure of the predictor-corrector scheme to implement experimental path-following

is also summarised in Fig. Appendix A.1. The algorithm is followed for each load step, where

a load step is defined as the movement from a known equilibrium configuration to another

along the equilibrium manifold.

Equilibrium state
ua,up,Fa,Rp

T

Approximate experimental tangential
stiffness matrix KT using Eq.(8), and

factorise into Kpa and Kpp
T

Yes

No

Yes

No

Δλ(1, k) =-||Δλ(1, k)||2

Determine the unit tangential increment
in probe points:  δu(1, k) 

and the corrector increment arising 
from Rp: du(1, k)

p

p

First step? Δλ(1,1)=1

Determine the predictor
increment factor Δλ(1,k) 

Δu(k-1)·δu(1,k)>0

Compute the predictor 
displacement at controlling points: 

Δu(1, k)=Δλ(1, k)ûa and
Δu(1, k)=Δλ(1, k)δu(1, k)+du(1, k)

a

p p p

p p

Corrector subroutine

V8: VT Method part1--Blank

p p p p

a

p p p

Move the controlling points according to
the predictor/corrector, and 

measure the residual reaction force Rp
 at the new structural configuration

||Rp||2<Rp,Tol

Yes

Corrector subroutine

N–R method?

No

Compute KT
Yes

p

Compute the corrector displacement 
in probes arising from Rp: du(j, k)

and unit tangential increment: δu(j, k) p

Determine the corrector increment factor 
Δλ(j, k)=Δu(1, k)·du(j, k)/(Δu(1, k)·δu(j, k)+β2Δλ(1, k))

Compute the corrector displacement 
at controlling points: 

Δu(j, k)=Δλ(j, k) ûa 
and Δu(j, k)=Δλ(j, k) δu(j, k)+du(j, k)

No

Figure Appendix A.1: Procedure for experimental path-following of equilibria.
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Appendix B. Tailoring the Control Algorithm to the Experimental Test Case

Appendix B.1. Minimising Perturbations

Following Eq. (8), all control points (main actuation and probe points) are perturbed in turn

to obtain the tangent stiffness matrix components (Kp
T = [Kpp

T Kpa
T ] for the shallow arch with

one actuation point and one probe pair) via finite differences of the probe reaction forces.

The perturbation process to determineKp
T is by far the most time-consuming process during

each load step. The efficiency of the experimental procedure can be improved by nearly one

third if the process is restricted to perturbing the probe points only (rather than probes and

main actuation points). Due to the symmetry of the tangent stiffness matrix, the terms Kpa
T

and Kap
T should be identical. Hence, using the property that Kpa

T = Kap
T , we compute Kpa

T

by perturbing the probes and measuring the change in reaction force at the main actuation

point (rather than moving the main actuation point and measuring the change in reaction

force at the probes).

Preliminary testing showed that Kpa
T and Kap

T are indeed very close as long as the per-

turbation displacement remains reasonably small. Differences between the two components

only become significant when Kap
T is close to zero, corresponding to a state where up reaches

a limit point. In this case, moving the probes can suddenly change the arch’s shape during

perturbation. When most of the displacement during the corrective steps relies on moving

the actuation point, an inaccurate approximation of Kap
T slows down convergence or even

causes divergence. A subroutine to modify Kap
T in these circumstances is described in detail

in Appendix C.

Appendix B.2. Varying Perturbation Magnitude

Recalling Eq. (8), only the reaction forces at the initial and final perturbed states are needed

to approximate the tangent stiffness matrix via finite differences. In reality, a number of

difficulties arise with this simple two-point linear computation. Virtual testing on the tested

arch revealed that: (i) Kp
T obtained using the finite difference approximation based on two
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(a) (b)

Figure Appendix B.1: The deformed arch configuration (a) before and (b) after detaching the
probes on the unstable path. Note that the arch was loaded from the
inverted configuration. The left part snaps back to the initial loading
shape and the right part snaps through.

data points is sensitive to noise; and (ii) the reaction force-perturbation displacement (Rp

vs up) relationship is generally linear for all equilibria up to a perturbation size of 1.5 mm,

except for states that are in the proximity of limit points in up. Further, it was found

that ‘slack’ in the experimental setup complicates the finite difference approximation of

the experimental tangent stiffness matrix. For example, stick-slip at pinned connections,

at probe–arch and support boundaries, results in a nonlinear initial portion of the Rp vs

up response. To overcome these issues, a linear least-squares fitting approach is adopted to

approximate the tangent stiffness matrix from the perturbation history. The number of data

points used for the fitting is related with the perturbation size. Generally, at least thirty

data points are adopted. By relying on a least-squares fit, the requirement for a small

perturbation displacement (to ensure linearity) is also relaxed, reducing the relative effect

of experimental noise in determining the tangent stiffness matrix (as reaction forces at the

probes are greater).

Another practical issue in computing the tangent stiffness matrix for the present exper-

iment is a side effect of enforcing left-right symmetry of the arch, using a linked pair of

probes. Due to manufacturing and installation imperfections, the arch tested is not inher-

ently symmetric and thus has a natural inclination to break symmetry. On the unstable

equilibrium branch it was observed that when the probes are detached, one half of the arch

may snap upwards while the other snaps downwards, see Fig. Appendix B.1. This implies
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Figure Appendix B.2: The relationship between the residual reaction force and perturbation
displacement at the probes during the perturbation process to obtain
the tangent stiffness matrix on the unstable equilibrium path. Blue
and red lines represent the fitted linear curves based on least squares
to approximate Kpp

T .

that during the initial probe perturbation process one side of the probe pair perturbs the

structure first and the arch is then forced to be symmetric. As a result, the tangent of the

Rp vs up relationship can be initially positive and then change sign as the perturbation size

increases (see Fig. Appendix B.2). This is a drawback of the coupled probe scheme: the

measured probe reaction force is the summation of the two individual probe forces, but not

necessarily double the force at each probe. To better capture the behaviour of the arch, the

probes should be decoupled, which requires an additional actuator and force measurement

sensor. In addition to increased experimental complexity, this will also expand the size of

the tangential stiffness matrix and decrease the experimental efficiency.

Thus, to overcome the problem associated with the inherent asymmetry of the arch, a

relatively large perturbation size needs to be adopted when Kpp
T falls below a threshold value

(implying that the arch is nearing a limit point). Here, we increase the perturbation size

from 0.5 mm to 1.2 mm when Kpp
T < 1.0 N/mm. Furthermore, additional control logic is
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required to deal with the kink in the Rp vs up measurements highlighted in Fig. Appendix

B.2. Instead of using the whole data set from the Rp vs up curve to establish a least squares

fit of the stiffness, a portion of the data on either side of the kink is used. These two least

square fits are denoted by blue and red lines in Fig. Appendix B.2. Because there are two

possible tangent stiffness values, Kpp1
T and Kpp2

T , we establish a criterion to choose between

the two values:

if
(
u(j,k−1)p + ∆up,max

)
> u

(j,k)
p,LP or

(
u
(j,k)
p,LP − u

(j,k)
p,eq

)
/∆up < Γ

Kpp
T = Kpp2

T ,

else

Kpp
T = Kpp1

T ,

(B.1)

where u(j,k−1)p is the probe displacement of the last converged state; ∆up,max is the maximum

displacement increment for the probes; u
(j,k)
p,LP is the probe displacement corresponding to the

limit point in the Rp vs up response; ∆up is the perturbation size; and Γ is the chosen

threshold value. If Γ is small, the condition to adopt Kpp
T = Kpp2

T is more strict, which can

lead to overshooting beyond the kink. If Γ is large, the kink can be predicted prematurely.

Here, Γ = 0.4.

Appendix B.3. Varying Arc-length Equation

As described in Section 2.2, the parameter β defines the nature of how the corrector incre-

ment is applied; see Eq. (10). In a numerical path-following environment, it is generally

accepted that β = 0 is a robust choice for most problems [30]. In this case, the arc-length

equation can be simplified to

∆u(1,k)
p ·∆u(j,k)

p = 0. (B.2)

This implies that: (i) the corrector displacement vector at the probes is orthogonal to the

predictor vector at the probes; or (ii) the probe points remain stationary in the corrector

step (∆u(j,k)
p = 0) such that the corrector is achieved by moving the main actuation point
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only. Since only one independent probe is adopted here, case (ii) applies automatically as

the predictor is naturally non-zero, i.e. ∆u(1,k)p 6= 0.

Conversely, if a large value of β is chosen, then the incremental displacement factor

∆λ(j,k) is approximately equal to zero as the denominator in Eq. (19) dominates. In this

case, the main actuation point remains stationary during the corrector increments and only

the linked probes move, i.e. ∆u(j,k)a = 0 and ∆u(j,k)p = −Rp/K
pp
T . This is essentially the same

as the technique used in the simpler ‘step-scan’ method used by Neville et al. [22], where

the actuation point remains stationary and the linked probes scan up and down to find a

state that satisfies Rp = 0. However, moving all control points (main actuation and probe

points) in concert in the predictor step makes the current approach more efficient than the

step-scan method, regardless of the choice of β.

During the experiments, it was found that the positional accuracy of the actuator at-

tached to the probes was better than that of the actuator attached to the main actuation

point. It was therefore beneficial for the current test setup to rely on the probes during

corrective increments (i.e. large value of β). In the proximity of the limit point, however,

the singularity of Kpp
T implies that convergence difficulties are likely using this scheme. For

example, large movements of the probes during corrective increments in the vicinity of the

limit point can lead to snap-through of unrestrained portions of the arch. Moreover, as men-

tioned in Section Appendix B.2, the Rp vs up response during perturbation is not linear

on the unstable path due to stick-slip in connections and manufacturing asymmetry of the

arch. Corrective increments made by moving only the probes may be inefficient in this case

due to the initial positive tangent (see Fig. Appendix B.2). Hence, corrector increments

made by moving the main actuation point (small value of β) are more effective in this case.

In conclusion, due to the opposing requirements for large and small values of β, an

adaptive scheme for varying β in the constraint condition was adopted. On the stable

path, β = 100 and corrective increments rely primarily on moving the probes while the
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actuation point remains stationary. When the magnitude of Kpp
T becomes smaller than a

threshold value, (currently 1.0 N/mm), β is set to zero. Only the main actuation point is

then moved during the corrector increments while the probes remain stationary. Using this

scheme, convergence problems caused by the singularity of Kpp
T in the proximity of the limit

point are avoided and the limit point can be traversed. For other test setups with different

specifications for the main-actuation and probe-point actuator, the requirements on β may

change.

Appendix B.4. Residual Probe Reaction Force following Perturbation

In computing the predictor step, the contribution to the incremental displacement from the

residual Rp is normally assumed to be zero, because Rp needs to have fallen below a small

tolerance for convergence of the previous load step. However, due to hysteresis and friction

at connections, Rp can increase beyond the defined tolerance after the perturbation process

to compute a new tangent stiffness matrix. This contribution du(1,k)p (defined in Eq. (12))

to the incremental displacement at the probes is of the same order of magnitude as the

contribution of the tangent component ∆λ(1,k)δu(1,k)p (defined in Eq. (13)), particularly in

the proximity of limit points and on the unstable path.

As noted in Section Appendix B.3, the corrective increments close to limit points rely

on movements of the main actuation point. If Rp has shifted outside of the convergence

tolerance during the perturbation process to compute Kp
T, the resulting incorrect predictor

at the probes is so significant that it cannot be corrected during the ensuing increments. Re-

ferring to Eq. (11), when the magnitude of du(1,k)p is larger than ∆λ(1,k)δu(1,k)p but of opposite

sign, the probes move backwards to the preceding equilibrium configuration. Consequently,

iterative non-converging loops in the incremental predictor-corrector process occur. Con-

versely, when the magnitude of du(1,k)p is smaller than ∆λ(1,k)δu(1,k)p but of opposite sign, the

predictor at the probes is smaller than it should be. This leads to small incremental dis-

placements for each step. Finally, if du(1,k)p is of the same sign as ∆λ(1,k)δu(1,k)p , the predictor
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is amplified, and this can lead to snap-through in unsupported sections of the arch.

To prevent these scenarios from occurring, the contribution from the residual reaction

force at the probes after perturbation, R(1,k)
p , in the predictor increment ∆u(1,k)p is excluded,

i.e. ∆u(1,k)p = δu(1,k)p ∆λ(1,k). Thus, even though an unbalanced reaction force R(1,k)
p > Rp,tol

might exist after perturbations, its effect on the predictor is ignored and assumed to be

corrected through the subsequent increments.

Appendix B.5. Maximum Incremental Displacement

To prevent the arch specimen from physically breaking, limits on the maximum incremental

displacement at the probes and the main actuation point must be set. Furthermore, an

upper limit on the incremental displacement is essential to prevent the control points from

overshooting beyond limit points. This is because a restart functionality, which works well

in a numerical setting to restart the algorithm after a failed convergence attempt, is difficult

to implement in an experimental setting due to hysteresis in the test setup.

For the arches tested herein (with LP = L/4), limit points in the load-displacement

response of the probes and the main actuation point, which correspond to changes in sign

of Kpa
T and Kpp

T , respectively, are closely spaced; see Fig. Appendix B.3. From Eq. (11),

the predictor in the probes ∆u(1,k)
p is given by

∆u(1,k)p = −Rp +Kpa
T ûa∆λ

(1,k)

Kpp
T

. (B.3)

In the proximity of limit points, Kpp
T is close to zero, leading to a relatively large predictor

∆u(1,k)p . Overshooting in the probe displacement predictor cannot be corrected in the sub-

sequent corrector increments and this leads to dynamic snaps in uncontrolled segments of

the arch. Therefore, a fine incremental step size needs to be adopted. As the time efficiency

of the experiment is poor if the maximum incremental step size is small, a varying tolerance

scheme based on the magnitude of Kpp
T and Kpa

T is adopted. If Kpp
T is smaller than a toler-

ance, here set at 1 N/mm, a relatively small value is adopted for the maximum displacement
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limit. A relatively large value is adopted until the limit point of up is traversed, i.e. Kpa
T

changes sign.

Appendix B.6. Predictor Direction Reversal at a Limit Point

In the current one-probe system, the condition to determine the predictor direction, i.e.

Eq. (17), reduces to a product of two scalars. Thus, the direction reversal depends on the

change of sign of the tangential probe displacement, δu(1,k)p . Referring to Eq. (13), the sign

change in either Kpa
T or Kpp

T leads to this sign change in δu(1,k)p , i.e. a direction reversal

in the predictor. Specifically, a reversal in the predictor direction of the actuation point

occurs at all limit points presented in Fig. Appendix B.3. However, only the sign change

in Kpp
T corresponds to a traversal of limit points in the main control point. To solve this
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inconsistency, Eq. (17) is modified as follows

if Kpp
T ·K

pp,prev
T > 0 or ∆u(k−1)p · δu(1,k)p > 0

∆λ(1,k) = ‖∆λ(1,k)‖

else

∆λ(1,k) = −‖∆λ(1,k)‖,

(B.4)

where Kpp,prev
T is the tangent stiffness component of the preceding load step.

Appendix C. Modification of Kpa
T during Iteration Process

Before introducing the modification procedure, it is worth analysing the role of Kpa
T during

both the predictor and corrector process. We consider the cases of β = 0 and β = 100

separately.

For β = 0, if the forcing incremental factor of the predictor ∆λ(1,k) is given by Eq. (15),

then the predictor at the actuation point ∆u(1,k)a is inversely proportional to Kpa
T , i.e. an

under-estimated Kpa
T leads to a larger predictor increment at the actuation point and vice

versa. The magnitude of the probe predictor ∆u(1,k)p is not affected by the sign of Kpa
T ,

but an incorrect sign points the predictor in the wrong direction. On the other hand,

if ∆λ(1,k) is given by Eq. (16), then the predictor ∆u(1,k)a is not affected by Kpa
T , and

∆u(1,k)p is proportional to Kpa
T . For correctors, the main actuation point is moved through

∆u(j,k)a = −Rp/K
pa
T . If the approximated Kpa

T is of the wrong sign, then the corrector moves

in the wrong direction and thus the path-following process diverges. If the experimentally

approximated Kpa
T is overpredicted, then the path-following process converges at a slower

rate with monotonically decreasing Rp. If the experimentally approximated Kpa
T is under-

predicted but larger than half of the ‘actual’ Kpa
T , i.e. the real stiffness, the path-following

process converges with the magnitude of Rp decreasing monotonically but the sign of Rp

changes from increment to increment. If the approximated Kpa
T is equal to or less than half
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of the ‘actual’ Kpa
T , the path-following process does not proceed, i.e. Rp jumps between

positive and negative values in an endless loop.

For β = 100, ∆λ(1,k) is given by Eq. (16). Therefore, ∆u(1,k)a is not affected by Kpa
T .

The predictor at the probes, ∆u(1,k)p , is proportional to Kpa
T . The corrector is achieved by

moving the probes and the corresponding corrector is given by −Rp/K
pp
T . An incorrect

predictor is corrected during the corrector increments if the computed Kpp
T is of the correct

sign. Therefore, Kpa
T has no effect in such cases.

When the experimentally approximated Kpa
T is grossly over- or underpredicted, a modifi-

cation of the sign and magnitude of Kpa
T can be made to avoid divergence. From the previous

discussion it is known when Kpa
T has been inaccurately approximated as the correctors will

not move the arch closer to equilibrium; rather, the reaction forces on the probes increase.

In general, two cases where Kpa
T is incorrectly approximated are considered herein:

1. If the approximated Kpa
T is of the opposite sign of the ‘actual’ value of Kpa

T , then

the residual reaction force Rp increases monotonically as the iteration proceeds and

path-following diverges.

2. If the approximated Kpa
T is of the correct sign but its magnitude is less than half of the

‘actual’ value of Kpa
T , then the corrector is over-estimated and Rp changes sign from

step to step in an endless loop.

To counteract these two scenarios, the flowchart in Fig. Appendix C.1 describes the sub-

routine that modifies the control algorithm.
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Supplementary Material: Control parameter sensitivity
study using the virtual testing environment

J. Shen, R. M. J. Groh, M. Schenk, A. Pirrera

In this document, we present a sensitivity study on the effects of primary controlling
parameters and measurement noise on the convergence of the experimental continuation
algorithm using the same circular shallow arch in Section 3.1 of the main text.

1 Residual Reaction Force Tolerance and Maximum

Incremental Displacement Step Size

This section studies the effect of path-following parameters on the test set-up. The pa-
rameters varied are the residual reaction force tolerance Rp,tol and the maximum allowable
incremental displacement step size ∆ua,max (i.e. a limit on the maximum change in the
displacement of the main actuation point in one load step). The maximum incremental
displacement step size plays an important role in determining how many corrector iterations
are necessary for convergence. For example, when the incremental step size is sufficiently
small, the solver may not require any corrector iterations at all.

The results for different reaction force tolerance and maximum allowable incremental
step size values are presented in Fig. 1. In addition to the converged equilibria (blue
squares), the predictor-corrector iterative solutions are also displayed (grey triangles). The
solid line represents numerical results obtained using the quasi-static Riks solver in Abaqus
(no probes) and can be treated as a benchmark solution. Compared to Fig. 6d in Section
3.1 of the main text, where we chose Rp,tol = 0.1 N and ∆ua,max = 0.001 m, Fig. 1a shows
that increasing Rp,tol and ∆ua,max leads to an increase in the incremental displacement
step size while maintaining accuracy. By increasing Rp,tol further (see Fig. 1b), some
equilibrium states start to diverge from the benchmark equilibrium curve. However, this
divergence can be alleviated by decreasing ∆ua,max, as shown in Fig. 1c. Increasing Rp,tol

even further while keeping ∆ua,max fixed (see Fig. 1d), the path-following process eventually
fails to traverse the displacement limit point and the arch snaps to another equilibrium
configuration. This problem can be alleviated by decreasing ∆ua,max manually in the
proximity of the displacement limit point.

In conclusion, less stringent reaction force tolerance values can be balanced by decreas-
ing the maximum incremental displacement step size. This observation suggests that if
the force sensors on the probes have poor measurement accuracy, then the incremental
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Figure 1: The effects of the residual reaction force tolerance Rp,tol and maximum actuation
point incremental step size ∆ua,max on the path-following procedure for one probe pair
located at Lp = L/4. Grey triangles represent the predictor-corrector solution process,
while blue squares are converged equilibria. The solid line represents numerical results
obtained using the standard Riks solver in Abaqus (no probes).
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displacement step size should be reduced accordingly. There is, of course, a limit to how
small displacement increments can be, due to limitations on actuator precision and back-
lash in components. Thus, a compromise needs to be established between probe force
sensor accuracy and displacement actuator precision.

Further trade-offs concern the total duration of an experiment, achieving a balance
between the time required to compute the tangent stiffness and to execute the subsequent
predictor-corrector steps. For the modified Newton approach used herein, the tangent
stiffness matrix is only computed at the beginning of each load step, which requires Np

perturbations for Np independent probe points. When small ∆ua,max are adopted, con-
vergence is often reached within the predictor step. However, this approach may be less
efficient than having larger values of ∆ua,max, even though the latter requires several cor-
rector steps to reach convergence. In our experience, large ∆ua,max values require less time
for the experimental set-up to trace the whole equilibrium path, as fewer computations of
the tangent stiffness matrix are made. Thus, ∆ua,max should be kept as large as possible
unless convergence problems are encountered.

2 Noise and Measurement Uncertainty

In Sections 3.1 and 3.2 of the main text, experimental noise and measurement uncertainty
in the force and displacement measurements were ignored. Stochastic variations and mea-
surement uncertainties will, however, affect any experimental set-up. The virtual testing
environment enables us to explore the effects of noise and uncertainty on the experimental
setup, which can consequently be designed for robustness. For the sake of brevity, in this
section, we consider only the test case with one pair of probes located at Lp/L = 1/4.

Noise and measurement uncertainty can be modelled in the virtual testing environment
by perturbing the displacements and reaction forces using a random number generator.
One option is to incorporate noise in the following way

ureal = uideal + uerror, Rreal = Rideal + Rerror, (1)

where the subscripts •real, •ideal and •error represent, respectively: the data measured and
used in the controlling algorithm; the idealised control signals (zero-noise measurements);
and the noise or error in the data measurement system. The noise (error) is assumed to fol-
low a normal Gaussian distribution, modelled using the function numpy.random.normal
in Python.

From the sensitivity analysis on the residual tolerance values Rp,tol presented in Sec-
tion 1, we infer that the impact of noise on the reaction force measurements should be
small as increasing the tolerance in Section 1 did not have a significant effect on the con-
verged equilibria. However, noise can have significant effects on the experimental tangent
stiffness Kp

T. In the presence of noise in the force measurements, tangent stiffness terms
are approximated by finite differences as

Kp,ij
T =

(Rp,i(uj + ∆uj)−Rp,i(uj)) + Rp,err,i

∆uj

. (2)
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Figure 2: Effects of noise in the force signals and uncertainty in the enforced displacements
on the virtual testing results. Sub-figures (a) and (b) only consider noise in the
force measurement with reaction forces at the probes measured (a) only once, and
(b) 20 times with the average adopted as the ‘actual’ force in the controlling algo-
rithm. (c) Uncertainty only in the displacement enforced by actuators. (d) Noise
in the force measurement system as well as uncertainty in the displacements, where
the force reading is averaged over 20 measurements. The standard deviation in the
force and displacement measurements are obtained from (0) with values of 0.0014 N
and 0.0016 mm for the actuation point, and 0.1155 N and 0.0065 mm for the probes,
respectively.

When the noise in the reaction force measurement is of the same order of magnitude as
the changes in the measured reaction force on the probes, i.e. O(Rp,err,i) = O(Rp,i(uj +
∆uj)−Rp,i(uj)), large errors in the approximation of Kp,ij

T are to be expected.
In this section, virtual testing analyses are run with noise values based on previous

experimental work with the same equipment (0). The standard deviation in the force
and displacement measurements are taken as 0.0014 N and 0.0016 mm for the actuation
point, and 0.1155 N and 0.0065 mm for the probes, respectively. All other parameters
remain as in previous sections. Figure 2a shows results with added noise when the tangent
stiffness matrix is determined by perturbing each probe only once. Severe zig-zagging in
the equilibrium curve is observed just after the limit point because Kpp

T is close to singular.
Due to the singularity, noise has a relatively large effect on Kpp

T , making convergence
difficult. In other regions of the equilibrium curve, the algorithm converges well despite
the addition of noise.

By measuring the reaction force at each probe 20 times, i.e. for 20 nominally iden-
tical probe perturbations, and passing average tangent stiffness terms to the controlling
algorithm, the zig-zagging in the equilibrium path observed in Fig. 2a disappears. These
results are shown in Fig. 2b, where the equilibrium manifold is similar to that obtained
without noise. It is therefore recommended that multiple measurements of the probe forces
are taken and an averaged value used in the control algorithm. While this procedure will
reduce the effects of uncorrelated (white) noise, correlated (systemic) noise due to inaccura-
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cies in the measurement devices will not be remedied by this approach. Moreover, multiple
measurements decrease experimental efficiency and may introduce systematic errors due
to material creep and other hysteresis effects.

The results for uncertainties in the enforced displacements are presented in Fig. 2c.
Compared with noise in the probe force measurements (see Fig. 2a), the effect of uncertainty
in the displacement actuators on the equilibrium path is less significant (Fig. 2c). Finally,
Fig. 2d presents a combination of noise in the force readings (measuring reaction forces 20
times) and uncertainty in the enforced displacements. Converged equilibria are close to
those shown in Fig. 2b.

3 Perturbation Size and Experimental Tangent Stiff-

ness Matrix

To reduce the effect of noise on the accuracy of Kp
T, we increase the displacement pertur-

bation ∆uj so that ‖Rp,i(uj+∆uj)−Rp,i(uj)‖2 � ‖Rp,err,i‖2 (see Eq. (2)). However, a large
perturbation size can also lead to an inaccurate computation of Kp

T as finite differences—
being derived from linear approximations of derivatives—typically rely on small perturba-
tions. Therefore, a sensitivity study on the perturbation size is conducted here. Figure 3
presents the virtual testing results of Kp

T for different displacement perturbations ∆uj. All
perturbation sizes allow traversal of the first displacement limit point in the equilibrium
manifold. However, all other parameters being equal, a smaller perturbation size generally
leads to fewer corrector iterations. Due to the automatic step size incrementation rule of
Eq. (16), smaller perturbations therefore facilitate larger incremental step sizes. It should
also be noted that the results presented in Fig. 3a are identical to those in Fig. 1a, even
though the perturbation size in the latter case is ten times larger. This implies that there
exists a lower-bound threshold for the perturbation size below which Kp

T is not affected.
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the experimental tangent stiffness matrix Kp

T. Note that the tolerance for residual
reaction force, Rp,tol, and maximum incremental displacement step size at the actua-
tion point, ∆ua,max, are the same as in Fig. 1a. Noise in the displacement and force
measurement is excluded in all cases.

6


	Introduction
	Theory
	Shape Control
	Experimental Path-following Algorithm using Tangent Quantities

	Virtual Testing Environment
	Effect of Probe Locations
	Multiple Independent Probes
	Controlling Parameter Sensitivity Study
	Optimal Probe Layout: Effective Independence Index

	Tailoring the Control Algorithm to the Experimental Test Case
	Experimental Setup and Results
	Experimental Setup
	Experimental Procedure and Results

	Discussion
	Sources of Experimental Error
	Predictor-Corrector `Spikes' and Large Corrector Increments
	Probe Location Sensitivity
	Implementation in Future Experiments

	Conclusions
	Control Algorithm
	Tailoring the Control Algorithm to the Experimental Test Case
	Minimising Perturbations
	Varying Perturbation Magnitude
	Varying Arc-length Equation
	Residual Probe Reaction Force following Perturbation
	Maximum Incremental Displacement
	Predictor Direction Reversal at a Limit Point

	Modification of KTpa during Iteration Process

