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Abstract—To secure transmissions in the presence of a pas-
sive eavesdropper whose Channel State Information (CSI) is
unknown, classical Physical Layer Security (PLS) uses Artificial
Noise (AN) in order to degrade the eavesdropper’s channel. This
paper suggests an alternative way of achieving confidentiality
which is based on Base Station (BS) cooperation on the downlink
as supported in 3GPP LTE-advanced and future 5G networks.
Each BS sends a sequence to the legitimate receiver who is able
to reconstruct the information message by XoR-ing the received
sequences. As long as the eavesdropper(s) is not at the same
location as the legitimate receiver, there is a likelihood that one
of the links will not be of high quality and, as such, she will
not be able to acquire all sequences required for decoding the
message. The proposed scheme has low complexity at the receiver
and can be used in systems with finite-alphabet input, whereby
most Artificial-Noise (AN) based schemes are ineffective.

Index Terms—physical layer security, wiretap coding, base sta-
tion cooperation, quasi-static Rayleigh channel, reverse training,
maximal-ratio transmit beamforming.

I. INTRODUCTION

A. Introduction to PLS

Physical Layer Security (PLS) is a potential realisation

of Information Theoretical security which is considered the

strictest notion of security. Information Theoretical security is

not a new concept; It was introduced by Shannon in 1949

[13] and was revisited by Wyner in 1975 [14] who was the

first to see that noise and imperfections in the physical link

can be exploited in order to ‘hide’ information without the

need of keys. The main advantages of PLS is that it makes no

assumptions on the computational power of the adversary and

that its performance can be quantified precisely.

The secrecy coding that PLS uses for confidentiality is

called wiretap coding. The most popular codes for secrecy

purposes are the low-density-parity-check codes, polar codes,

and lattice codes [6]. Randomisation among multiple code-

words is the key property of wiretap coding and the main

difference from the error correcting codes that solely aim for

reliability. The randomisation is added in order to confuse the

eavesdropper, thereby achieving confidentiality. The redundant

bits that aim to confuse the eavesdropper are called the equiv-

ocation bits. Notation RE and RB refer to the equivocation
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rate and transmission rate, respectively, and they are measured

in bits per second (bps).

Let CB be the channel capacity of the legitimate channel

and let CE be the channel capacity of the wiretap channel:

the channel between the transmitter and the eavesdropper. The

difference CB − CE is known as the secrecy gap and secure

transmission via wiretap coding is possible if and only if the

secrecy gap is strictly positive. When the transmitter has per-

fect knowledge of both CB and CE < CB , a wiretap code is

determined by the doublet (RB , RE) such that RB ≤ CB and

RE > CE . The difference RS := RB−RE defines the secrecy

rate and expresses how many bits can be sent both reliably

and securely per second. The maximum achievable secrecy

rate, denoted by CS , is equal to CS := max(0, CB − CE).
For many years after Wyner’s paper [14], the security com-

munity doubted the practicality of PLS due to the restrictive

requirement of a strictly positive secrecy gap [11] and the

industry had little or no interest in PLS. In the last decade, PLS

regained attention. Advancements in wireless technologies

such as the employment of multiple-antenna systems can be

used in a way that the secrecy gap is increased. The quality of

the legitimate channel can be increased by exploiting spatial

diversities and mutliplexing gains, whereas the generation of

artificial noise can degrade the eavesdropper’s channel without

effecting the legitimate receiver to the same degree.

The use of artificial noise was introduced by Goel and Negi

in 2005 [10] and many AN-based schemes followed since.

Most AN-based schemes are often based on the assumption of

Gaussian-input signalling and they are not effective in current

transmission schemes such as phase shift keying and quadra-

ture amplitude modulation. Some works on AN generation

that consider finite inputs exist but they require knowledge

of the eavesdropper’s CSI. A detailed overview on AN-based

schemes that examines theoretical and practical limitations can

be found in [3].

B. Inspiration and Our Approach

The scheme aims to provide a positive secrecy gap by

degrading the eavesdropper’s channel without the use of AN

and therefore be applicable in communication systems with

discrete-alphabet inputs. We show that the employment of

multiple BSs along with an encoding scheme: secret splitting



can significantly increase the probability of a positive secrecy

gap and allow secure transmissions.

The main idea of the scheme, secret splitting (also known

as secret sharing), has its origins in network coding whereby

the confidential message is split into M ‘splits’ and are sent to

the legitimate receiver through different paths. In Capar’s work

[1], [2], a large network of trusted relay nodes is considered

and the splits (or shares) travel through parallel paths after ap-

propriate relaying in a multi-hop networks. Loosely speaking,

by parallel paths it is meant that the transmission links do not

cross at any other location but only at the legitimate receiver.

As such, the eavesdropper(s) will not acquire all ‘splits’ and

will fail to decode the message.

Motivated by recent advancements in distributed massive-

MIMO and BS corporation, the work examines secret splitting

under links created solely in the physical layer. In contrast

to secret splitting in network coding, we do not examine

the choice of paths/routes for which secrecy is guaranteed.

Communications happen in a one-hop manner, the number

of BSs is fixed as well as their location. As such, the paths

may not be parallel in the sense that the secret splits may

travel via beams that overlap. Lastly, our analysis revolves

around a single realisation of the fading channel coefficients,

and as such it takes no advantage of the fading properties of

the channel [5].

C. Organisation

Section II defines and explains secret splitting and secrecy

gap under secret splitting. In Section III, the probability of a

positive secrecy gap is derived and analysed under a specific

channel setting and transmission scheme. A comparison be-

tween conventional wiretap coding and secret splitting follows

in Section IV and numerical results are presented. The paper

concludes with a discussion and future directions in Section

V.

D. Notation

Throughout this paper, bold capital letters denote matrices

and bold lower case letters denote vectors. The all zero/unit

matrix of size N ×N is denoted by 0N /IN . Notation i ∈ [M ]
means that variable i is an element of the set {1, 2, . . . ,M}. To

indicate that x/x is a standard complex random variable/vector,

we write x ∼ CN (0, 1) / x ∼ CN (0, I). Expression x ∼
Γ(k, θ) indicates that random variable x follows the Gamma

distribution with shape parameter k and scale parameter θ.

The upper upper/lower incomplete gamma function is denoted

by Γinc(·, ·)/γinc(·, ·). The argument of a complex number is

denoted by | · |, whereas || · || is used for the Frobenius norm.

Lastly, function H(·) is Shannon’s entropy, I(·; ·) is the mutual

information of two variables, and all logarithmic functions are

to base two.

II. SECRECY GAP UNDER SECRET SPLITTING

A. Secret Splitting

Let w denote the confidential binary message of length k
that Alice wishes to send to Bob in the presence of an eaves-

dropper, Eve. Alice is able to control M base stations, namely

A1, A2, . . . , AM . Alternatively, Ai can also be considered to

be a relay node with which Alice can communicate through a

secure network.

The transmitter generates M−1 uniform independent binary

sequences of length k, namely, w1, . . . ,wM−1. An M th

sequence is generated as

wM =

M−1
⊕

i=1

wi ⊕w. (1)

We call {wi, i ∈ [M ]} the secret splits of w. Secret split

wi is sent to Bob through base station Ai. After collecting

all M secret splits, Bob XoRs the sequences and attains

the confidential message. Indeed, it is evident from (1) that
⊕M

i=1 wi = w.

Note that the confidential message w may not have a

uniform distribution, e.g. it may correspond to an English word

or to a user’s predictable password. However, when random

sequence
⊕M−1

i=1 wi is XoRed to w, the resulting split, wM ,

is also random and independent of w. Secret splitting can also

be thought as a one-time pad encryption [13] with
⊕M−1

i=1 wi

being the secret key and wM being the codeword.

Theorem 1. As long as the eavesdropper attains less than M
secret splits, she gains no information about the confidential

message w:

I(w;Ws) = 0 for all Ws ⊂ {wi, i ∈ [M ]}. (2)

In Information Theoretical terms, when Eq. (2) is satisfied,

strong secrecy is achieved which guarantees zero information

leakage regardless the length, k, of the message. That is, it

only takes one weak link between the eavesdropper and a base

station in order to achieve confidentiality.

B. Secrecy Gap

With appropriate wiretap coding, secret split wi can be

securely transmitted as long as CBi
− CEi

> 0. As Th. 1

implies, the secure transmission of one secret split is sufficient

for securing message w. Thus, for secrecy purposes, it is

required that CBi
− CEi

> 0 for some i ∈ [M ]. The latter

is equivalent to requiring maxi∈[M ](CBi
− CEi

) > 0 which

motivates the following definition.

Definition 1. The secrecy gap under secret splitting is defined

as

SGsplit := max
i∈[M ]

(CBi
− CEi

) (3)

When the secrecy gap SGsplit is positive with probability

equal to one or zero, secure communication is possible, or not

possible, respectively. When the channels are not deterministic

but random processes, quantity P (SGsplit > 0) can take any

value in the interval [0, 1]. The next section studies the prob-

ability of a positive secrecy gap under Quasi-Static Rayleigh

channel and transmit beamforming.



III. SECRECY GAP IN QUASI-STATIC RAYLEIGH

CHANNELS

A. Channel Model

In our channel model, the legitimate receiver is a single-

antenna device, whereas the adversary and transmitter may

have multiple antennas. We denote by NE and NA the number

of antennas at Eve and Ai, respectively. The base stations have

the same number of antennas (NA) for simplicity.

Vector hi = (h
(i)
1 , . . . h

(i)
NA

) ∈ C1×NA , i ∈ [M ] comprises

the channel coefficients h
(i)
j of the channel between the jth

antenna of Ai and Bob. The matrix Gi = (g
(i)
1 , . . . ,g

(i)
NA

) ∈
CNE×NA indicates the channel between Eve and base station

Ai. Column g
(i)
j is the channel vector between base station

Ai and the jth antenna at Eve. All channels are assumed to be

reciprocal, i.e., communication takes place in a time-division-

duplex manner.

Bob’s and Eve’s channels are independent and drawn from

a Rayleigh distribution:

hi ∼ CN (0NA
, σ2

Bi
INA

) and g
(i)
j ∼ CN (0NE

, σ2
Ei
INE

),
(4)

for all i ∈ [M ] and j ∈ [NE ].
When base station Ai transmits x ∈ C

NA×1, the received

signal at Bob and Eve are given by

y = hix+ n
(i)
B and z = Gix+ n

(i)
E , (5)

respectively. Variables n
(i)
B and n

(i)
E denote additive white

Gaussian noise of zero mean and unit variance/covariance-

matrix that vary independently for different i ∈ [M ] and from

the transmission of one symbol to the other:

n
(i)
B ∼ CN (0, 1) and n

(i)
E ∼ CN (0NE

, INE
). (6)

B. Transmission scheme

1) Wiretap Coding and modulation: With Bob being a

single-antenna node, the base stations transmit the secret splits

successively. Before transmission, reliability and equivocation

bits may be added to each one of the secret splits resulting

in longer binary words. Modulation such as QAM or PSK

modulation maps the binary words to a sequence of signals

ready for transmission through the medium.

For example, after wiretap coding, secret split w1 is trans-

mitted as s1 = (s1, . . . , sn) ∈ C
1×n for some n ∈ N. Note

that the length n may differ at other BSs depending on the

wiretap coding and modulation scheme used. Without loss for

generality, the signal power is normalised to one: E(|sj |
2) = 1.

2) Transmit beamforming: Transmit beamforming is pre-

ferred for secrecy purposes since it avoids CSI leakage at the

eavesdropper [7]–[9]. Being unaware of her own channel, the

eavesdropper is unable to increase her decoding capabilities,

e.g. by performing receive-beamforming. No CSI of the wire-

tap channel is available at Alice, either. For example, this is

the case when the eavesdropper is passive and remains silent.

Under this scenario, the best transmit beamforming strategy

for secrecy purposes is Maximal-Ratio-Transmit (MRT) beam-

forming [4, Corr. 2]; With MRT the signal is sent towards the

channel direction of the legitimate receiver and, as such, his

SNR is maximised.

With the channel remaining static throughout the transmis-

sion of a secret split, the MRT beamforming vector hH
1 /||h1||

is applied to every symbol of si = (s1, . . . , sn). To avoid a

complicated notation, we drop the subscript at the symbols.

When Ai transmits

x =
hH
i

||hi||
s, (7)

substitution in (5) shows that the received signals at Bob and

Eve are

yi = ||hi||s+ n
(i)
B and (8)

zi =
Gih

H
i

||hi||
s+ n

(i)
E , (9)

respectively.

C. Probability of positive secrecy gap

Given the unit variance receiver-noise and the normalised

to unit power signal, the average SNRs for sequence si at the

two receivers are given by

γBi
= ||hi||

2 and γEi
= ||Gih

H
i ||2/||hi||

2 (10)

Theorem 2. Distribution of SNR at two receivers

1) Variable γBi
follows the Gamma distribution with shape

parameter NA and scale parameter σ2
Bi

:

γBi
∼ Γ(NA, σ

2
Bi
). (11)

2) Variable γEi
is independent of γBi and follows the

gamma distribution with shape parameter NEi
and scale

parameter σ2
Ei

:

γEi
∼ Γ(NE , σ

2
Ei
). (12)

3) The expected values of γBi and γEi
are

¯γBi := NAσ
2
Bi

and ¯γEi
= NEσ

2
Ei. (13)

Observe that Bob’s average SNR is a linear function of NA

whilst Eve’s average SNR is a linear function of NE . Only

Bob benefits from an increase in the number of antennas at

Alice.

Theorem 3. The probability of positive secrecy gap under

secret splitting is

P (SGsplit > 0) = 1−
M
∏

i=1

P (γEi
≥ γBi

) . (14)

Theorem 4. The probability of positive secrecy gap under

secret splitting, MRT, and independent Rayleigh channels is

equal to:

P (SGsplit > 0) =

1−
M
∏

i=1

∫

∞

0

γBi

NA−1 exp

(

−γBi

σ2

Bi

)

∑NE−1
k=1

1
k!

(

γBi

σ2

Ei

)k

σBi

2NA(NA − 1)!
dγBi

(15)



(a) M = 1, NA = 1, NE = 2 (b) M = 3, NA = 1, NE = 2

Fig. 1: The red colour indicates areas at which a 2-antenna

adversary node has a better signal than Bob with high proba-

bility. The blue colour indicates the opposite.

Note that the integration in Eq. (4) is with respect to γBi.

As such, the probability of P (SGsplit > 0) is a function of the

channel statistics, σ2
Bi and σ2

Ei, and the number of antennas,

NA and NE .

Corollary 4.1. When Eve is a single antenna node (NE = 1),

Eq. (15) can be expressed as

P (SGsplit > 0) = 1−
M
∏

i=1

(

1 +
σ2
Bi

σ2
Ei

)−NA

. (16)

From a user’s location point of view, by invoking the

relationship between average signal power and distance [12],

the channel statistics can be expressed as

σ2
Bi = k/d(Ai, B)α and σ2

Ei = k/d(Ai, E)α, (17)

for some k ∈ R, where d(Ai, B)/d(Ai, E) is the distance

between Ai and Bob/Eve and α is the path-loss exponent. For

example, Eq. (16) is equivalent to

P (SGsplit > 0) = 1−
M
∏

i=1

(

1 +

(

d(Ai, E)

d(Ai, B)

)α)−NA

. (18)

Although the probability of a positive secrecy gap is a

function of the path-loss exponent α, the differences in the

graphs for different values of α ∈ [3, 5] were hardly noticeable.

All numerical results of this paper consider the case when

α = 4 only.

In Figure 1a the red area indicates the locations at which

the eavesdropper has an advantage over Bob. i.e., locations

at which the probability of a positive gap is low. When

three single-antenna BSs (or relay nodes) are employed, the

likelihood that Eve attains a better signal than Bob is decreased

dramatically (Fig. 1b).

D. Asymptotic behaviour

It is evident from Th. 3 that the probability of positive

secrecy gap is an increasing function of the number of base-

stations, M ; If Eve is equipped with a finite number of

antennas then it is a strictly increasing function. In the latter

(a) Probability of positive SGsplit as an increasing function
of NA.

(b) Probability of non-positive SGsplit as an increasing
function of NA.

Fig. 2: Probability of positive/negative SGsplit against NA/NE

when two BSs are employed (M = 2) and Eve is at the middle

between Bob and A1. Solid lines/scattered plots are derived

theoretically/empirically.

case, when M becomes asymptotically large, the secrecy gap

under secret splitting is positive with probability one:

lim
M→∞

P (SGsplit > 0) = 1. (19)

On the other hand, for a fixed number BSs, M , secure

communication is not possible when NE → ∞. Indeed, with

an asymptotically large number of antennas available at Eve

only, she always experiences a better SNR than Bob. Since

P (γEi
≥ γB) = 1 for all i ∈ [M ], it follows that

lim
NE→∞

P (SGsplit ≤ 0) = 1. (20)

Consider the metrics P (SGsplit > 0) and P (SGsplit ≤ 0),
i.e., the probability of Bob being successful and Eve successful

in terms of achieving a better signal, respectively. For the

setting as illustrated in Fig. 2a whereby two base stations are

deployed, the probability of Bob being successful converges

much faster than the probability of Eve being successful.

Indeed, even when the adversary is equipped with NE = 8
antennas, ten antennas at each BS is sufficient to provide

a positive secrecy gap with probability approximate to one

(0.9999). On the other hand, when NA = 8, the eavesdropper



needs at least forty antennas for a 50% chance to get a better

signal than the legitimate receiver (Fig. 2b).

Lastly, for the case when NA → ∞, it is evident from

Eq. (11) and (12) that the employment of an infinite number

of antennas NA increases Bob’s SNR asymptotically. As

such, for a fixed number of antennas at Eve, we have that

P (γEi
≥ γBi) = 0 for all i ∈ [M ] which results in a certain

positive secrecy gap:

lim
NA→∞

P (SG > 0) = 1. (21)

The above equation implies that the employment of a single

base station and conventional wiretap coding are sufficient to

secure the communication from Alice to Bob when NA is

asymptotically large.

IV. BASE STATION ALLOCATION AND NUMERICAL

RESULTS

A. Secret Splitting Vs Conventional Wiretap Coding

With the probability of positive secrecy gap being an

increasing function of both NA and M , the question arising

is whether giving Alice more antennas is more beneficial

than employing more BSs for secrecy purposes or vice versa.

Besides, when taking into account the transmission rate, a

small M is preferred given that Bob is a single antenna device

and receives the secret splits successively. Two strategies are

considered:

Strg 1: Alice employs M > 1 base stations each equipped

with K antennas. (M > 1 & NA = K).

Strg 2: Alice employs one base station with MK antennas.

(M = 1 & NA = MK).

The first strategy is referred to as the M -secret splitting

strategy, whereas the trivial case (M = 1) is the case of

conventional wiretap coding. The total number of antennas

is MK for both cases to facilitate comparison. Whether the

first strategy outperforms the second in terms of providing

a positive secrecy gap depends on the channel statistics of

the two receivers. It can be shown that conventional wiretap

coding outperforms secret splitting when the eavesdropper

channel or location is known at Alice.

When the wiretap CSI is known at Alice, M -secret splitting

is unnecessary: Alice can simply transmit with the BS that

maximises the ratio γBi
/γEi

> 1. Even when only the location

of the eavesdropper is known, the trivial case whereby Alice

transmits with the BS minimises the ratio of the distances

d(Ai, B)/d(Ai, E) maximises the probability of a positive

secrecy gap. However, in a practical scenario the location of a

passive eavesdropper is unknown. It will be shown, that in the

case of a passive eavesdropper, M -secret splitting is a better

strategy in terms of secrecy.

With no information on the eavesdropper’s location, E,

the comparison between the two strategies will be made by

evaluating the average performance, P0, over a set of possible

locations for Eve, E :

P0 := E[P (SGsplit > 0|E ∈ E)]. (22)

(a) (b)

Fig. 3: The average performance:

P0 = E[P (SGsplit > 0|E ∈ E)] against the angle difference of

the two BSs |θA1
− θA2

| (3b). The set of possible locations

for Eve is E = C(B, 1.5ρA1
) (3a).

The set of possible locations, E , is taken to be either the

interior of a square or the interior of a circle:

• E = C(B, ρE): the interior of the circle of radius ρE and

centre B, i.e., Bob’s location, or

• E = S(B, ρE): the interior of some square of base 2ρE
and centre B.

Due to the infinite cardinality of the sets and the complexity

of the formulae, the evaluation of the performance P0 will be

derived empirically by sampling the eavesdropper’s location

in E uniformly. Note that in this paper Eve and Bob lie on

the same plane. The simulation methods have been validated

a priori by considering discrete sets of small cardinality for

which the theoretical results matched the empirical ones.

The BS allocation plays a critical role in the performance.

The following theorem considers the extreme case when all

BSs are placed at the same location.

Theorem 5. When the secret splits are sent from the same

location, conventional wiretap coding and secret splitting

perform the same in terms of increasing P0.

Remark 5.1. Theorem 5 justifies the reason for employing

multiple BSs rather than grouping the antennas within a single

BS; Splitting a message between groups of antennas at a

single BS is equivalent in performance to conventional wiretap

coding, so this scheme uses spatially separated BSs.

With Bob being at the origin, B(0, 0), of a polar coordi-

nate system, let Ai be placed at Ai(ρAi
, θAi

). As Fig. 3b

demonstrates, the average performance under 2-secret splitting

increases as the difference of the angles of the two base

stations approaches π. The angle difference of |θA2
−θA1

| = π
will be referred to as the optimal angle-difference. Observe

that a near-optimal angle-difference (e.g., π ± π/4) achieves

performances near to the maximum. This is an encouraging

result for real-life communication systems when considering

that the angle difference will most likely differ from the

optimal.



The performance of conventional wiretap coding can also

be extracted from the graph in Fig. 3b; According to Th.

5, one simply needs to look at the corresponding value of

|θA1
− θA2

| = 0 for the case when ρA1
= 1, ρA2

= 1. For

example, when E = C(0, 1.5) and NE = 1 Strategy 1 achieves

a positive secrecy gap with probability P0 = 0.73. As for the

second strategy, even when A2 is placed at double the distance

from Bob than A1 (ρA2
= 2), the probability, P0, increases

remarkably (up to 27%).

Table I lists five examples for a set of different parameters.

The average performance has been evaluated over the circle

C(B, 1.5ρA1
). For the case when M = 2, the second base

station is placed at distance ρA2
= ρA1

= 1 from Bob

as illustrated in Fig. 3a. Column ‘optimal’ lists the average

performance, P0, when the BSs are placed diametrically

opposed to Bob (|θA2
−θA1

| = π). The average performance is

also recorded for the case when the angle-difference differs far

from the optimal: |θA1
− θA2

| = 2π/3. For all cases, Strategy

1 is the best strategy in terms of providing a positive secrecy

gap.

TABLE I:

Average Performance P0 = P (SGsplit > 0|E ∈ E) under

Strategy 1 and Strategy 2. Bob is at the origin B(0, 0) and

the set of possible locations for Eve is the circle C(B, 1.5).
Two cases are considered in Strategy 1: (a) the two BSs are at

A1(1, 0) and A2(1, π) forming an ‘optimal’ angle with Bob

(b) the two BSs are at A1(1, 0) and A2(1, 3π/4) forming a

‘non-optimal’ angle.

Strategy 1: Strategy 2:

2 BSs with K antennas each 1 BS with
P0 optimal non-optimal 2K antennas

K = 2, NE = 1 0.981 0.992 0.815

K = 3, NE = 1 0.999 0.995 0.846

K = 32, NE = 1 1.00 1.00 0.950

K = 2, NE = 64 0.098 0.097 0.084

K = 32,NE = 64 0.950 0.894 0.595

Observe that even when Eve is a single-antenna node,

beamforming with 2K = 64 antennas at one BS does not

guarantee a positive secrecy gap (P0 = .95). On the other

hand, distributing the antennas in two BSs (case K = 32,

NE = 1) results in a positive secrecy gap with probability one.

Simulations suggest that when the eavesdropper is a single-

antenna node, two BSs with just three antennas each can

almost certainly provide the legitimate pair with a positive

secrecy gap (case K = 2, NE = 1). Lastly, both strategies

perform poorly when the adversary has a much bigger number

of antennas than Alice (case K = 2, NE = 64).

B. M = 2 Vs M > 2

It has been shown that security can significantly be en-

hanced by distributing the antennas at two base stations when

there is no knowledge of the wiretap channel. This section

examines the case of multiple BSs (M ≥ 2) and compares

non-trivial secret-splitting strategies when the total number of

antennas is fixed for the two cases. I.e., having established

Fig. 4: Average performance:

P0 = E[P (SGsplit > 0|E ∈ E)] against the number of BSs (M)

when the total number of antennas is fixed to
∑

NA = 64.

The set of the eavesdropper’s possible locations is the square

S(B, 1.5) and for every M , the BSs are placed optimally at

distance one from Bob.

Fig. 5: A closer look at the data of Fig. 4 for the cases where

M ≤ 3 BSs are employed. The performance, P0, is plotted

against the number of antennas at the eavesdropper.

that under an appropriate base station allocation secret splitting

outperforms conventional wiretap coding for secrecy, we now

examine what is the optimal number of BSs. For example,

Alice is concerned whether three BSs with two antennas each

perform better than two BSs with three antennas each. The

multiple BSs are placed in a way such that they form a regular

polygon with Bob being at the centre:

Ai is placed at (1, 2π(i− 1)/M). (23)

For example, when M = 3, the BSs form an equilateral

triangle. Assuming that the BSs can have a minimum distance

of one from Bob, the above BS allocation is the optimal in

terms of increasing the probability P0. Indeed, by separating

the BSs as far as possible form each other whilst the distance

between each of them and Bob is kept the minimum, there is

always one BS for which Bob is closer to than Eve. As such,

the probability of Eve ‘missing’ a secret split is maximised.

As seen in Figure 4, when the total number of antennas is

fixed, the performance is maximised for M = 2 and degrades

gradually with M > 2. In particular, the more antennas

employed at Eve, the faster the performance of P0 degrades

with M > 2. Therefore, if there exist two BSs that are placed

diametrically opposed to Bob, transmitting two splits with two



Fig. 6: The curved lines indicate the performance P0 against

the optimal and sub-optimal angle-difference between two

BSs. The vertical lines correspond to the case when M = 3 are

placed optimally. The highlighted segments indicate the angle-

differences for which 2 BSs outperform the employment of 3

BSs.

3-antenna BSs is a better strategy than transmitting three splits

with three 2-antenna BSs.

Extracting the data from Fig. 4, for M ≤ 3, Fig. 5

is plotted. Since the difference in the performance of the

cases M = 2 and M = 3 is very small, transmitting with

three splits may be more beneficial if the two BSs are not

placed optimally. Simulations suggest that M = 2 is the

optimal number of BSs as long as the angle-difference doesn’t

differ more than π/5 from the optimal angle-difference (π).

The simulations were run for a different set of parameters:
∑

NA = 6, 12, 60, 120 and NE ∈ [10
∑

NA]. Figure 6 is

an example of the performance for the two cases M = 2
Vs M = 3 when

∑

NA = 6. The curved lines indicate the

performance of the case M = 2 against the angle-difference

whilst the vertical lines indicate the maximum performance

for the case M = 3. In most cases, the case M = 2 performs

better even when 3π/4 < |θA2
− θA1

| < 5π/4.

V. CONCLUSION

In Section II the secret splitting scheme has been explained.

The definitions displayed are generic and can be applied in

any channel model. Section III has examined our scheme for

the case of Rayleigh channels and transmit beamforming. The

formulae derived allowed a theoretical analysis and facilitated

the numerical results in the following section. Section IV has

also demonstrated the importance of base station allocation

and has made comparisons between our scheme and conven-

tional wiretap coding in terms of increasing the probability

of secrecy gap. It has been shown that under a constraint

of the total number of antennas:
∑

NA ≤ K, it is more

beneficial to distribute K antennas among a small number of

BSs with two being the optimal number of BSs as long as the

legitimate receiver is in between the two BSs. For example,

when the legitimate receiver moves along streets or railways,

the proposed scheme could find a good fit.

It has been shown that secret splitting can significantly

decrease the areas at which the eavesdropper has an advan-

tage over the intended receiver. However, a relatively small

secrecy gap may result in impractically long codewords and

transmission rates that do not meet the Quality-of-Service

requirements. In future work, rates for wiretap coding under

secret splitting can be fixed. In scenarios where a target

equivocation rate is not met, the information leakage towards

the eavesdropper should be quantified. Moreover, the case

of a multiple-antenna receiver is also an interesting case;

Allowing Bob to receive the secret splits simultaneously will

significantly increase the transmission rate whilst benefiting

from the security enhancement of secret splitting.
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