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(capacity-constrained) lexicographic choice rule. We
provide a characterization of lexicographic choice
rules and a characterization of deferred acceptance
mechanisms that operate based on a lexicographic
choice structure under variable capacity constraints.
We discuss some implications for the Boston school
choice system and show that our analysis can be
helpful in applications to select among plausible
choice rules.

1 | INTRODUCTION

Many real-life resource allocation problems involve the allocation of an object that is available
in a limited number of identical copies, called the capacity of the object. Choice rules, which are
systematic ways of rationing available copies of an object when demand exceeds the capacity,
are essential in the analysis of such problems. A well-known example is the school choice
problem in which each school has a certain number of seats to be allocated among students.
Although student preferences are elicited from the students, endowing each school with a
choice rule is an essential part of the design process.

Which choice rule to use is not always evident. The school choice literature, starting with
the seminal study by Abdulkadiroglu and Sonmez (2003), has widely focused on problems
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where each school is already endowed with a priority ordering over students and chooses the
highest priority students up to the capacity. Such a choice rule, which is merely responsive to a
given priority ordering, is called a responsive choice rule.' However, when there are additional
concerns such as achieving a diverse student body or affirmative action, which choice rule to
use is nontrivial. For example, in the Boston school choice system, although each school is still
endowed with a priority ordering over students and respecting student priorities is still a
concern, schools would like to promote the neighborhood students as well by sometimes letting
them override the priorities of students who are not from the neighborhood. Such an objective
can obviously not be achieved with a responsive choice rule.

The affirmative action policies that are in use in several school districts” reveal that a natural
way to achieve diversity is to allow students’ priorities to vary across a school's seats, and to let
the school choose students in a lexicographic fashion based on a predetermined ordering of the
seats. We call these rules (capacity-constrained) lexicographic choice rules.” To be more precise, a
lexicographic choice rule specifies an ordering of the seats and assigns a priority ordering to
each seat, which can be interpreted as the criterion based on which that particular seat will be
assigned. At each choice set, the highest priority student according to the priority ordering at
the first seat is chosen, then the highest priority ordering among the remaining students ac-
cording to the priority ordering at the second seat is chosen, and so on until the last seat is
assigned or no student is left. Although some properties of lexicographic choice rules have
already been studied in the literature, which set of properties distinguish lexicographic choice
rules from other plausible choice rules has so far not been studied.” In this study, we follow the
axiomatic approach and discover general principles (axioms) that characterize lexicographic
choice rules under variable capacity constraints.’

In our baseline model, we consider a single decision maker who has a capacity constraint,
such as a school with a limited number of seats. The decision maker encounters choice pro-
blems which consist of a choice set (a set of alternatives, such as students who demand a seat at
the school) and a capacity. A choice rule, at each possible choice problem, chooses some
alternatives from the choice set without exceeding the capacity. Note that across different
choice problems, we allow capacity to vary, since in applications capacity may vary and the
choice rule may need to be responsive to changes in capacity.” One example is when
the number of available seats at a school may change from year to year. In fact, even during the
same admissions year, a school may face two different choice problems with different capa-
cities. In most of the existing school choice systems, such as New York City and Boston, there is

'In Appendix D, we discuss responsive choice rules.

*To achieve a diverse student body, many school districts have been implementing affirmative action policies, such as in
Boston, Chicago, and Jefferson County.

*These choice rules are simply called lexicographic choice rules in the recent market design literature. We introduce
these choice rules using the capacity-constrained lexicographic choice terminology to differentiate them from other
lexicographic choice rules without capacity constraints which have been studied in the choice theory literature.
Although we omit the “capacity-constrained” part for simplicity in most part of the paper, we include it in the
statements of our results.

“Although lexicographic choice rules are used to achieve diversity in school choice, there are other plausible choice
rules that are also used, or can be used, to achieve diversity or affirmative action. Among others, Echenique and
Yenmez (2015) and Ehlers et al. (2014) study some of those choice rules.

SEchenique and Yenmez (2015) also follow an axiomatic approach and characterize several choice rules for a school
that wants to achieve diversity.

“There are earlier studies in the literature which also formulate choice rules by allowing capacity to vary. See, among
others, Dogan and Klaus (2018), Ehlers and Klaus (2014), and Ehlers and Klaus (2016).
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a second stage of admissions including those students and school seats that are unassigned at
the end of the first stage.’

We consider the following three properties of choice rules that have already been studied in
the axiomatic literature.

Capacity-filling:® An alternative is rejected from a choice set at a capacity only if the capacity
is full;

Gross substitutes: If an alternative is chosen from a choice set at a capacity, then it is also
chosen from any subset of the choice set that contains the alternative, at the same capacity.

Monotonicity: If an alternative is chosen from a choice set at a capacity, then it is also chosen
from the same choice set at any higher capacity.

We introduce a new property called the irrelevance of accepted alternatives. The irrelevance of
accepted alternatives requires that, if the set of rejected alternatives is the same for two choice
sets at the same capacity, then at any higher capacity, the set of accepted alternatives that were
formerly rejected should be the same for the two choice sets. In other words, in case of an
increase in the capacity, the irrelevance of accepted alternatives requires that the new alternatives
that will be chosen (if any) should not depend on the already accepted alternatives. In
Theorem 1, we show that a choice rule satisfies capacity-filling, gross substitutes, monotonicity,
and the irrelevance of accepted alternatives if and only if it is lexicographic: there exists a list of
priority orderings over potential alternatives such that at each choice problem, the set of chosen
alternatives is obtainable by choosing, first, the highest ranked alternative according to the first
priority ordering, then choosing the highest ranked alternative among the remaining alter-
natives according to the second priority ordering, and proceeding similarly until the capacity is
full or no alternative is left.

Besides providing a first axiomatic foundation for lexicographic choice rules under variable
capacity constraints, we also analyze the market design implications of lexicographic choice
rules. In Section 4, we consider the variable-capacity object allocation model where there is
more than one object (such as many schools) and agents have preferences over objects (such as
students having preferences over schools). In that model, Ehlers and Klaus (2016) characterize
deferred acceptance mechanisms where each object has a choice rule that satisfies capacity-
filling, gross substitutes, and monotonicity.” Motivated by the irrelevance of accepted alternatives
for choice rules, we introduce a new property for allocation mechanisms, called the irrelevance
of satisfied demand. Consider an arbitrary problem and the allocation chosen by the mechanism
at that problem. Suppose that the capacity of an object is increased. Now, some of the agents
who prefer that object to their assignments at the initial allocation may receive the object due to
the capacity increase. The irrelevance of satisfied demand requires that the set of agents who
receive the object due to the capacity increase does not depend on the set of agents who initially
receive the object. We show that there is no mechanism which satisfies the irrelevance of
satisfied demand together with some other desirable properties studied in Ehlers and Klaus
(2016, Proposition 2). In particular, lexicographic deferred acceptance mechanisms, which are
deferred acceptance mechanisms that operate based on a lexicographic choice structure, violate

"The new school choice system in Chicago also has two stages of admissions. See Dogan and Yenmez (2019) for an
analysis of the new system in Chicago.

8In the matching literature, capacity-filling is also referred to as acceptance, although the capacity-filling terminology has
been increasingly popular in the recent literature.

Kojima and Manea (2010) consider a setup where the capacity of each school is fixed, and characterize deferred
acceptance mechanisms where each school has a choice rule that satisfies capacity-filling and gross substitutes.
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the irrelevance of satisfied demand, which stands in contrast to lexicographic choice rules sa-
tisfying the irrelevance of accepted alternatives. However, we show that a weaker version of the
irrelevance of satisfied demand—which requires the same at any problem where there is only
one available object—characterizes lexicographic deferred acceptance mechanisms together
with the desirable properties studied in Ehlers and Klaus (2016, Proposition 3).

Boston school district is one of the school districts that uses capacity-constrained lexico-
graphic choice to achieve a diverse student body and implement affirmative action policies.
Boston school district aims to give priority to neighborhood applicants for half of each school's
seats. To achieve this goal, the Boston school district has been using a deferred acceptance
mechanism based on a choice structure, where each school is endowed with a “capacity-wise
lexicographic” choice rule, that is, at each capacity, the choice rule lexicographically operates
based on a list containing as many priority orderings as the capacity, yet the lists for different
capacity levels do not have to be related in any way.'’ Dur et al. (2013, 2018) analyse how the
order of the priority orderings in the choice rule of a school may cause additional bias for or
against the neighborhood students.'’ In Section 5, we consider a class of capacity-wise lex-
icographic choice rules discussed in Dur et al. (2013) that are relevant for the design of the
Boston school choice system and show that our analysis enables us to single out one rule from
four plausible candidates.

The paper is organized as follows. In Section 2, we review the related literature. In Section 3,
we introduce and characterize lexicographic choice rules, show that our baseline model and our
baseline properties can be extended to a setup with feasibility constraints, and also provide a
characterization of responsive choice rules. In Section 4, we highlight an implication of our
choice theoretical analysis for the resource allocation framework: we provide a characterization
of deferred acceptance mechanisms that operate based on a lexicographic choice structure. In
Section 5, we discuss some implications for the Boston school choice system. In Section 6, we
conclude by discussing the main features of our analysis.

2 | RELATED LITERATURE

Several studies investigate choice rules that satisfy path independence (Plott, 1973), which
requires that if the choice set is “split up” into smaller sets, and if the choices from the smaller
sets are collected and a choice is made from the collection, the final result should be the same as
the choice from the original choice set. Since capacity-filling together with gross substitutes
imply path independence,'” lexicographic choice rules are examples of path-independent choice
rules. Aizerman and Malishevski (1981) show that for each path-independent choice rule, there
exists a list of priority orderings such that the choice from each choice set is the union of the
highest priority alternatives in the priority orderings.'” Among others, Plott (1973), Moulin
(1985), and Johnson and Dean (2001) study the structure of path-independent choice rules.

19Gee Dur et al. (2018), for a detailed discussion of Boston's school choice mechanism.

Hpur et al. (2013) is an earlier version of Dur et al. (2018).

2This is also noted in Remark 1 of Dogan and Klaus (2018), and it follows from Lemma 1 of Ehlers and Klaus (2016)
together with Corollary 2 of Aizerman and Malishevski (1981).

*In the words of Aizerman and Malishevski (1981), each path-independent choice rule is generated by some
mechanism of collected extremal choice. In Dogan et al. (2020), we call this representation a maximizer-collecting
representation and provide a smallest size maximizer-collecting representation result for path-independent choice rules.
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Path-independent choice rules guarantee the existence of stable matchings in the matching
context.'* Chambers and Yenmez (2017) study path independence in the matching context and
its connection to stable matchings.

Although the structure of path-independent choice rules have been extensively studied, the
structure of lexicographic choice rules and what properties distinguish them from other path-
independent choice rules have not been well-understood. Houy and Tadenuma (2009) consider two
classes of choice rules which are both based on “lexicographic procedures,” yet different than the
ones we consider here. Similar to our setup, choice rules that they consider operate based on a list of
binary relations."” Yet, their model does not include capacity constraints and the lexicographic
procedures that operationalize the lists are different. The only study that considers lexicographic
choice rules from an axiomatic perspective is Chambers and Yenmez (20182). They show that
lexicographic choice rules satisfy capacity-filling and path independence, and they also show that
there are path-independent choice rules that are not lexicographic, but they do not provide a
characterization of lexicographic choice rules. Moreover, Chambers and Yenmez (2018a) do not
have variable capacity constraints.

Our analysis of the Boston school choice system is related to Dur et al. (2018) and the working
paper version Dur et al. (2013). Dur et al. (2013) compare alternative choice rules for schools in the
Boston school district (one of which is the one used in the Boston school district) in terms of how
much they are biased for or against the neighborhood students. We consider these alternative choice
rules from a different perspective. In Section 5, we show that, although these choice rules are all based
on a “lexicographic procedure” at each capacity, only one of them satisfies all the characterizing
properties in Theorem 1, and therefore only one of them is actually a (capacity-constrained) lexico-
graphic choice rule. The common feature of Dur et al. (2018) and our Section 5 is that we both
consider lexicographic choice procedures in the context of school choice in Boston. The main dif-
ference is that, although the choice rules that Dur et al. (2018) consider have direct counterparts in a
variable capacity context, their analysis pertains to the fixed capacity case. In particular, given a fixed
school capacity, Dur et al. (2018) analyze how different lexicographic choice procedures perform. On
the other hand, variable capacities, and properties related to variable capacities, are at the heart of our
study. We show that, one of our variable capacity properties, the irrelevance of accepted alternatives, is
satisfied by only one of the four choice rules discussed in Dur et al. (2013).

Kominers and Sonmez (2016) study lexicographic deferred acceptance mechanisms in a
more general matching with contracts framework (Hatfield & Milgrom, 2005). In some appli-
cations, the choice rule of an institution is subject to a feasibility constraint, in the sense that
some alternatives cannot be chosen together with some other alternatives. The matching with
contracts model due to Hatfield and Milgrom (2005) introduced a general framework that
incorporates such feasibility constraints into the matching problem. Although for the school
choice application, where such feasibility constraints are not binding, the lexicographic choice
rules in Kominers and Sonmez (2016) fall into our baseline model, in case of binding feasibility
constraints, their lexicographic choice rules are not covered in our baseline analysis.'® In
Appendix E, we show that our baseline model and our baseline properties can be extended to a

14Stability is a central fairness requirement in school choice. Hatfield and Milgrom (2005) show that gross substitutability
of choice rules guarantees the existence of a stable matching in a general model of matching with contracts. In addition
to stability, other fairness notions in the context of school choice have been studied as well (see, e.g., Ozek, 2017).
*Houy and Tadenuma (2009) do not start with any assumptions on the list of binary relations. They separately discuss
under which assumptions on the list of binary relations, the resulting choice rules satisfy certain properties.

For instance, the lexicographic choice rules in their setup may violate “substitutability,” which is a generalization of
gross substitutes to the matching with contracts setup (Hatfield & Milgrom, 2005).
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setup with feasibility constraints, highlighting the distinguishing properties of capacity-
constrained lexicographic choice rules, including the ones discussed in Kominers and Sénmez
(2016), in a more general setup.

3 | CAPACITY-CONSTRAINED LEXICOGRAPHIC CHOICE

Let A be a nonempty finite set of n alternatives and let A denote the set of all nonempty subsets
of A. A (capacity-constrained) choice problem is a pair (S, q) € A X {1, ..., n} of a choice set S
and a capacity q. A (capacity-constrained) choice rule C: A X {1, ..., n} - A associates with
each problem (S, q) € A X {1, ..., n}, a set of choices C(S, q) C S such that|C(S, q)I < q. Given
a choice rule C, we denote the set of rejected alternatives at a problem (S, q)
by R(S, q) = S\C(S, q).

A priority ordering > is a complete, transitive, and antisymmetric binary relation over A. A
priority profile T = (>4, ..., >,) is an ordered list of n priority orderings. Let IT denote the set of all
priority profiles.

A choice rule C is (capacity-constrained) lexicographic for a priority profile (>1, ..., >,) € II if for
each (S, q) € A x {1, ..., n}, C(S, q) is obtained by choosing the highest >;-priority alternative in S,
then choosing the highest >,-priority alternative among the remaining alternatives, and so on until
q alternatives are chosen or no alternative is left. A choice rule is (capacity-constrained) lexico-
graphic if there exists a priority profile for which the choice rule is lexicographic.

Remark 1. Note that, if a choice rule is lexicographic for a priority profile
7 = (>, ..., >), then it is lexicographic for any other priority profile that is obtained
from 7 by replacing >, with an arbitrary priority ordering. In that sense, the last priority
ordering is redundant.

We consider four properties of choice rules. The following three properties are already
known in the literature.

Capacity-filling: An alternative is rejected from a choice set at a capacity only if the capacity
is full. Formally, for each (S, q) € A x {1, ..., n},

IC (S, ¢)l = min{lSI, g}.
Gross substitutes:'” If an alternative is chosen from a choice set at a capacity, then it is also
chosen from any subset of the choice set that contains the alternative, at the same capacity.
Formally, for each (S, q) € A X {1, ..., n} and each pair a, b € S such that a # b,

if a € C(S,q), then a e C(S\{b},q).

Monotonicity: If an alternative is chosen from a choice set at a capacity, then it is also chosen from
the same choice set at any higher capacity. Formally, for each (S, q) € A x {1, ..., n — 1},

Y Gross substitutes was first introduced in the choice literature by Chernoff (1954). It has been studied in the choice
literature under different names such as Chernoff’s axiom, Sen's &, or contraction consistency. In the matching literature,
it was first studied and referred to as gross substitutes in Kelso and Crawford (1982) (substitutability is also a commonly
used name in the matching literature). We follow the terminology of Kelso and Crawford (1982).
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C(S,q) CC(S,q+1).

We now introduce a new property called the irrelevance of accepted alternatives. Consider a
problem and the set of rejected alternatives for that problem. Suppose that the capacity in-
creases. The property requires that which alternatives among the currently rejected alternatives
will be chosen (if any) should not depend on the currently accepted alternatives. In other words,
if the set of rejected alternatives are the same for two choice sets (note that the set of accepted
alternatives may be different), then at any higher capacity, the set of initially rejected alter-
natives that become accepted should be the same for the two choice sets.

Irrelevance of accepted alternatives: For each S, S’ € A and each q € {1, ...,n — 1},

if R(S,q) =R(S",q), then C(S,q+1)NR(S,q)=C(S,q+1)NR(ES, Q).

Additionally, one can interpret IAA as a “no complementarities” condition, in the sense that
IAA requires the new alternative to be chosen due to the capacity increase be independent of
the alternatives that have already been chosen. For example, if two alternatives are comple-
ments, then the choice of each one of these alternatives may depend on whether the other one
has already been chosen or not. IAA rules out this type of choice behavior.

We also introduce another property called capacity-wise weak axiom of revealed preference
which will be helpful in our analysis. In particular, we use this property as a stepping stone in
proving Theorem 1. Consider the following capacity-wise revealed preference relation. An
alternative a € A is revealed to be preferred to an alternative b € A at a capacity g > 1 if there is
a problem with capacity g — 1 for which a and b are both rejected and a is chosen over b when
the capacity is q. That is, a is revealed to be preferred to b at q if there exists S € A such that
a,bg C(S,q—1),a e C(S,q), and b € R(S, q). Capacity-wise weak axiom of revealed pre-
ference requires, for each capacity, the revealed preference relation to be asymmetric.

Capacity-wise weak axiom of revealed preference (CWARP): For each capacity ¢ > 1 and each
paira, b € A, if a is revealed to be preferred to b at g, then b is not revealed to be preferred to a
atq.

CWARP is a counterpart of the well-known weak axiom of revealed preference (WARP) in the
standard revealed preference framework (Samuelson, 1938), where there is no capacity para-
meter. In the standard framework, an alternative is said to be revealed preferred to another
alternative if there is a choice set at which the former alternative is chosen over the latter.
WARP requires the revealed preference relation to be asymmetric, which in a sense requires
consistency of the choice behavior in responding to changes in the choice set. In our frame-
work, the preference is revealed not only through the choice at a choice set, but also through a
change in the capacity. Therefore, what should be the counterpart of the “revealed preference
relation” is not entirely clear. We propose the following definition. An alternative is revealed to
be preferred to another at a capacity if there is a choice set in which the former alternative is
chosen over the latter at that capacity, although if the capacity were one less, none of the
alternatives would have been chosen. Put differently, if none of the two alternatives are chosen
in a choice set at a given capacity, but one of them is chosen when capacity increases by one,
this means the chosen alternative is revealed to be preferred to the unchosen one. CWARP
requires the revealed preference relation to be asymmetric. Hence, CWARP requires consistency
of the choice behavior in responding to changes in the choice set together with changes in the
capacity.
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Lemma 1. If a choice rule satisfies capacity-filling, monotonicity, and CWARP, then it
also satisfies the irrelevance of accepted alternatives.

Proof. Let C be a choice rule. Suppose that C satisfies capacity-filling and
monotonicity, but violates the irrelevance of accepted alternatives. By violation
of the irrelevance of accepted alternatives, there are S,S' € A and q € {1, ...,n — 1}
such that R(S, q) = R(S’,q), but C(S,q+ 1) N R(S,q) # C(S’,qg + 1) nR(S’,q). By
monotonicity, R(S,q + 1) C R(S,q) and R(S’,q + 1) C R(S’, q). By capacity-filling,
IR(S,q + 1)l = IR(S’, g + 1)I. Then, there exist a,b € R(S,q) = R(S’,q) such that
aeC(S,q+1),b&g C(S,q+1),beC(S’',q+1), and a ¢ C(S’,q + 1). But then, a
is revealed preferred to b and vice versa, implying that C violates CWARP. O

In Appendix A, we show that each of the three properties capacity-filling, monotonicity, and
CWARRP is necessary for the implication in Lemma 1, that is, we provide examples of choice
rules which violate exactly one of the three properties and also violate the irrelevance of accepted
alternatives.

The following example shows that there exists a choice rule that satisfies capacity-filling,
monotonicity, and the irrelevance of accepted alternatives, but violates CWARP.

Example 1. Let A ={a, b,c,d,e}. Let > and >’ be defined as a>b>c>d>e and
a>'c>'b>"'d>"e. Let the choice rule C be defined as follows. For each problem (S, q), if
d € S, then C(S, q) chooses the highest >-priority alternatives from S until q alternatives
are chosen or no alternative is left;'® if d & S, then C (S, q) chooses the highest >'-priority
alternatives from S until g alternatives are chosen or no alternative is left. Note
that C clearly satisfies capacity-filling and monotonicity. To see that C also satisfies
the irrelevance of accepted alternatives, let S,S’ € A and q € {1,...,n — 1} be such
that R(S,q) =R(S',q). If deSnS or deA\(SUS’), then C(S,q+1)n
R(S,q)=C(S’,q +1)nR(S’,q). So suppose, without loss of generality, that
d € S\S'. Since R(S, q) = R(S’, ), we have d € C(S, g). But then, either R(S,q) = &
or R(S, q) = {e}. In either case, we have C(S,q + 1) N R(S,q) = C(S’,q + 1) N R(S’, q).
To see that C violates CWARP, note that C({a, b, c,d}, 1) = {a} and C({a, b, ¢, d}, 2) =
{a, b}, implying that b is revealed preferred to ¢ at g = 2. Also, C({a, b, c, e}, 1) = {a} and
C({a, b, c, e}, 2) = {a, c}, implying that c is revealed preferred to b at g = 2.

Theorem 1. A choice rule is (capacity-constrained) lexicographic if and only if it satisfies
capacity-filling, gross substitutes, monotonicity, and the irrelevance of accepted
alternatives."”

Proof. Let C be lexicographic for (>, ..., >,) € II. Clearly, C satisfies capacity-filling and
monotonicity, and it is already known from the literature that C satisfies gross substitutes
(Chambers & Yenmez, 2018a). To see that it satisfies CWARP, let a,b € A and
q € {2, ..., n} be such that a is revealed preferred to b at q. Then, there is S € A such that
a,beR(S,q—1),a € C(S,q), and b € R(S, q). But then, a >b. If also b is revealed

8That is, C (S, q) coincides with the choice rule that is “responsive” for >. We discuss responsive choice rules in
Section D.

“Independence of the characterizing properties is shown in Appendix B.
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preferred to a at g, then by similar arguments we have b >, a, contradicting that >; is
antisymmetric. Thus, the revealed preference relation is asymmetric and C satisfies
CWARP. By Lemma 1, C also satisfies the irrelevance of accepted alternatives.

Let C be a choice rule satisfying capacity-filling, gross substitutes, monotonicity, and the
irrelevance of accepted alternatives. We first construct a priority profile (>, ..., >,) € I
and then show that C is lexicographic for that priority profile. For each i, j € {1, ..., n}, let
a; denote the jth ranked alternative in >; (for instance, a; is the highest >;-priority
alternative).

To construct >, first set {a;;} =C(A,1). For each je{2,..,n}, set
{a} = CA\{a11, ..., a;j-1}, 1). To construct >, consider C(A,2). By capacity-
filling, 1C(A,2)l =2. Since aj;; € C(A,1), by monotonicity, a; € C(A,2). Set
{1} = C(A, 2)\{ann}. For each j € 1{2,..,n — 1}, set {ay} = C(A\{az, az, ..., Baj—1)}, 2)\ {a1}.
Set ay;, = ap;.

The rest of the priority profile is constructed recursively as follows. For each
i €{3,..,n}, first set {an} = C(A,i)\{an, a1, ..., ag-1)1} (Note that by monotonicity,
{a1, a1, .y a1} € C(A,i) and by capacity-filling, |C(A,i)l =i). For each
JEL2, .un—i+1}, set {a;} = C(A\{an, ap, ..., a;g-n}, D) \{a, @z, ..., ag-1)1}. Note
that there are i — 1 rankings yet to be set in >;, which are {a;—i+2), ..., @in}. For each
jE€{n—i+2,..,n} seta; = agri—p—1)1 (Which assigns the alternatives ay, ..., a1y to
the rankings a;(,—i+2), ---» Qin, respectively).

Now, let (S, q) € A x {1, ..., n}. Let b; denote the highest >;-priority alternative in S, b,
denote the highest >,-priority alternative among the remaining alternatives, and so on up
t0 bminfisi,q- We show that C(S, q) = {by, ..., bmin{|s|,¢}- If min{ISI, g} = IS|, then by
capacity-filling, C (S, q) = {by, ..., bs|}. Suppose that S| > gq.

The rest of the proof is by induction: we first show that b; € C(S, q); then, for an
arbitrary i € {2, ..., q}, assuming that by, ..., b;_; € C(S, q), we show that b; € C (S, q). Let
b; = ay; for some j € {1, ..., n}. By the construction of >, b; € C(A\{ay, ..., a1j-p}, D).
Then, by gross substitutes and monotonicity, b; € C (S, q).

Leti € {2, ..., q}. Assuming that by, ..., b;_; € C(S, q), we show thatb; € C(S, q). Let S’
be the choice set obtained from S by replacing b; with a;; (note that nothing changes if
b, = a11), replacing b, with a,y, .., and replacing b;_; with ag_y);. That is,
S" = (S\{by, ..., bi_1}) U {ay, ..., ag—1)1}. Let " = i — 1. Note that {by, ..., b;_1} = C(S, q'),
because otherwise, by capacity-filling, there is a € S such that a € C(S,q’) and
a & C(S,q), which is a violation of monotonicity. Also, by the construction of the
priority profile and by gross substitutes, {aj,...,ag-1)1} = C(S’,q’). Note that
R(S,q’) = R(S’, q’). By monotonicity and the irrelevance of accepted alternatives, we
have R(S, g) = R(S’, q). Since b; € C(S’, q) by the construction of the priority profile and
by gross substitutes, we also have b; € C (S, q). O

Corollary 1. A choice rule is (capacity-constrained) lexicographic if and only if it satisfies
capacity-filling, gross substitutes, monotonicity, and CWARP.

Proof. A lexicographic choice rule satisfies capacity-filling, gross substitutes, and
monotonicity by Theorem 1. Also note that in the proof Theorem 1, we showed that a
lexicographic choice rule satisfies CWARP as well. To see the other direction, note that by
Lemma 1, capacity-filling, monotonicity, and CWARP imply the irrelevance of accepted
alternatives and the rest follows by Theorem 1. O
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There is never a unique priority profile for which a given choice rule is lexicographic.
However, if C is lexicographic for two different priority profiles (>, ..., >,) and (>1, ..., >,), then
for each pair of alternatives a, b € A, if a>; b and b>";a for some t € {1, ..., n}, then a or b must
be chosen from any choice set (particularly from A) at any capacity g < ¢. That is, a or b is
chosen irrespective of their relative ranking at the tth priority ordering.

To state this observation formally, for each priority ordering >; on A and for each choice set
S € A, let |5 stand for the restriction of > to S. Let Ay = A, and for each t € {2, ..., n}, let
A; = A\C(A, t — 1). For each choice set S € A and each priority ordering >;, let max(S, >;) be
the top-ranked alternative in S according to >;.

Proposition 1. If a choice rule C is (capacity-constrained) lexicographic for a priority
profile (>1, ..., >,), then C is lexicographic for another priority profile (>, ..., >,) if and only
if =1 = >1 and for each t € {1, ..., n}, >|4, = >|a,

Proof. (If part) Let choice rule C be lexicographic for a priority profile (>, ..., >).
Suppose (>1, ..., >,) is such that >; = >] and for each ¢t € {1, ..., n}, >4, = >i|4,- Now, for
each S € A and t € {1, ..., n}, if t = 1, then since >; = >{, the conclusion is immediate.
Then, by proceeding inductively, for each 1 < ¢t < ISl, since C is lexicographic for
=15 oos >0), Max(S\C(S, t — 1), >;) = C(S, )\C(S, t — 1). Since S\C(S,t—1) C A; and
>tla, = >4, we get max(S\C(S, t — 1), >) = C(S, )\C(S, t — 1). It follows that C is
lexicographic for (>, ..., >"y).

(Only if part) For each t € {1, ..., n}, let A; stand for the collection of all nonempty
subsets of A; with at least ¢ elements. Then, define the choice function ¢; : A; — A; such
that for each choice set S € A;, ¢, (S) = C(S,)\C(S,t—1). Since C satisfies gross
substitutes, c; also satisfies gross substitutes. It follows that there is a unique priority
ordering > such that ¢;(S) = max{S\C(S, t — 1), >}. Therefore, if C is lexicographic for
some (>, ..., ), then for each t € {1, ..., n}, >4, = > O

4 | LEXICOGRAPHIC DEFERRED ACCEPTANCE
MECHANISMS

Let N denote a finite set of agents, IN| = n > 2. Let A be the collection of all nonempty subsets
of N. Let O denote a finite set of objects. Each agent i € N has a complete, transitive, and
antisymmetric preference relation R; over O U {7}, where @ is the null object representing the
option of receiving no object (or receiving an outside option). Given x,y € O U {@},x R; y
means that either x = y or x # y and agent i prefers x to y. If agent i prefers x to y, we write
x P, y. Let R denote the set of all preference relations over O U {@}, and RV the set of all
preference profiles R = (R;)ien such that for alli € N, R; € R.

An allocation problem with capacity constraints, or simply a problem, consists of a pre-
ference profile R € RN and a capacity profile g = (q,)xeouiz; such that for each object
x€0,q,€10,1,..,n}and gy = n so that the null object has enough capacity to accommodate
all agents. Let P denote the set of all problems. Given a problem (R, q) € P, an object x is
available at the problem if g, > 0.

Given a capacity profile g = (q,)xeouiz}, an allocation assigns to each agent exactly one
object in O U {@} taking capacity constraints into account. Formally, an allocation at q is a list
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a = (a;)ien such that for each i € N, a; € O U {@} and no object x € O U {@} is assigned to
more than g, agents. Let M (q) denote the set of all allocations at q.

Given an allocation a = (a;);en, a preference profile R, and an object x € O U {@}, let
Dy(a,R) = {i € N: xPa;} denote the demand for x at (a, R), which is the set of agents who
prefer x to their assigned object.

A mechanism is a function ¢: P — (J;M(q) such that for each allocation problem
(R, q) € P, p(R, q) € M(q). For mechanisms, we introduce the following property, which we
call the irrelevance of satisfied demand. Consider an arbitrary problem and the allocation chosen
by the mechanism at that problem. Suppose that the capacity of an object is increased. Now,
some of the agents who prefer that object to their assignments at the initial allocation may
receive the object due to the capacity increase. The irrelevance of satisfied demand requires that
the set of agents who receive the object due to the capacity increase does not depend on the set
of agents who initially receive the object. In other words, for two problems with the same
capacity, if the demands for an object are the same (note that the set of agents who receive the
object at those problems may be different), then whenever the capacity of the object increases,
the sets of agents who receive the object due to the capacity increase should be the same for the
two problems.

Formally, for each x € O, let 1, be the capacity profile which has 1 unit of x and nothing
else. A mechanism ¢ satisfies the irrelevance of satisfied demand if for each pair of problems
(R,q) and (R’,q) and each object xe€ O, if D,(¢(R,q),R)=Di(p(R,q),R),
then Dy (9(R, ¢ + 1,), R) = Dx(¢ (R, ¢ + 1), R).

A (capacity-constrained) lexicographic choice structure C = (Cy)xeco associates each object
x € O with a lexicographic choice rule Cy: A X {1, ..., n} » A. Next, we present the (capacity-
constrained) lexicographic deferred acceptance algorithm based on C. For each problem
(R, q) € P, the algorithm runs as follows:

Step 1: Each agent applies to his favorite object in O. Each object x € O such that g, > 0
temporarily accepts the applicants in C,(Sy, q,), where Sy is the set of agents who applied to
x, and rejects all the other applicants. Each object x € C such that g, = 0 rejects all
applicants.

Step 2: Each applicant who was rejected at step r — 1 applies to his next favorite object in O.
For each object x € O, let S, be the set consisting of the agents who applied to x at step r
and the agents who were temporarily accepted by x at Step r — 1. Each object x € O such
that g, > 0 accepts the applicants in C, (S, q,) and rejects all the other applicants. Each
object x € O such that g, = 0 rejects all applicants.

The algorithm terminates when each agent is accepted by an object. The allocation where each
agent is assigned the object that he was accepted by at the end of the algorithm is called the
C-lexicographic Deferred Acceptance allocation at (R, q), denoted by DA (R, q).

Lexicographic deferred acceptance mechanisms: A mechanism ¢ is a lexicographic deferred
acceptance mechanism if there exists a lexicographic choice structure C such that for
each (R, q) € P, (R, q) = DA°(R, q).

Ehlers and Klaus (2016), in their Theorem 3, characterize deferred acceptance mechanisms
based on a choice structure satisfying capacity-filling, gross substitutes, and monotonicity, with
the following properties of mechanisms: unavailable-type-invariance (if the positions of the
unavailable types are shuffled at a profile, then the allocation should not change); weak non-
wastefulness (no agent receives the null object while he prefers an object, i.e., not exhausted to
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the null object),”” resource-monotonicity (increasing the capacities of some objects does not
hurt any agent), truncation-invariance (if an agent truncates his preference relation in such a
way that his allotment remains acceptable under the truncated preference relation, then the
allocation should not change), and strategy-proofness (no agent can benefit by misreporting his
preferences). Next, we formally introduce these properties and state Theorem 3 of Ehlers and
Klaus (2016).

Unavailable-type-invariance: Let (R, q) € P and R’ € RN. If for each i € N and each pair of
available objects x,y € O (q,>0,q,>0) we have [xR;y if and only if xR;'y],
then (R, @) = ¢ (R, ).

Weak nonwastefulness: For each (R, q) € P, each x € O such thatq, > 0, and eachi € N, if
x P, ¢;(R,q) and ¢,(R, q) = @, then |{j € N : goj(R, q =x}l =gq,.

Resource-monotonicity: For each R € RN, and each pair of capacity profiles (g, q'), if for each
x € 0,q, < q,, then for eachi € N, (R, q') R; ¢,(R, q).

Truncation-invariance: Let (R,q) € P and R’ € RN. If for each i € N and each pair of
objects x,y € O we have [xR;y if and only if xR/y] and ¢,(R, ¢)R/ @, then ¢(R, q) = ¢(R', q).

Strategy-proofness: For each (R, q) € P, each i € N, and each R’ € R, ¢,(R, @) Ri #,((Ri', R_), @).

Theorem 3. of Ehlers and Klaus (2016): A mechanism is a deferred acceptance
mechanism based on a choice structure satisfying capacity-filling, gross substitutes, and
monotonicity if and only if it satisfies unavailable-type-invariance, weak nonwastefulness,
resource-monotonicity, truncation-invariance, and strategy-proofness.

The following impossibility result shows that the irrelevance of satisfied demand is too
strong: there is no mechanism which satisfies it together with the above desirable properties.

Proposition 2. Suppose that there are at least three objects, |0l > 3. There is no
mechanism which satisfies unavailable-type-invariance, weak nonwastefulness, resource-
monotonicity, truncation-invariance, strategy-proofness, and the irrelevance of satisfied
demand.

Proof. Suppose that there exists such a mechanism, say ¢, which satisfies all the
properties in the statement except for the irrelevance of satisfied demand. We will show
that it must violate the irrelevance of satisfied demand. By Theorem 3 of Ehlers and Klaus
(2016), ¢ is a deferred acceptance mechanism based on a choice structure C = (Cy)xeo
which satisfies capacity-filling, gross substitutes, and monotonicity.

Leti,j € N be two distinct agents. We first claim that there exist two distinct objects
a,b € O such thati € C,({i,j}, 1) n Cy({i,j}, 1) and j & C,({i,j}, 1) U Cp({i, ]}, 1). That
is, when there is only one unit of a or b, i is chosen but j is not from {i, j}. To see this, let
X,y,Z € O be three distinct objects. By capacity-filling, either {i} = C.({i,j},1) or
{i} = Cx({i,j}, 1). Without loss of generality, suppose that {i} = C,({i,j}, 1). Again by
capacity-filling, either {i} = C,({i,j}, 1) or {j} = C,({i,j}, 1). If {i} = C,({i, j}, 1), then we
are done. Otherwise, by capacity-filling, either {i} = C,({i,j}, 1) or {j} = C,({i,j}, 1), and
in either case, we are done.

20The stronger version of this property, namely nonwastefulness, requires that no agent prefers an object that is not
exhausted to his assigned object. Note that capacity-filling and nonwastefulness are similar in spirit, yet, capacity-filling
is a property of a choice rule while nonwastefulness is a property of a mechanism.
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So, suppose that there exist two distinct objects a,b € O such that
ieC,{i,j1, ) nGC({i,j},1) and j¢& C,({i,j},1) U Cp({i,j},1). Let the preference
profiles R and R’ be such that every agent other than i and j find any object
unacceptable and R;, R, R/, and R]f are as depicted below.

Let g be such that g, = 1and g, = 0 for any x € O\{b}. Let ¢’ be such thatq, = g, =1
and g, = 0 for any x € O\{a, b}. Since ¢ is a deferred acceptance mechanism based on
C = (Co)xeos Da(®(R, @), R) = Do(9(R', q), R') = {i,j}. However, D,(¢(R,q'),R) =@
and D,(p(R’,q’),R’) ={j}, implying that ¢ violates the irrelevance of satisfied
demand. O

A careful inspection of the proof of Proposition 2 reveals that the failure of the irrelevance of
satisfied demand is essentially due to the following reason: when the capacity of a particular
object, say object a, increases, and an agent who used to demand it before but was assigned to
another object, say b, is now assigned to a, some other agent who used to demand a may now be
assigned to b which became available (and which he used to demand before as well). In this
case, violation of the the irrelevance of satisfied demand is not due to an inconsistency of the
mechanism or the underlying choice rules, but rather due to a reallocation.

To shut down this reallocation channel, we consider the following weakening of the irre-
levance of satisfied demand which requires that at any problem where there is only one available
object, the set of agents who receive the object due to a capacity increase does not depend on the
set of agents who initially receive the object.

Formally, a mechanism ¢ satisfies the weak irrelevance of satisfied demand if for
any pair of problems (R,q) and (R’,q) and each object x € O such that for each
y € O\{x}, g, = 0, Dx(¢(R, @), R) = D:(¢(R’, @), R') implies Di(p(R, g + L), R) = Dx(¢(R', g + L), R).

Our next result shows that the weak irrelevance of satisfied demand together with the above
properties characterize lexicographic deferred acceptance mechanisms.

Proposition 3. A mechanism is a lexicographic deferred acceptance mechanism if and only
if it satisfies unavailable-type-invariance, weak nonwastefulness, resource-monotonicity,
truncation-invariance, strategy-proofness, and the weak irrelevance of satisfied demand.

Proof. The following notation will be helpful. For each x € O, let R* be a preference
relation such that x is top-ranked and @ is second-ranked. For each S € A that is

nonempty, let R be a preference profile such that for each i € S, (RS") = R*, and for
L

each j & S, (Rg‘)j top-ranks @. For each x € O and [ € {0, ..., n}, let [, denote the capacity

profile where x has capacity I and every other object has capacity zero.
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Let ¢ be a mechanism satisfying the properties in the statement of the theorem. Let
C = (Cy)xeo be defined as follows. For each x € O,S € A, and | € {0, ..., n}, C;,(S, ) =
{i € S: ¢(R3, Iy) = x}. This choice structure is the same as the one constructed in the
proof of Theorem 3 of Ehlers and Klaus (2016).

By weak nonwastefulness, C, satisfies capacity-filling. By resource-monotonicity, C
satisfies monotonicity. By Lemma 2 of Ehlers and Klaus (2016), C, satisfies gross
substitutes. By Theorem 3 of Ehlers and Klaus (2016), ¢ is a deferred acceptance
mechanism based on C. It is easy to see that, since ¢ satisfies the weak irrelevance of
satisfied demand, for each x € O, C, satisfies the irrelevance of accepted alternatives. Thus,
C is a lexicographic choice structure and ¢ is a lexicographic deferred acceptance
mechanism.

Let ¢ be a lexicographic deferred acceptance mechanism. We will show that it satisfies
the weak irrelevance of satisfied demand. The other properties follow from Theorem 3 of
Ehlers and Klaus (2016). Let C = (Cy)xeo be a lexicographic choice structure such that
@ = DAC. Let (R, q), (R’, q) € P and x € O be such that for each y € O\ {x}, g, =0 and
let T = D,(DA°(R, q), R) = D,(DA°(R’, q), R"). Let C, be lexicographic for the priority
profile (>, ..., >,) € II. Let S(R) and S(R’) be the sets of agents who prefer x to @ at R
and at R’, respectively. It is easy to see that DA®(R, ¢) = C.(S(R), q), DA°(R’, q) = Cx(S(R"), @),
and T = S(R)\Cx(S(R), q) =S(R)\Cx(S(R), q). Let i € T be the agent who is highest
ranked according to > 41 in T. Clearly, DA°(R,q + 1) = DA“(R,q) U {i} and
DAC(R',q + 1,) = DA°(R', q) U {i}. Hence, D,(DA°(R,q + 1;),R) = D(DA°(R’,q + 1,),R") =
T\ {i}. O

Remark 2. In Appendix C, we provide an example of a mechanism which satisfies
all the properties in the statement of Proposition 3 except for the weak irrelevance of
satisfied demand, and therefore which is not a lexicographic deferred acceptance
mechanism.

5 | IMPLICATIONS FOR SCHOOL CHOICE IN BOSTON

In the Boston school choice system, there are two different priority orderings at each school: a
walk-zone priority ordering, which gives priority to the school's neighborhood students over all
the other students, and an open priority ordering which does not give priority to any student for
being a neighborhood student. The Boston school district aims to assign half of the seats of each
school based on the walk-zone priority ordering and the other half based on the open priority
ordering. To achieve this aim, given the capacity, each school chooses students in a lexico-
graphic way according to a priority profile where half of the priority orderings is the walk-zone
priority ordering and the other half is the open priority ordering.

In a recent study, Dur et al. (2013) note that two priority profiles with the same numbers of
walk-zone and open priority orderings, but with different precedence orders of the priority
orderings, may result in different choices under a lexicographic choice procedure. Starting with
this observation, Dur et al. (2013) compare four different choice rules, one of which is the one
used in the Boston school district, in terms of how much they are biased for or against the
neighborhood students. In this section, we will consider these alternative choice rules from a
different perspective. We will show that, although these choice rules are all based on a “lex-
icographic procedure” at each capacity, only one of them satisfies all the characterizing
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properties in Theorem 1, and therefore only one of them is actually a (capacity-constrained)
lexicographic choice rule.

To put the four choice rules in a formal context, let us consider the following class of choice
rules which is larger than the class of lexicographic choice rules. We say that a choice rule is
capacity-wise lexicographic if there exists a list of priority orderings for each capacity level (the
number of priority orderings is the same as the capacity), and at each capacity, the rule operates
based on the associated list of priority orderings in a lexicographic way. For a capacity-wise
lexicographic choice rule, unlike a lexicographic choice rule, the lists for different capacity
levels are not necessarily related.”'

The capacity-wise lexicographic choice rules that can serve the Boston school district's
purpose are the choice rules for which, at each capacity, the associated list consists of only the
walk-zone priority ordering and the open priority ordering, and the absolute difference between
the numbers of walk-zone and open priority orderings in the list is at most one. We formalize
this property as follows.

Let > and > be walk-zone and open priority orderings. We say that a capacity-wise lex-
icographic choice rule satisfies the Boston requirement for (>, >°) if for each capacity q, the
associated list of priority orderings (>, ..., >) is such that

i. foreachl € {1,..,q}, > € {>*, >},
ii. difference between the number of >"-priorities and >‘-priorities is at most one, that

is, |20 L) = XL 1o ()| 1.7

Now, it turns out that the following class of capacity-wise lexicographic choice rules are the
only rules satisfying our set of properties together with the Boston requirement for (>*, >°).

Proposition 4. A capacity-wise lexicographic choice rule satisfies capacity-filling, gross
substitutes, monotonicity, the capacity-wise weak axiom of revealed preference, and the
Boston requirement for (>, >°) if and only if it is (capacity-constrained) lexicographic for a
priority profile (>1, ..., >,) such that

i. foreachl € {1, .., n}, > € >, >},
ii. for each l that is odd, > = > if and only if >.1 = >°.

Proof. By Theorem 1, a choice rule satisfying the properties must be lexicographic. The
rest is straightforward. O

Some examples of priority profiles satisfying (a) and (b) in the statement of Proposition 4 are
GV, >0, 50 50 ), (50,59, 50,5 ), and (Y, >0, 0, S, SW 50 W 500 ). Some examples that
violate (b) are (>, >, >0, >, >0 >0 ) and (39, >, >, >0, >0 SV ).

2'For example, the walk-open choice rule, which we define below, is capacity-wise lexicographic since at each given
capacity, it operates based on a list of priority orderings (although not necessarily the same list at all capacities) in a
lexicographic way. However, as we will show in Proposition 5, the walk-open choice rule is not a lexicographic choice
rule: there is no fixed list of priority orderings such that the walk-open choice rule operates based on this fixed list of
priority orderings in a lexicographic way.

21, (y) is the indicator function which has the value 1 if x = y and 0 otherwise.



DOGAN ET AL.

Four plausible choice rules stand out from the analysis of Dur et al. (2013), one of which is
currently in use in Boston (Open-Walk choice rule). Dur et al. (2013) compare the below four
choice rules in terms of how much they are biased for or against the neighborhood students. We
will compare the four choice rules with respect to our set of choice rule properties.

1. Walk-Open Choice Rule: At each capacity, the first half of the priority orderings in the list are
the walk-zone priority ordering and the last half are the open priority ordering.

2. Open-Walk Choice Rule: At each capacity, the first half of the priority orderings in the list are
the open priority ordering and the last half are the walk-zone priority ordering.

3. Rotating Choice Rule: At each capacity, the first priority ordering in the list is the walk-zone
priority ordering, the second is the open priority ordering, the third is the walk-zone priority
ordering, and so on.

4. Compromise Choice Rule: At each capacity, the first quarter of the priority orderings in the
list are the walk-zone priority ordering, the following half of the priority orderings in the list
are the open priority ordering, and the last quarter are again the walk-zone priority ordering.

To be precise, let us introduce the following procedures to accommodate the cases where the
capacity is not divisible by two or four.

t q+1 are the walk-zone

« Walk-Open Choice Rule: If the capacity q is an odd number, the firs
priority ordering.

« Open-Walk Choice Rule: If the capacity q is an odd number, the firs
ordering.

« Compromise Choice Rule: If the capacity q is not divisible by four, let ¢ = q" + k for some q’
that is divisible by 4 and some k € {1, 2, 3}. If k = 1, let the first = q + 1 orderings be the walk-
zone priority ordering, the follow1ng ¢ orderings be the open prlorlty orderlng, and the last &
orderings be the walk-zone priority orderlng If k = 2, let the first q + 1 orderings be the
walk-zone priority ordering, the followmg + 1 orderings be the open pr10r1ty ordering, and
the last Z orderings be the walk-zone prlorlty orderlng If k = 3, let the first =- q + 1 orderings
be the walk-zone prlorlty ordering, the followmg — + 1 orderings be the open priority or-
dering, and the last =- q + 1 orderings be the walk- zone priority ordering.

th“ are the open priority

Note that all of the above rules satisfy the Boston requirement for (>, >°). Since all of the
rules are capacity-wise lexicographic, they satisfy capacity-filling and gross substitutes. 1t follows
from the only if part of Proposition 4 that, among these four choice rules, only the Rotating
Choice Rule satisfies capacity-filling, gross substitutes, monotonicity, and the irrelevance of
accepted alternatives. However, it is not clear if the other three rules are not lexicographic under
variable capacity constraints because they fail to satisfy monotonicity, the irrelevance of accepted
alternatives or both. Next, we show that the other three rules satisfy monotonicity, but they
violate the irrelevance of accepted alternatives. To show that these rules satisfy monotonicity, we
first provide an auxiliary condition that is easier to verify and sufficient for monotonicity. Next
we introduce this condition and prove that it is sufficient for monotonicity.

Let 7 = (>1, ..., ) and @’ = (>}, ..., > ;) be priority lists of size ¢ and g + 1, respectively.
We say that 7’ is obtained by insertion from 7 if there exists k € {1, ..., ¢ + 1} such that > = >
for each [ < k, and >; = >,_; for each | > k. Note that when 7’ is obtained by insertion from 7,
a new priority ordering is inserted into the list of priority orderings in 7, by keeping relative
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order of the other priority orderings in the list the same. It is possible that the new ordering is
inserted in the very beginning or in the very end of the list.

Lemma 2. Let C be a capacity-wise lexicographic choice rule. The choice rule C is
monotonic if for each q € {2, ..., n}, the priority list for q is obtained by insertion from the
priority list for q — 1.

Proof. Let (S,q) € AX{1,..,n—1}. Let 7 = (>4, ..., >) be the list for capacity q. Let
a € C(S, q). Suppose that, in the lexicographic choice procedure, a is chosen at the tth
step, that is, a is chosen based on >,.

Let 7’ = (>}, ..., >;41) be the list for capacity q + 1 that is obtained by an insertion
from 7. Let k € {1, ..., ¢ + 1} be such that > = > for each |l < k, and >} = >_; for
eachl > k.

Now, consider the problem (S, g + 1). If t < k, clearly a is still chosen at the tth step of
the lexicographic choice procedure and thus a € C(S, g + 1). Suppose that ¢t > k. The
rest of the proof is by induction. First, suppose thatt = k. Note that at Step k of the choice
procedure for the problem (S, g + 1), the choice is made based on the inserted priority
ordering and at Step k + 1, the choice is made based on >;. Then, a is either chosen at
Step k, or at Step k + 1, the set of remaining alternatives is a subset of the set of remaining
alternatives at Step ¢ of the choice procedure for (S, g) where a is chosen, in which case a
is still chosen. Thus, a € C(S, g + 1).

Now, suppose that t > k and each alternative that is chosen at a step t’ < t of the
choice procedure at (S, q) is also chosen at (S, g + 1). Then, a is either chosen before step
t + 1 of the choice procedure for (S,q + 1), or at Step ¢ + 1, the set of remaining
alternatives is a subset of the set of remaining alternatives at Step ¢ of the choice
procedure for (S,q) where a is chosen, in which case a is still chosen. Thus,
aeC(S,q+1). O

Proposition 5. All of the four rules satisfy capacity-filling, gross substitutes, and
monotonicity, but only the rotating choice rule satisfies the irrelevance of accepted
alternatives and only the rotating choice rule is (capacity-constrained) lexicographic.

Proof. Each rule is capacity-wise lexicographic (lexicographic for a given capacity) and
therefore satisfies capacity-filling and gross substitutes. Moreover, it is easy to see that each
of the four choice rules satisfies the insertion property, so monotonicity follows from
Lemma 2.

As for the irrelevance of accepted alternatives, first consider (>, ..., >,) € Il such that
the first priority ordering in the list is >, the second is >?, the third is >, and so on. The
rotating choice rule is clearly lexicographic for (>, ..., >,). Moreover, by Theorem 1, it
satisfies the irrelevance of accepted alternatives. We will show that each of the other three
choice rules violates the irrelevance of accepted alternatives.

Walk-Open Choice Rule: Let A = {a, b, ¢, d, e}. Let >° be defined ase b >*a >°d>°c
and let > be obtained from > by moving the neighborhood students {a, b, c} to the top,
that is, b>a>"c>e>*d. Note that R({a,c,d,e},2) = R({a, b,c,d},2) ={c, d}.
However, R({a, ¢, d, e}, 3) = {d} and R({a, b, c, d}, 3) = {c}, and therefore C violates the
irrelevance of accepted alternatives.
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Open-Walk Choice Rule: Can be shown by interchanging the orderings for > and >° in
the previous example. Compromise Choice Rule: Let A ={a,b,c,d,x,y}. Let > be
defined as a>*b>c>*y>*d>x and let > be obtained from > by moving the
neighborhood students {a, b, c, d, x} to the top, that is,a > b > ¢ >¥ d > x > y. Note that
R{{a, b,c,x,y},3) = R({a, b, d, x,y}, 3) = {x, y}. However, R({a, b, ¢, x,y},4) = {y} and
R{{a,b,d,x,y},4) = {x}, and therefore C violates the irrelevance of accepted
alternatives. O

Remark 3. Note that the particular procedures we introduced to accommodate the cases
where the capacity is not divisible by two or four are not crucial for the proof of
Proposition 5. For the other procedures (e.g., for the walk-open choice rule, the extra
priority when the capacity is odd can alternatively be set to be the open priority ordering),
the examples in the proof can simply be modified to show that the irrelevance of accepted
alternatives is still violated.

It follows from our Proposition 5 that if the irrelevance of accepted alternatives or having a
lexicographic representation under variable capacity constraints is deemed desirable, then the
rotating choice rule should be selected since it is the only choice rule among the four plausible
choice rules that satisfies the irrelevance of accepted alternatives together with capacity-filling,
gross substitutes, and monotonicity.

Another interpretation of our Proposition 5 is the following. First of all, note that in Dur
et al. (2013), the capacity is fixed and a choice rule is defined given a capacity. On the other
hand, the capacity is allowed to vary and a choice rule has to specify which alternatives are
chosen from each choice set at each possible capacity in our approach, which is the fundamental
difference between Dur et al. (2013) and our study. The fact that we allow the capacity to vary
and we require a choice rule to respond to changes in the capacity, allows us to define desirable
properties of choice rules that address how it should respond to changes in the capacity, such as
monotonicity and the irrelevance of accepted alternatives. Proposition 5 shows that, although
each of the four rules in Dur et al. (2013) operate based on a lexicographic procedure when we
fix the capacity, in a variable capacity framework only one of them satisfies the irrelevance of
accepted alternatives and therefore only one of them is capacity-constrained lexicographic under
variable capacities, that is, there exists a priority profile, which has as many priority orderings as
the maximum possible capacity, such that at each capacity, the rule operates based on a
lexicographic procedure with respect to the same priority profile. For the other three rules, we
believe that adopting these can be rationalized on the basis of their affirmative action policy
implications. However, since we do not model different (minority or affirmative action) types
for students in our baseline model, understanding the distinguishing properties of the other
three rules seems to require further analysis in an enriched model.

6 | CONCLUSION

Our formulation of a choice rule and the properties that we consider take into account that the
capacity may vary. When designing choice rules especially for resource allocation purposes,
such as in school choice, a designer may be interested in choice rules that respond to changes in
capacity. In that framework, our Theorem 1 shows that capacity-filling, gross substitutes,
monotonicity, and the irrelevance of accepted alternatives are altogether satisfied only by
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(capacity-constrained) lexicographic choice rules, which identifies the properties that distin-
guish lexicographic choice rules from other plausible choice rules. Besides providing an axio-
matic foundation for lexicographic choice rules, this finding may be helpful in applications to
select among plausible choice rules, as we have illustrated in Section 5, and also to understand
characterizing properties of popular resource allocation mechanisms, as we have illustrated in
Section 4.
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APPENDIX A: NECESSITY OF THE PROPERTIES IN LEMMA 1

The following example shows that capacity-filling is necessary for the implication, that is, there
exists a choice rule which satisfies monotonicity and CWARP, but not the irrelevance of accepted
alternatives.

Example Al. Let A = {a, b, c}. Let > be defined as a > b >c. Let the choice rule C be
defined as follows. For each problem (S, q), ifa € S, then C(S, q) = {a}; ifa ¢ S, then C
chooses the highest >-priority alternatives from S until q alternatives are chosen
or no alternative is left. Note that C clearly violates capacity-filling and satisfies
monotonicity and CWARP. Now, let S={a,c¢} and S ={b,c}. Note that
R(S,1) =R(S',1) ={c},C(S,2) N R(S,1) = @&, C(S’,2) N R(S’, 1) = {c}, and therefore
C(S,2)NR(S,1) # C(S,2) nR(S’,1), implying that C violates the irrelevance of
accepted alternatives.

The following example shows that monotonicity is necessary for the implication, that is,
there exists a choice rule which satisfies capacity-filling and CWARP, but not the irrelevance of
accepted alternatives.
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Example A2. Let A ={a,b,c,d}. Let > and >’ be defined as a>b>c>d and
b>'c>'d>"a. Let the choice rule C be defined as follows. For each problem (S, 1), C
chooses the highest >-priority alternatives from S; and for each problem (S, q) such that
q > 1, C chooses the highest >'-priority alternatives from S until q alternatives are
chosen or no alternative is left. Note that C clearly satisfies capacity-filling and
CWARP. C violates monotonicity because, for instance, a € C({a,b,c}, 1)
but a ¢ C({a, b,c},2). Now, let S=1{a,c,d} and S’ = {b,c,d}. Note that R(S,1) =
R(S’,1) ={c,d},C(S,2) nR(S,1) ={c,d},C(S’,2) N R(S’,1) ={c}, and therefore
C(S,2)NR(S,1) # C(S,2) N R(S’,1), implying that C violates the irrelevance of
accepted alternatives.

The following example shows that CWARP is necessary for the implication, that is, there
exists a choice rule which satisfies capacity-filling and monotonicity, but not the irrelevance of
accepted alternatives.

Example A3. Let A ={a,b,c,d}. Let > and >’ be defined as a>b>c>d and
a>'b>'d>"c. Let the choice rule C be defined as follows. For each problem (S, q) such
that a € S, C chooses the highest >-priority alternatives from S until q alternatives are
chosen or no alternative is left; and for each problem (S, q) such that a ¢ S,C
chooses the highest >'-priority alternatives from S until q alternatives are chosen or no
alternative is left. Note that C clearly satisfies capacity-filling and monotonicity. Now, let
S ={a,c,d} and S’ = {b, ¢, d}. Note that R(S,1) = R(S’,1) ={c,d}, C(S,2) N R(S,1) =
{c},C(S’,2) N R(S’,1) ={d}, and therefore C(S,2)NR(S,1)# C(S’,2)NR(S', 1),
implying that C violates the irrelevance of accepted alternatives.

APPENDIX B: INDEPENDENCE OF PROPERTIES IN THEOREM 1
Violating only capacity-filling: Let A = {a, b, c}. Let > be a priority ordering. Let C be the choice
rule such that, for each problem (S, q), C(S, q) is a singleton consisting of the >-maximal
alternative in S. Note that C violates capacity-filling and clearly satisfies gross substitutes. Since
the choice does not vary with capacity, C also satisfies monotonicity and the irrelevance of
accepted alternatives.

Violating only gross substitutes: Let A = {a, b, c}. Let > and >’ be defined as a > b > ¢ and
b>'a >"c. Let the choice rule C be defined as follows. For each problem (S, q), C(S, q) consists
of the >-maximal alternative in S if ¢ = 1 and ¢ € S; otherwise, C(S, q) coincides with the
choice rule that is responsive for >’. Note that C satisfies capacity-filling.

Sincea € C({a, b, c}, 1) = {a} and a ¢ C({a, b}, 1) = {b}, C violates gross substitutes. To see
that C satisfies monotonicity, suppose that there exists a set S and an alternative x € S such that
x € C(S,1) and x ¢ C(S, 2). Note that x ¢ C(S, 2) implies that x = ¢ and S = {a, b, c}. But
then, x ¢ C(S, 1) = {a}, a contradiction. To see that C satisfies CWARP, note that the revealed
preference relation at ¢ = 2 consists of a unique pair: b is revealed preferred to c. Then, by
Lemma 1, C also satisfies the irrelevance of accepted alternatives.

Violating only monotonicity: Let A = {a, b, c}. Let > be defined as a > b > c. Let the choice
rule C be defined as follows. For each problem (S, q), C(S, q) consists of the >-maximal al-
ternative in S if ¢ = 1; C(S, 2) = S if ISI = 2; and C({a, b, c}, 2) = {b, c}. Note that C satisfies
capacity-filling.
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Since a € C({a, b, c}, 1) and a ¢ C({a, b, c}, 2), C violates monotonicity. For ¢ = 1, C sa-
tisfies gross substitutes, since C maximizes >; for q € {2, 3}, C clearly satisfies gross substitutes.
Since there are no two different problems with the same capacity and the same set of rejected
alternatives, C satisfies the irrelevance of accepted alternatives.

Violating only CWARP: Note that three of the four rules that we discuss in Section 5 satisfy
all the properties but the irrelevance of accepted alternatives.

APPENDIX C: IMPORTANCE OF THE IRRELEVANCE OF SATISFIED
DEMAND IN PROPOSITION 3

We provide an example of a mechanism which satisfies all the properties in the statement of
Proposition 3 except for the irrelevance of satisfied demand, and therefore which is not a lex-
icographic deferred acceptance mechanism. The mechanism in the example is a deferred ac-
ceptance mechanism based on a choice structure such that the choice rule of each object is a
walk-open choice rule. The example uses some arguments from the proof of Proposition 5,
where it was shown that the walk-open choice rule violates CWARP.

Example C1. Let N = {a, b, c, d, e} and let O be a finite set of objects. Let > be defined
as a b ¢ >d e and >° be defined as e >°b >°d >c >°a. Let (Cy)reo be the choice
structure such that for each object x € O, C, is the walk-open choice rule based on
(>*,>?). Let @ be the deferred acceptance mechanism based on the choice
structure (Cy)yeo-

Since for each x € O, C, satisfies capacity-filling, gross substitutes, and monotonicity, by
Theorem 3 of Ehlers and Klaus (2016), ¢ satisfies unavailable-type-invariance, weak
nonwastefulness, resource-monotonicity, truncation-invariance, and strategy-proofness.

Let x € O. Let g be such thatq, = 2 and for each y € O\ {x}, g, = 0. Let R be such that
x is preferred to @ for all the agents except for b. Note that D,(¢(R, q),R) = {c, d}
since Cy({a, ¢, d,e},2) = {a,e}. Let R’ be such that x is preferred to @ for all the
agents except for e. Note that D,(¢(R’, q), R’) = {c, d} since Cx({a, b, ¢, d}, 2) = {a, b}.
Thus, D, (¢(R, @), R) = Dy (¢ (R, @), R').

Now, we have Dy(p(R,q + 1,),R) ={d} since Cy({a,c,d,e,3}) ={a,c,e} and
Dy (p(R', q + 1), R") = {c} since Cy({a, b, ¢, d, 3}) = {a, b, d}. (Note that when q = 3, C;
is lexicographic for (>, >, >).) Hence, ¢ violates the irrelevance of satisfied demand.

APPENDIX D: RESPONSIVE CHOICE
A well-known example of a lexicographic choice rule is a “responsive” choice rule,” which is
lexicographic for a priority profile where all the priority orderings are the same. Formally, a choice
rule C is responsive for a priority ordering > if for each (S, q) € A X {1, ..., n}, C(S, q) is obtained by
choosing the highest >-priority alternatives in S until g alternatives are chosen or no alternative is left.
Note that C is responsive for > if and only if it is lexicographic for the priority profile (>, ..., >).
Chambers and Yenmez (2018b) characterize “responsive” choice rules, but in the context of
“classical” choice problems which do not explicitly refer to a variable capacity parameter.
Formally, a classical choice rule is a function C : A — A such that foreachS € A, C(S) C S. A
classical choice rule is responsive if there exists a priority ordering > and a capacity q € {1, ..., n}

ZResponsive choice rules have been studied particularly in the two-sided matching context (Roth & Sotomayor, 1990).
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such that for each S € A, C(S) is obtained by choosing the highest >-priority alternatives until
the capacity q is reached or no alternative is left. Chambers and Yenmez (2018b) show that a
classical choice rule satisfies capacity-filling”* and the weaker axiom of revealed preference
(WrARP) if and only if it is responsive.”” WrARP"® requires that for each pair a,b € A and
S,S’ € Asuchthata,be Sn S,

ifae C(S) and be C(S)\C(S), thenae C(S).

To see what Chambers and Yenmez (2018b) implies in our variable capacity setup, consider
the following extension of WrARP to our setup.

Weaker axiom of revealed preference (WrARP): For each S, S’ € A, q € {1, ..., n}, and each
paira,be SnS’,

ifae C(S,q) and be C(S,q\C(S,q), thenaeC(S,q).
The following Proposition D1 directly follows from Chambers and Yenmez (2018b).

Proposition D1. A choice rule satisfies capacity-filling and the weaker axiom of
revealed preference if and only if for each q € {1, ..., n}, there is a priority ordering >1 such
that for each S € A, C(S, q) is obtained by choosing the highest >9-priority alternatives
until the capacity q is reached or no alternative is left.

Proposition D1 states that capacity-filling andWrARP characterizes “capacity-wise re-
sponsive” choice rules, which are responsive for each capacity, but the associated priority
orderings for different capacities may be different. Yet, a characterization of responsive choice
rules in our setup does not directly follow from Chambers and Yenmez (2018b).

We show that, the following extension of WrARP, together with capacity-filling, char-
acterizes responsive choice rules in our variable-capacity setup. The property, called the
capacity-wise weaker axiom of revealed preference (CWrARP), requires that if an alternative a is
chosen and b is not chosen at a problem where they are both available, then at any problem
where they are both available, a is chosen whenever b is chosen.

Capacity-wise weaker axiom of revealed preference (CWrARP): For each
S,S"e A,q,q €11, ..,n}, and each paira,b € Sn §’,

ifae C(S,q) and be C(5,q)\C(S,q), thenaeC(S,q).

Theorem D1. A choice rule is responsive if and only if it satisfies capacity-filling and the
capacity-wise weaker axiom of revealed preference.

Proof. 1t is clear that a responsive choice rule satisfies capacity-filling and CWrARP. Let
C be a choice rule satisfying capacity-filling and CWrARP. Clearly, CWrARP implies

A classical choice rule satisfies capacity-filling if there exists a capacity such that at each choice problem, an alter-
native is rejected only if the capacity is reached.

25Chambers and Yenmez (2018b) also provide a characterization of choice rules that are responsive for a known
capacity (viz., g-responsive choice rules).

2WrARP was introduced by Jamison and Lau (1973) and also studied by Ehlers and Sprumont (2008).
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WrARP, and therefore by Proposition D1, for each q € {1, ..., n}, there is a priority
ordering > such that for each S € A, C(S, q) is obtained by choosing the highest
>4-priority alternatives until the capacity q is reached or no alternative is left. Let
(S,q) € Ax{1,..,n}.IfISI < g, then by capacity-filling, C (S, q) = S. Suppose that S| > q.
First note that C(S,q — 1) C C(S, q), since otherwise, by capacity-filling, there is a pair
a,be S such that a€ C(S,q —1)\C(S,q) and b e C(S,q)\C(S,q— 1), which
contradicts CWrARP. Now, consider any pair a,b € R(S,q — 1) such that a € C(S, q)
andb ¢ C(S, q). By CWrARP, for any S’ € A, b is not chosen over a at (S’, q), implying that
a has >%-priority over b. But then, for each S € A, C(S, q) is obtained by choosing the
highest >4~ L-priority alternatives until the capacity q is reached or no alternative is left. Since
we started with an arbitrary q € {1, ..., n}, C is a choice rule that is responsive to >. O

APPENDIX E: LEXICOGRAPHIC CHOICE UNDER FEASIBILITY
CONSTRAINTS

In some applications, the choice rule of an institution is subject to a feasibility constraint. For
example, a firm may encounter a choice set which includes signing the same worker under different
terms, such as different salaries as modeled in Kelso and Crawford (1982), and it may not be possible
to choose the same worker under several terms even when there is enough capacity (for instance, it is
not possible to choose the same worker under different salaries). The matching with contracts model
due to Hatfield and Milgrom (2005) introduced a general framework that incorporates such feasibility
constraints into the matching problem, which led to several new applications of matching theory
such as cadet-branch matching by Sonmez and Switzer (2013) and Sénmez (2013), and matching
with slot-specific priorities by Kominers and Sénmez (2016). In this section, we will show that our
baseline model and our baseline properties can be extended to a setup with feasibility constraints,
highlighting the distinguishing properties of lexicographic choice rules in a more general setup. As in
the baseline model, let A be a nonempty finite set of n alternatives and let .4 denote the set of all
nonempty subsets of A. In addition, let 7 C A be a nonempty set of feasible sets. We assume that F is
downward closed in the sense that for each S € F and each S’ C S, S’ € F.>” We also assume that
each singleton is feasible, that is, for each a € A, {a} € F.**

A (feasibility-constrained) choice rule C: A X {1, ..., n} - F associates with each problem
(S,q) e Ax{1,..,n}, a nonempty set of choices C(S,q) C S which is feasible, that is
C(S, q) € F, and respects the capacity constraint, that is, |C (S, ¢)| < q. Given a choice rule C,
we denote the set of rejected alternatives at a problem (S, q) by R(S, q) = S\C(S, q).

Our new framework encompasses the matching with contracts framework in the following
way. Suppose that each alternative is a contract consisting of a pair: an agent and a contractual
term. Suppose that a choice set is feasible if it includes, for each agent, at most one contract
including that agent. It is easy to see that F is downward closed and it includes the singletons.

A feasibility-constrained choice rule C is (capacity-constrained) lexicographic if there exists a
priority profile (>, ..., >,) € II such that for each (S, q) € A X {1, ..., n}, C(S, q) is obtained by
choosing the highest >;-priority alternative in S, then choosing the highest >,-priority alter-
native among the remaining alternatives that induces a feasible set together with the previously

In a matching with contracts model with distributional constraints, Goto et al. (2017) introduce the concept of a
“hereditary” distributional constraint, which implies that F is downward closed.

%Note that, given downward closedness, this is equivalent to requiring that each alternative belongs to at least one
feasible set.
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chosen alternative,”” and so on as long as there is a remaining alternative until finally choosing
the highest >-priority alternative among the remaining alternatives that induces a feasible set
together with the previously chosen alternatives.

F-capacity-filling: An alternative is rejected from a choice set at a capacity only if the
capacity is full or it is infeasible to choose the alternative. Formally, for each
(S,q) e Ax{l,..,n}anda € S, ifa ¢ C(S, q), then either IC(S, g)l = qor C(S, q) U {a} & F.

Let us adopt the convention that for each Se& A,C(S,0)=@. Now, for each
capacity q € {1, ..., n}, a is revealed to be F-preferred to b at q, denoted by aqu b, if there
exists S € A such that a,b ¢ C(S,q—1), and a € C(S,q) but b ¢& C(S,q), although
C(S,q — 1) U {b} € F. We introduce the following property which requires, for each capacity,
the revealed preference relation be acyclic.

Capacity-wise strong axiom of revealed preference (CSARP): For each capacity
qefl,..n} qu is acyclic.

Proposition E1. A feasibility-constrained choice rule is (capacity-constrained)
lexicographic if and only if it satisfies F-capacity-filling, monotonicity, and the capacity-
wise strong axiom of revealed preference.

Proof. (Only if part:) Let C be a feasibility-constrained choice rule that is lexicographic
for (>4, ..., >,). Using similar arguments as in the proof of Theorem 1, one can easily verify
that C satisfies F-capacity-filling and monotonicity. To see that C satisfies CSARP, note
that for each capacityq € {1, ..., n}and a, b € A, if aqu b, then we must have a>; b. Since
>, is transitive, qu is acyclic.

(If part:) Let C be a feasibility-constrained choice rule that satisfies F-capacity-filling,
monotonicity, and CSARP. It follows from CSARP that for each q € {1, ..., n}, qu is acyclic.
Now, for each capacity g € {1, ..., n}, let > be any completion of the transitive closure of qu .
Next, we show that C is lexicographic for (>, ..., >;). To see this, we apply induction on
capacity q. Before proceeding, let us introduce some notation. For each S, T € A such that
T C S, let 7(S|r) be the set of alternatives in S\ T that induce a feasible set together with the
alternatives in T, that is, (S |r) = {a € S\T: T U {a} € F}.

First, we show that for each S € A, C(S, 1) = max(S, >;). By contradiction suppose
that although a = max(S, >1), we have C(S, 1) = b, where a # b. Since C(S, 1) = b and
a € S, it follows that lef a, which contradicts that a = max(S, >;). Next, assume that for
some ¢q € {2, ..., n}, we have for each S € A and ¢’ < q, C(S, q¢') coincides with the
lexicographic choice for (>i,..,>-1). Now, we show that for each S € A,
C(S, \C(S,q — 1) = max(F(Sle(s,g-1))> >)- First, let a = max(F(Sles,g-1)), >)- It
follows that a ¢ C(S,q — 1) and C(S, g — 1) U {a} € F. By contradiction, suppose that
a & C(S,q). Since C(S,q — 1) U {a} € F, it follows from F-capacity-filling that there
exists x € C(S,q)\C(S,q — 1) such that x # a. Now, since C satisfies monotonicity,
x¢& C(S,q — 1), and since x € C(S,q),C(S,q — 1) U {x} € F. Therefore, we have
quf a, but this contradicts that a = max(F(S|c(s,q-1)), >)- Thus, we conclude that C is
lexicographic for (>, ..., >)- O

Formally, let a be the highest >-priority alternative in S. Let S’ = {b € S\{a}: {a, b} € F}. Then, the highest
>,-priority alternative among the remaining alternatives that induces a feasible set together with the previously chosen
alternative is max{S’, >,}.





