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Abstract—This paper presents a robust scheduling scheme for
energy storage systems (ESSs) deployed in distribution networks
to facilitate high penetrations of renewable energy sources (RES).
This scheme schedules the charging and discharging of an ESS
cognizant of state-of-charge (SoC) limits, transmission line real
time thermal ratings (RTTR), and voltage constraints. Robust
optimization (RO) has been adopted to deal with the uncertainty
of RES output, load, and RTTR. Two methods have been intro-
duced to estimate the tradeoff between the cost and the probability
of constraint violations. The proposed scheduling scheme is tested
on the IEEE 14 and 118 busbar networks with real load, genera-
tion, and RTTR profiles through Monte Carlo simulation (MCS).
Test results show that the proposed scheme is able to minimize
or curtail the probability of constraint violation to a desired level.
In contrast, classical optimal power flow (OPF) approaches which
do not consider uncertainty, when coupled with RTTR and ESS,
result in a low PoS. At the same time, compared to conservative
OPF approaches, the proposed scheme reduces the power and
energy requirement of ESS.

Index Terms—Energy storage system, renewable energy
sources, robust optimization, scheduling of energy storage sys-
tems.

NOMENCLATURE

ASHP air source heat pump
BMS battery management system
BoU budget of uncertainty
DN distribution network
ESS energy storage system
EV electric vehicle
LCT low carbon technology
LF load forecast
LMA Levenberg-Marquardt algorithm
LO linear optimization
LV low voltage
MAPE mean absolute percentage error
MCS Monte Carlo simulation
OBoU optimal budget of uncertainty
OPF optimal power flow
PDF probability density function
PFSF power flow sensitivity factor
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PoS probability of success
RES renewable energy sources
RMSE root means square error
RO robust optimization
RTTR real time thermal rating
SoC state-of-charge
SoH state-of-health
STLF short-term load forecast
UC unit commitment
UI uncertainty interval
ULO uncertain linear optimisation
VSF voltage sensitivity factor
VSTLF very short-term load forecast

I. INTRODUCTION

G OVERMENTAL policy around the world is incentiviz-
ing the decarbonization of energy infrastructure. The UK

government, for example has a target of achieving an 80%
reduction in CO2 emissions with respect to the values from
1990 by 2050 [1]. Renewables based electricity generation from
windfarms and photovoltaics coupled with substantial electri-
fication of the transport and heat sectors though low carbon
technologies (LCTs) such as electric vehicles (EVs) and air
source heat pumps (ASHPs) will be essential to achieve this
transition. The anticipated proliferation of these technologies
in future energy systems will necessitate major changes to the
operation and planning of future distribution networks (DNs).

Energy storage systems (ESSs) have been implemented to
facilitate the uptake of RES and increase effective network
capacity [2]–[5]. A rule-based control system for dispatching
intermittent renewable sources is described in [2]. An approach
for planning and operating grid-scale ESS to improve windfarm
integration in the electricity market has been proposed previ-
ously [3]. A real-time control strategy to track the output profile
of a combined RES-ESS system is described in [4]. A multi-
objective optimisation approach has been used in [5] in a low
voltage (LV) network for voltage control, reducing peak load
and annual cost.

However, with increasing penetrations of RES and LCTs,
together with the adoption of advanced network management
techniques, the uncertainties associated with load forecast-
ing (LF), generation forecasting and real time thermal rating
(RTTR) will bring more opportunities and challenges to the
operation and scheduling of ESSs.

Robust optimization (RO) is a modelling framework for opti-
mization under uncertainty. The use of RO enables solving an

1949-3029 © 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 1. Proposed Scheduling Scheme.

uncertain linear optimisation (ULO) problem deterministically.
Unlike stochastic optimisation or probabilistic power flow
approaches, RO does not require the probability density func-
tion (PDF) of the uncertainties.

RO has been applied previously to solve power system unit
commitment (UC), network expansion planning and power dis-
patch problems, under the uncertainty of load, wind forecast
and electricity price [6]–[8]. RO has been used to solve a look-
ahead wind power problem. It has been found that the use of RO
can reduce wind power curtailment and assist frequency regula-
tion [6]. A two-stage RO based formulation for a UC problem,
which incorporates a pumped-hydro storage unit to deal with
wind forecast uncertainty is described in [7]. A UC problem,
considering the uncertainty of node injection, has been demon-
strated to be solvable with an RO approach [8]. In this work, a
two-stage adaptive RO model for security constrained UC prob-
lems is formulated. A practical solution method, to solve the
adaptive model, is developed and numerical experiments with
real data are used to evaluate the approach.

This paper presents a scheduling scheme for ESSs in DNs.
The proposed scheme is able to provide robust and adjustable
solutions to avoid thermal violations, under the uncertainties
of high penetrations of renewable based generation, load and
RTTR. The scheduling scheme gives real power charge and dis-
charge setpoints to the battery management system (BMS) and
also informs the BMS of state-of-charge (SoC) requirements
prior to the schedule period. Consequently, this scheme can
assist in integrating RES whilst deferring or avoiding network
reinforcement.

This paper is organized as follows. The proposed schedul-
ing scheme is introduced in section II, followed by a review
of the sources of uncertainty that can impact on the operation

of a scheduling scheme. In the next section, the optimization
formulation embedded in the scheduling scheme is detailed.
Case study results using the IEEE 14 and IEEE 118 busbar
network, under scenarios which include the uncertainty asso-
ciated with the input variables to the control scheme (RTTR,
load, RES generation, ESS SoC), are presented in section IV.
Finally, conclusions are drawn in section V.

II. PROPOSED SCHEDULING SCHEME AND

SOURCES OF UNCERTAINTY

In this section, the proposed scheduling scheme is intro-
duced. This is followed by a review of the uncertainties that
can impact on the operation of a scheduling scheme.

A. Proposed Scheduling Scheme

The proposed scheduling scheme is illustrated in Fig. 1.
This scheme can be divided into three stages: Forecast stage;
Scheduling stage and Post-event analysis stage.

1) Forecast Stage: Weather forecast data can be used to
predict the RTTR of transformers and overhead lines and
RES generation. The predicted RES generation outputs and
load forecast (LF) data are used as input data to powerflow
calculations.

The RO approach adopted in this paper requires an estima-
tion of the range of uncertainty associated with these input
variables. In this work, this range is called the uncertainty
interval (UI). Therefore, the forecast values consist of forecast
values and their UIs. In the case study presented later, the fore-
cast values include RTTR forecast, load and RES generation
forecast. However, depending on the forecast technique used
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Fig. 2. ESS Measured and Calculated SoC.

and the variables of interest, UIs for each variable may not
be always available. At the post-event analysis stage, histor-
ical data can be used to derive an estimation of this forecast
error and can be used to derive the UI associated with this vari-
able. This will be further explained in the description of the
post-event analysis stage.

2) Scheduling Stage: At the scheduling stage, if a predicted
line RTTR violation is found, based on the results from the fore-
cast stage, RO based scheduling will be carried out. Overhead
line RTTR violation prediction is based on the nominal fore-
cast values. During the scheduling stage, SoC information from
ESS will be used to inform the scheduler of the energy avail-
able. Based on this information the RO based controller can
decide the import or export from ESS.

On the other hand, if there is no predicted line RTTR viola-
tion, the ESS will be made available to provide other services
such as arbitrage and spinning reserve.

3) Post-Event Analysis: Finally, at the post-event stage, the
real measurements of weather, generation, load and RTTR are
compared to their forecast values. This comparison can be used
to improve the error estimation of forecast. By improving the
UIs, this feedback process can increase the robustness and
reduce the conservatism of the scheme.

B. Sources of Uncertainty

Studies evaluating the prediction errors associated with fore-
casting wind speed, wind based generation, load and RTTR are
reviewed. SoC estimation results from a real ESS trialled on a
UK network are reported. Wind based distributed generation is
used in this work to illustrate how RO can be used to manage
the uncertainty of RES generation. It should be noted that this
methodology can be applied to other type of RES.

1) Wind Speed and Wind Power Forecast: Wind speed fore-
cast error has been shown previously to follow a Gaussian
distribution [9]. However the range of the forecast error, given
in root means square error (RMSE), increases with the pre-
diction horizon. Due to the non-linear relationship between
wind speed and wind power generation, the forecast error of
wind power generation is asymmetrical. Previously, it has been
demonstrated that the forecast error PDF is fat tailed and can
be modelled by a Beta distribution [10]. In [11], two neural net-
work based methods have been used for short term wind power

generation forecast. The proposed methods construct prediction
intervals with a 90% confidence level.

Wind power forecast error can be influenced by factors such
as the technique used and the site. Based on the example given
in [9], it is reasonable to assume that wind speed error of
+/−3m/s would result in a wind power generation forecast
error of less than 10% of rated power output of the wind farm.

2) Load Forecast: Short-term load forecast (STLF) and
very short term load forecast (VSTLF) techniques predict the
demand from the next minute to up to a number of hours.
Various STLF and VSTLF techniques have been studied and
compared previously [12]–[17]. Case studies indicate that
depending on forecast technique, accuracy of input data, sizes
of the case study networks and type of day (normal day or hol-
idays), the uncertainty in the forecast result, given in the mean
absolute percentage error (MAPE), can vary from less than 1%
to more than 10%. In this work, it is assumed that load forecast
uncertainty is 5%.

3) RTTR: The real time rating of overhead lines, cables and
transformers are influenced by environmental conditions such
as wind speed, wind direction, ambient temperature and solar
irradiance. Previous work has identified that for overhead lines,
wind speed has a major impact on its RTTR [18]. It has been
found that 10% error in wind speed at 8 m/s can lead to an error
of approximately 4% in RTTR [18].

4) SoC: A number of techniques have been developed to
estimate ESS SoC including open circuit voltage or current inte-
gration method [20]. However, it is difficult to measure the SoC
accurately. The SoC measurements of a 2.5MVA, 5MWh Li-
Ion ESS during a field trial have been reported. This ESS is
installed as part of the CLNR project [19], [20]. Fig. 2 com-
pares the measured SoC from the battery management system
and the calculated SoC based on the power import and export
recorded at one minute resolution.

As can be observed, during the charge period between 00:00
to 07:00, the measured SoC is higher than the calculated SoC.
During the discharge period between 09:00 to 18:00, the mea-
sured SoC is lower than that of the calculated. The error
between the measured and calculated SoC reduces when the
BESS is idle. The correlation coefficient between the SoC error
and power export is 0.77, which indicates a relatively high
correlation between the two values.

III. FORMULATION

The scheduling scheme and uncertainties that involved in this
scheme are detailed in Section II. This section introduces the
formulation of the RO based scheduling scheme. The formula-
tion without uncertainty is introduced first. This is followed by
an explanation of how the formulation is extended so that the
aforementioned uncertainties can be managed.

The scheduling algorithm plans the import and export of ESS
from time t = 0 to time t = T so that line RTTR overloads and
voltage violations can be avoided. This formulation uses power
flow sensitivity factors (PFSF) and voltage sensitivity factors
(VSF) to estimate the powerflow and voltage change due to ESS
and RES. PFSFs and VSFs can be derived from the Jacobian
matrix of the network under consideration [21].
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A. Formulation Without Uncertainty

1) Objective Function: The objective function minimizes
the cost of charging or discharging ESS during the scheduling
period.

min

T∑
t=0

NESS∑
m=1

CESSm
· P t

ESSm
(1)

In the objective function, T is the number of timesteps,
NESS is the total number of ESSs, CESSm

is the cost of charg-
ing or discharging ESS m, P t

ESSm
is the real power import or

export of ESS m at time t. CESSm
is determined by the capital

cost per kW and the state-of-health (SoH) of ESS m.

CESSm
= k1 · CESSm,Capital + k2 · SoHESSm

(2)

k1 is a positive coefficient and k2 is a negative coefficient.
CESSm,Capital is the capital cost of ESS m and SoHEESm

is
the SoH of ESS m. By varying the weight factors k1 and k2,
this cost function enables a trade-off between the capital cost
and the SoH of an ESS. SoH can be quantified by the number
of cycles left before the remaining capacity of the system dete-
riorates to 80%.It should be noted that CESSm

is not the actual
cost of using an ESS.

2) Constraints: Constraints in this paper include powerflow
constraints, voltage constraints and ESS SoC constraints.

• Powerflow constraint

−St
ij,RTTR ≤ St

ij,Estimate ≤ St
ij,RTTR (3)

In which St
ij,RTTR is the RTTR of branch from bus i to

bus j (branch ij) at time t, St
ij,Estimate is the estimated

powerflow on branch ij and is given by

St
ij,Estimate = St

ij,Forecast

+

NESS∑
m=1

PFSF t
ij,ESSm

· P t
ESSm

+

NRES∑
n=1

PFSF t
ij,RESn

·ΔP t
RESn

+

NBus∑
p=1

PFSF t
ij,Busp ·ΔP t

Busp (4)

St
ij,Forecast is the forecasted powerflow of branch ij at

time t, based on powerflow calculations at the forecast
stage, PFSF t

ij,ESSm
, PFSF t

ij,RESn
and PFSF t

ij,Busp
is the PFSF of ESS m, RES n and busbar p to branch
ij at time t, which represents the apparent power change
(in MVA) through branch ij due to per MW real power
change from ESS m, RES n and busbar p. ΔP t

RESn
and

ΔP t
Busp

is the error of RES power output and busbar load.
In this formulation, only the power output and busbar load
forecast error is used. The reason is explained below. If
the actual power output of RES and the busbar load at
time t is given by

P t
RESn

= P t
RESn,Forecast +ΔP t

RESn
(5)

P t
Busp = P t

Busp,Forecast +ΔP t
Busp (6)

At the forecast stage, P t
RESn,Forecast and P t

Busp,Forecast

are used to calculate St
ij,Forecast and as a result, to esti-

mate the powerflow on branch ij at time t, only the
forecast error ΔP t

RESn
and ΔP t

Busp
is needed.

The use of sensitivity factor is a linearization of the
non-linear powerflow equations. It is found in [22] that,
PFSFs are only insensitive to the operating point in net-
works with sufficient voltage support. With the increasing
penetrations of RES and future load, voltage profiles of
distribution networks will be more volatile. In this work,
the PFSFs are calculated based on loadflow equations
with updated load and generation values for each timestep
to enhance the accuracy.
Constraint (3) is only applied to branches with high PFSF
from ESS or renewables to reduce the size of the problem.

• Voltage constraint

VMin,i ≤ V t
i,Forecast +

NESS∑
m=1

V SF t
i,ESSm

· P t
ESSm

+

NRES∑
n=1

V SF t
i,RESn

·ΔP t
RESn

+

NBus∑
p=1

V SF t
i,Busp ·ΔP t

Busp ≤ VMax,i (7)

VMin,i and VMax,i are the lower and upper voltage limits
of busbar i. V t

i,Forecast is the forecasted voltage of busbar
i at time t based on powerflow calculations. V SF t

i,ESSm
,

V SF t
i,RESn

and V SF t
i,Busp

is the voltage sensitivity fac-
tor which denotes the voltage change of busbar i due to
the power change of ESS, RES and load at time t.
This constraint guarantees that all busbar voltages are
within limits. Similar to powerflow constraints, only crit-
ical busbars with high VSFs from ESS will be added to
this constraint.

• ESS SoC constraint
The SoC of ESS is calculated by (8).

SoCt+1
ESSm

= SoCt
ESSm

+ dt ·
Δt · P t

ESSm

ηESSm,discharge

EESSm

+
(
1− dt

) · Δt · P t
ESSm

· ηESSm,charge

EESSm

(8)

SoCt
ESSm

and SoCt+1
ESSm

is the SoC of ESS at time
t and t+ 1. Δt is the duration of each timestep.
ηESSm,discharge and ηESSm,charge is the efficiency of
ESS m during discharge and charge. d is a binary vari-
able, d = 1 if discharge and d = 0 if charge, EESSm

is
the energy capacity of the ESS m.

The next constraint prevents the ESS from over charge or
over discharge

SoCt
ESSm,Min ≤ SoCt

ESSm
≤ SoCt

ESSm,Max (9)

SoCt
ESSm,Min and SoCt

ESSm,Max is the minimum and
maximum SoC limit for ESS m at time t.
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This ESS scheduling problem can be generalized as a linear
optimization (LO) problem

minf
(
P t

ESS

)
(10)

Subject to

l ≤ h
(
P t

ESS ,ΔP t
RES ,ΔP t

Bus,S
t
Branch,Forecast,

V t
Bus,SoC

t=0
ESS

) ≤ u (11)

g
(
P t

ESS ,SoC
t=0
ESS

)
= 0 (12)

Where:

h is the function for inequality constraints
g is the function for equality constraints
l and u is the lower and upper limit

By finding a feasible solution P t
ESS , this formulation min-

imizes the cost of charging and discharge the ESS whilst
simultaneously eliminating the risk of line RTTR overload,
voltage limit violations and over-charge or over-discharge of
ESS. The equality constraints calculate the SoC of the ESS
from time t = 0 to time t = T . The inequality constraints
include powerflow constraints, voltage constraints and SoC
constraints.

B. Formulation With Uncertainty and Budget of Uncertainty

Considering the aforementioned uncertain inputs, the objec-
tive function remains the same. The constraints given in (11)
and (12) become

l ≤ h
(
P t

ESS ,ΔP̃ t
RES ,ΔP̃ t

Bus, S̃
t
Branch,Forecast,

V t
Bus, S̃oC

t=0
ESS

)
≤ u (13)

g
(
P t

ESS , S̃oC
t=0
ESS

)
= 0 (14)

(13) and (14) form an uncertain linear optimization problem.
In this work, it is assumed that all uncertain values are indepen-
dent and each uncertainty variable a is bounded by an interval
given as

ã ∈ [a− â, a+ â] (15)

Where ã is the real value of a and â is the maximum error.
Thus, the general form of (13) and (14) can be given as∑

ãij · x ≤ b (16)

This uncertain linear optimization problem is solved by the
methodology proposed in [23]. Each line of the constraints,
where uncertainty exists, can be reformed so that it can be
solved as a normal linear optimization problem. The set of all
ãij is denoted as Ji. Next, it is assumed, up to �Γi� number of
aij are uncertain and −â ≤ ãij − aij ≤ â, �Γi� is the floor of
Γi which means �Γi� is the largest integer not greater than Γi.
This set of uncertainties is denoted by S and |S| = �Γi�, Si ⊆
Ji. One coefficient changes by (Γi − �Γi�) âit, this uncertainty
is recorded as ti and ti ∈ Ji\Si

∑
j

aijxj + max
{Si∪{ti}|Si⊆Ji,|Si|=�Γi�,ti∈Ji\Si}⎧⎨

⎩
∑
j∈Si

âijyj + (Γi − �Γi�) âitiyt

⎫⎬
⎭ ≤ bi

− yij ≤ xj ≤ yij ∀i, j ∈ Ji

y ≥ 0 (17)

An additional parameter Γt
i, has been introduced into (17).

This parameter Γt
i is called budget of uncertainty (BoU) and

is used to adjust the conservatism of the solution. BoU can be
understood as the number of uncertainties the constraints can be
protected against. Denoting the total number of uncertain values
in (17) as Nu, BoU has a minimum value of 0 and a maximum
of Nu.

0 ≤ Γt
i ≤ Nu (18)

When BoU is 0, (17) becomes a normal liner optimization
problem. When BoU equals Nu, (17) becomes

∑
j

aijxj +

Nu∑
j=0

âijyj ≤ bi − yij ≤ xj ≤ yij

∀i, j ∈ Ji y ≥ 0 (19)

(19) is the worst case for (16) and as a result, a feasible
solution of (19) is immune to all the defined uncertainties.
When BoU Γt

i is an integer, the constraint can be protected
when up to Γt

i uncertain values and a− â ≤ ã ≤ a+ â. When
BoU is not an integer, the constraint is safe when up to �Γt

i�
values are uncertain and a− â ≤ ã ≤ a+ â and one value
follows a− (Γt

i − �Γt
i�) â ≤ ã ≤ a+ (Γt

i − �Γt
i�) â. Even if

more than Γt
i values are uncertain, the solution based on this

BoU still provides a high probability that constraint viola-
tions can be avoided through the use of ESS. For instance, the
right-hand side of (3) at time t is given as

St
ij,Forecast +

NESS∑
n=1

PFSF t
ij,ESSm

· P t
ESSm

+

NRES∑
n=1

PFSF t
ij,RESn

·ΔP̃ t
RESn

+

NBus∑
p=1

PFSF t
ij,Busp ·ΔP̃ t

Busp ≤ S̃t
ij,RTTR (20)

Considering the uncertainty of RES, load forecast and RTTR,
(20) becomes

St
ij,Forecast +

NESS∑
n=1

PFSF t
ij,ESSm

· P t
ESSm

+

NRES∑
n=1

PFSF t
ij,RESn

·ΔP̃ t
RESn

+

NBus∑
p=1

PFSF t
ij,Busp ·ΔP̃ t

Busp ≤ S̃t
ij,RTTR (21)
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Where, S̃t
ij,RTTR, ΔP̃ t

RESn
and ΔP̃ t

Busp
is the uncertainty

value of predicted RTTR of branch ij, predicted power output
of RES n and load forecast of busbar p at time t, respectively
The total number of uncertainties is Nu = NRES +NBus + 1.
For this constraint, BoU means how many of these forecast val-
ues will be greatly deviate from their nominal values, in other
words, their real values ãij will be close or equal to their lower
or upper bounds.

For simplicity, the rest of the paper uses normalized value
Γ/Nu to represent the BoU. Increasing the BoU will reduce the
probability of constraints violation or increase the probability
of success (PoS) of the solution. PoS is defined as

PoS =

(
1− NV io

NTotal

)
× 100% (22)

NTotal is the total number of Monte Carlo samples and NV io

is the number of violations recorded.
The selection of BoU is critical to the performance of the

algorithm. A high BoU ensures high PoS however can be over-
conservative. A low BoU reduces the cost but also lowers the
PoS. In the following section, two approaches are introduced to
estimate the PoS of a given BoU.

C. PoS Estimation Technique

The first approach is based on [23]. Based on this work the
relationship between PoS and BoU can be represented by

PoS ≥ 1− exp

(
− Γ2

i

2 ·Nu

)
(23)

This function describes how PoS changes with BoU.
However, this estimate is based on the assumption that the
errors are symmetrically distributed regardless of the type of
distribution. The limitation of this estimation is that the esti-
mated PoS is conservative and less accurate when the number
of uncertainties Nu is small.

The second approach introduces extra parameters into (23)
and it becomes

PoS = a− b · exp
(−c ·Γ2

i

)
(24)

It can be shown that (24) is a modification of (23). By calcu-
lating the values of a, b and c, the relationship between Γ and
PoS can be adjusted. The values of a, b and c can be calculated
by using curve fitting techniques. To calculate the values of the
parameters, only three inputs and outputs, Γ and correspond-
ing PoS, are required. The PoS of a given BoU can be achieved
by running Monte Carlo simulation (MCS). This method is fur-
ther discussed in the case study section. The process for this
approach is illustrated below in Fig. 3.

IV. CASE STUDY

A. Case Study on IEEE 14 Busbar Network

Tests are carried out with the IEEE 14 busbar network.
A schematic of the modified network is given in Fig. 4.

Fig. 3. Calculation of BoU Based on Curve Fitting.

Fig. 4. IEEE 14 Busbar network.

Windfarms, Wind 1 and Wind 2, are connected to busbars 12
and 13 with capacities of 25MVA and 35MVA, respectively. A
20 MVA, 40MWh ESS is placed at busbar 14. Wind generation
at busbar 12 and 13 causes a continuous overload on the branch
from busbar 13 to busbar 14. It is assumed that this branch is
equipped with RTTR. In this case study, half-hourly real wind-
farm generation export, RTTR and load profile data from the
north east of England have been used [24].

Only real power export is considered here. This method
is able to solve scheduling problems with reactive power by
replacing the real power injections in the constraints by appar-
ent power injection and apparent power PFSF (MVA powerflow
change per MVA injection change).

The sources of uncertainty considered in this case study
include load, RES output and RTTR. The uncertainty intervals
are given in Table I. The UIs in this table are defined based on
literature provided in section II.B.

Three test cases have been used to test the performance of the
proposed scheduling scheme with different types of uncertainty
distribution. In case 1 and 2, it is assumed that all errors are
symmetrically distributed and follow normal and uniform dis-
tribution, respectively. In case 3, both left and right skewed Beta
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TABLE I
SOURCES OF UNCERTAINTY AND UNCERTAINTY INTERVALS

Fig. 5. Windfarm Output.

distributions have been used. The skewness of each error distri-
bution is chosen so that the severity of violation is worse. For
example, it is assumed that RTTR tends to be overestimated and
wind speeds are likely to be underestimated. Beta distributions
are used as the asymmetrical test case due to its simplicity.

The specifications of the distributions in the test cases are
given below. For case 1, the ratio of standard deviation (SD)
to mean is given. In this case, the UI is five times the SD. For
case 2, the maximum variation of uniform distribution is given
as a percentage. For case 3, the parameters α and β for the Beta
distributions are given. The minimum and maximum value of
Beta distribution function is 0 and 1. Then the data is scaled to
match the defined UIs.

The windfarm export profiles and uncertainty intervals are
depicted in Fig. 5. The black traces are the nominal wind gen-
eration exports and the blue shaded area surrounding the trace
represents the forecast error bounds.

Powerflow through the branch and the RTTR of the branch
are given in Fig. 6. The red curve with shaded area is the RTTR
of the branch. The blue curve with the shaded area is the pre-
dicted powerflow through the branch with the uncertainty of
load and RES. Three distinct sustained branch overloads can
be observed. The scheduling scheme has been applied for the
period between 04:00 to 13:00 at a half-hour interval. The total
number of timesteps is 18.

Fig. 6. Apparent Power and RTTR of the Modelled Branch.

TABLE II
SOURCES OF UNCERTAINTY AND UNCERTAINTY INTERVALS

TABLE III
INPUT VALUES FOR THE CURVE FITTING ALGORITHM

B. Estimation of OBoU

To reduce the cost of using ESS and the required energy
throughput, it is crucial to use a BoU that is not excessively
conservative. In this work, the minimum BoU which guarantees
the required PoS is defined as the optimal BoU (OBoU). In the
UK, for single and multi-circuit supply systems, the aggregate
percentage of time when the design temperature of the conduc-
tor can be exceeded is 0% and 3% [25], [26]. This standard
is adopted by UK DNOs for operating the system with static
ratings. To be consistent with this approach, in this paper, PoS
targets of 100% and 97% have been used.

Due to the relatively small number of forecast values used in
this case study, only the curve fitting based technique is used
to calculate OBoU. The value of a, b and c are calculated with
curve fitting toolbox in MATLAB. The curve fitting technique
is Levenberg-Marquardt algorithm (LMA), which is normally
used to solve non-linear least square problems.

For each case, four groups (nMax) of BoU and its PoS have
been used to calculate the parameters a, b and c in (24). The
inputs used are given below in Table III.

The function describing the relationship between PoS and
BoU, as given in (24), can be established with the input val-
ues in Table III. The input PoS is achieved by MCS. The
parameters used for MCS are consistent with the specifica-
tion given in Table II. The uncertain values used in MCS have
not been truncated even though RO uses the intervals as input.
MCS is carried out for all three cases for all 18 timesteps and
each timestep is tested with 5,000 samples. Analysis shows
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TABLE IV
ESTIMATED OBOU FOR 97% AND 100% POS

Fig. 7. PoS in the test cases.

that result converges at around 2,000 samples. Techniques for
reducing the sample size of MCS are available however this is
beyond the scope of this paper. The sample size is selected to
guarantee the convergence of the results. The OBoU for 97%
and 100% PoS can be calculated based on these functions. The
estimated OBoUs are given below in Table IV.

C. Simulation Results

1) Verification of OBoU: Next, additional PoSs for more
BoUs in all three cases are tested with MCS. Initially the PoS
of each case was tested with MCS for normalized BoU from
0% to 100% at a 5% interval. Next, more tests were conducted
for BoU with PoS of more than 90% at 1% BoU interval. Test
results are illustrated in Fig. 7. As can be observed, in all cases,
PoS increase with BoU. At the same BoU, the PoSs for the nor-
mal distribution case is higher in comparison with the uniform
and Beta distribution cases.

Curve fitting results for Case 1 is given below in Fig. 8 as
an example. The red curve depicts the results from MCS. The
green dots indicate the input for curve fitting algorithm. The
blue curve is the curve fitting result. The original curve and the
fitting results have a high correlation coefficient of 0.9624.

The OBoU based on MCS study are summarized below in
Table V. Due to the large sample size of MCS, the OBoU
obtained can be seen as the real OBoU. Comparing the esti-
mated OBoU listed in Table IV to the real OBoU in Table V,
it can be seen that the curve fitting based approach can provide
a good estimation of OBoU. Moreover, this method can reduce
the computational cost of running MCS. In case 1 and 2, 15
and 19 steps of MCS are required. By adopting this method, the
computational cost is reduced to between 20% and 30%.

2) Comparison to Optimal Power Flow: The proposed
method is compared to two forms of optimal power flow (OPF)
scheduling schemes, nominal OPF (NOPF) and conservative
OPF (COPF). NOPF uses the nominal as input and therefore

Fig. 8. Curve fitting results of test case 1.

TABLE V
OPTIMAL BOU FOR 97% AND 100% POS

TABLE VI
POS TEST RESULTS

does not consider any uncertainty. On the other hand, COPF
considers the worst case scenario. In this case, COPF uses
the maximum possible wind speed and minimum RTTR. The
PoSs of the calculated OBoU and OPF approaches are tested
with MCS. Test results are summarized in Table VI. As can be
observed, without considering the uncertainty, a normal OPF
approach (NOPF) results in low PoS. Meanwhile, the esti-
mated OBoU is able to provide reliable solutions. The error
of curve fitting results can be further reduced by the use of an
improved selection and a larger number of input values. It can
be observed that the proposed method is able to calculate the
OBoU for a desired PoS. Therefore the level of conservatism
can be adjusted.

Charge and discharge profiles in Case 1 for COPF, NOPF,
and the RO scheme with 100% and 97% PoS are compared in
Fig. 9. As shown in this figure, compared to COPF, the pro-
posed scheme can reduce the maximum discharge power from
11 MW to 9 MW and also ensuring that the constraints are fully
protected against uncertainty.

The SoC change during this period is compared in Fig. 10.
During the discharge period between 09:00 to 13:00, compared
to COPF, the SoC requirement can be reduced by 9.9MWh and
5.6MWh at 97% and 100% PoS.

The maximum discharge power and the SoC change for 97%
and 100% PoS in all test cases are listed in Table VII. As can
be observed, instead of scheduling the system for 100% PoS,
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Fig. 9. ESS Charge and Discharge Profiles in Case 1.

Fig. 10. SoC Comparison in case 1.

TABLE VII
POS OF ESTIMATED OBOU

a reduced requirement of 97% can reduce the required rated
power and energy capacity of ESS. Meanwhile, the modest use
decelerates the degradation of existing ESS.

During the first predicted line RTTR overload from 08:30
to 12:00, wind energy from RESs are 190.9MWh. Line RTTR
overload can result in windfarms tripping or curtailment. Based
on nominal forecast values, 26.4MWh of wind energy will be
curtailed to avoid line rating violation. Under worst case sce-
nario where branch 13 to 14 has its minimum RTTR, 83.8MWh
of wind energy will be curtailed.

D. Case Study on IEEE 118 Busbar Network

The proposed scheduling scheme is applied to IEEE 118 bus-
bar network. 6 ESSs and 10 RESs have been connected. It is
assumed that all busbars have uncertain load. The uncertainty
intervals are consistent with previous study on the 14 busbar
network. In this case study, both OBoU estimation approaches
introduced in section III.C have been used. Based on the first

TABLE VIII
POS RESULTS FOR 100% POS

TABLE IX
COST RESULTS

approach, the estimated OBoU for 100% PoS is 45.6%. The
curve fitting based approach, approach 2 is used to calculate
OBoU for all three cases as well. Based on the estimated BoU,
charging and discharging profiles for all six ESSs can be calcu-
lated. Next, the PoS for the solutions based on different methods
are evaluated through MCS. The test results for 100% PoS are
summarized below in Table VIII.

As can be observed, both OBoU estimation approaches can
guarantee high PoS. Meanwhile, the costs for all the approaches
are compared below. COPF has the highest cost. The costs for
NOPF and RO based methods are given as the percentage of
COPF cost.

As can be observed in Table IX, the RO based approach can
provide solutions with high PoS and also reduce the cost. The
reason RO can provide solutions with high PoS and reduced
cost is that, COPF considers the worst case scenario, which
means all uncertain values take values at their lower or upper
bounds. However, it is unlikely that all uncertain values take
values near their lower or upper bounds. On the other hand, the
proposed scheme is able to realize the trade-off between the
cost and the probability of constraint violations. Therefore the
requirements for ESS power and energy rating can be reduced.

V. DISCUSSION

The proposed scheduling scheme presents several advan-
tages compared to stochastic optimization and chance con-
straint techniques. In scenarios where, for uncertain values,
only their UIs exist or their PDFs are only partially available
or even inaccurate, techniques such as stochastic optimization
or chance-constraint programming are unable to solve the prob-
lem. On the other hand, it has been shown that the proposed
RO based scheduling scheme is still able to provide robust
solutions to avoid branch line RTTR violation, cognizant of
ESS SoC limits and network voltage constraints. In such sce-
narios, approach 1 based on (23) is able to provide robust
solutions based on simple calculations in a very short time
even for a large network. In scenarios where accurate PDFs
are available for all the uncertain values, the advantages of RO
based scheduling scheme still exist. Under such circumstances,
both the estimation and the curve fitting based approaches can
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be used to calculate OBoU. The estimation approach can be
applied to calculate a slightly conservative but robust solution
in a very short time. Curve fitting based approach constructs
the function between BoU and PoS through MCS. MCS runs a
large number of load flow calculations to compute the PoS at
different BoU. The MCS process is time consuming however it
avoids any linearization of the network model. As a result, the
curve fitting method is able to provide accurate solutions and
ensure desired levels of PoS. The capability of adjusting the
PoS is beneficial to the future deployment of ESS. As shown in
the simulation results, by accepting a PoS requirement of 97%,
the proposed method can further reduce the power and energy
requirements of ESS.

The selection of UI is important to the performance of RO.
Forecast techniques for UI prediction have been proposed [11],
[27], [28]. Conservative UIs can compromise the benefits of
the proposed approach. On the other hand, if the uncertainty
is underestimated, the PoS of RO solutions will be reduced.

VI. CONCLUSION

This paper describes a new application of RO for solving
an ESS scheduling problem considering new sources of uncer-
tainty, namely the uncertainty of RTTR and ESS SoC. The
scheduling of ESS, compared to aforementioned RO applica-
tions, involves bidirectional powerflows and is constrained by
the available energy resource from ESS. The formulation pro-
posed in this paper considers the SoC constraint so that ESSs,
which are currently expensive and fragile, can be protected
from over-charging and over-discharging. Furthermore, the pro-
posed cost function takes into account the capital cost and
the SoH of different ESSs. The uncertainty of RTTR is influ-
enced by a number of factors including model limitations and
measurement accuracy of environmental factors such as wind
speed and direction. Therefore, developing appropriate PDFs
for RTTR in large networks is almost an impossible task. This
poses difficulties for techniques that demand PDFs.

The proposed RO scheduling scheme is compared to OPF
techniques. Reliability test results through MCS with 5,000
samples for all scheduled timesteps on IEEE 14 and 118 bus-
bar networks with real wind, load and RTTR data are presented.
Test results show that classical OPF approaches which do not
consider uncertainty, when coupled with RTTR and ESS, result
in a low PoS In comparison with COPF, which also provides
high PoS, the proposed RO scheduling scheme is able to reduce
the power and energy requirement to solve a line RTTR vio-
lation under uncertainty. The reduced ESS requirements would
reduce the power rating and energy capacities required for the
ESS and slow the cyclic degradation of the system.

In addition, two methods have been introduced to estimate
the trade-off between the cost and the probability of constraint
violations. The first approach results in a slightly conservative
solution for small networks. When applied to a large network,
the approach can reduce the requirements for ESS power rat-
ing and energy capacity. The second approach, which uses a
moderate number of MCSs coupled with LMA curve fitting
technique, has been proposed to estimate the optimal BoU, to
ensure a desired level of PoS. Simulation results show that, the

proposed methodology is able to provide an ESS charge and
discharge profile that ensures a desired level of probability of
success. It has also been found that, reducing the PoS require-
ment from 100% to 97%, the proposed method can further
reduce the power and energy requirements of ESS. The case
study results show that, reducing the PoS requirement by 3%
reduces the capacity requirement of ESS by up to 4.25 MWh.
The scheme proposed in this paper provides a practical solution
to ESS scheduling problems under uncertainty to facilitate high
penetrations of RES.
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