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Abstract—In this paper, we show that arbitrary hierarchi-
cal pulse amplitude modulation (PAM) schemes can be fully
described by generalized Cantor sets. Generalized Cantor sets
are modified versions of the Cantor ternary set, a famous
mathematical construct known for its set-theoretical properties.
The fractal nature of generalized Cantor sets allow for a natural
reinterpretation as a modulation scheme. The resulting Cantor set
description of one-dimensional hierarchical modulation schemes
covers the constellation points as well as the boundary points of
the decision regions. Furthermore, we derive simple formulas for
the average signal power as well as for iterative demodulation.
All results can be extended to two dimensions and hierarchical
quadrature amplitude modulation (QAM) schemes. As such,
this paper offers a novel perspective on the classification and
parametrization of practical hierarchical modulation schemes.

I. INTRODUCTION

In his information-theoretic work on broadcast channels,
Cover [1] shows that it is possible to outperform time-sharing
strategies by superimposing high-rate information on low-
rate information. The high-rate, low-priority information is
recovered by receivers with a high signal-to-noise ratio (SNR),
but appears as noise to receivers in low SNR environments.
Despite this, those receivers still recover the low-rate, high-
priority information. These insights have motivated further
research in the area of unequal error protection [2], [3] with
applications, for example, in the field of digital video broad-
casting [4]–[6]. To achieve unequal error protection in practice,
hierarchical signal constellations are employed, specifically hi-
erarchical quadrature amplitude modulation (QAM) [7]–[10].
By applying nonuniform signal spacing, the most significant
bits experience much better error protection than others. To
evaluate the performance of hierarchical QAM, most research
focuses on the computation of the bit error rate (BER) of
certain hierarchical signal constellations. These computations
are usually performed for systems with a small number of
information layers and parametrized by distances obtained
from the constellation diagram.

In this paper, we present a constructive approach to obtain
arbitrary hierarchical QAM constellations. We show that the
constellation points of hierarchical QAM coincide with the
elements of sets that arise naturally in the construction of
generalized Cantor sets. These are modified versions of the
famous Cantor ternary set, a mathematical construct known
mainly for its set-theoretical properties. We show that by
exploiting their fractal nature, Cantor sets can be used to
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describe generalized Gray-coded hierarchical pulse amplitude
modulation (PAM) schemes. This includes a Cantor-based
description of the decision regions of hierarchical PAM. The
extension to two dimensions then yields corresponding results
for square and rectangular hierarchical QAM constellations.

The remainder of this paper is organized as follows. In Sec-
tion II, we define the real-valued channel model and present
the basics of PAM and hierarchical PAM. In Section III, we
present generalized Cantor sets and their properties. Section IV
introduces the Cantor set modulation scheme. The extension
to two dimensions is presented in Section V. Following this
section, we present exemplary symbol error rate computations
and analyze how path loss effects naturally enable hierarchical
information transmission in Section VI. Section VII concludes
the paper.

II. THE AWGN CHANNEL AND PAM

Consider the reception of a broadcasted real-valued sym-
bol X through additive white Gaussian noise (AWGN) with
power spectral density N0/2. If we assume perfect channel
state information at the receiver, the received signal Y is

Y = X +W, (1)

with W ∼ N (0, N0/2). The average symbol energy is defined
as Es = E(X2). Assuming X to be uniformly distributed
between symbols xi, i = 1, . . . ,M , we obtain

Es =
1

M

M∑
i=1

x2i . (2)

With this, the average SNR γ at the receiver can be expressed
in terms of the signal energy per symbol Es divided by N0,

γ =
Es
N0

. (3)

The constellation for PAM is designed to minimize the
symbol error rate when transmitting over the real-valued
AWGN channel. This is achieved by an equidistant distribution
of the constellation points, centered at the origin. The average
symbol error rate Ps is a function of γ and can be expressed
as

Ps(γ) =
2(M − 1)

M
Q

(√
6γ

M2 − 1

)
, (4)

where Q(x) = 1 − Φ(x) describes the tail probability of the
standard normal distribution. A detailed description can be
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Fig. 1. Hierarchical 2/4-PAM. The larger circles denote the virtual symbols.

found in [11]. We denote an equidistant PAM scheme with M
symbols by M -PAM.

Next, we give a short description of hierarchical PAM.
To achieve unequal error protection, the decision regions for
low-rate information are enlarged, while the decision regions
for high-rate information are reduced in size. For users with
low SNR, the symbols carrying high-rate information are
indistinguishable from each other and the modulation appears
to be an N -PAM scheme with N < M . Note however, that
these N virtual symbols are not part of the constellation
diagram and only appear at the receiver side when interpreting
the high-rate information as noise. We denote hierarchical
PAM with k layers of information and Ni, i = 1, . . . , k,
(virtual) symbols in each layer by N1/ . . . /Nk-PAM. See
Figure 1 for an exemplary 2/4-PAM scheme.

To describe a general N1/ . . . /Nk-PAM scheme, param-
eters d1, . . . , dk are required. They are computed from the
constellation diagram as follows: For i = 1, . . . , k, a receiver
recovering i-th layer information experiences an N1/ . . . /Ni-
PAM system. Except for i = k, the symbols Ni are virtual
ones. The minimum distance between two symbols in Ni is
defined to be 2di.

Refer to Figure 1 for the significance of d1 and d2 in
the 2/4-PAM case. Clearly, 2d2 ≤ d1 has to hold to achieve
reasonable error protection. For 2d2 = d1, the system is
equivalent to 4-PAM, and for d2 = 0 it degrades to 2-PAM.

III. THE GENERALIZED CANTOR SET

The Cantor set is a mathematical construct named after
Georg Cantor and famous for its set-theoretical and topological
properties. We give a short definition taken from [12]. The
Cantor set consists of all points in the closed unit interval
which can be expressed to the base 3 without using the
digit 1. This ternary representation is the reason why it is
also called Cantor ternary set. Geometrically, the Cantor set
is obtained by deleting a sequence of middle thirds from the
closed unit interval [0, 1]. First, (1/3, 2/3) is removed, leav-
ing [0, 1/3]∪ [2/3, 1]. In the next step, the intervals (1/9, 2/9)
and (7/9, 8/9) are deleted. This process of removing the
middle third of each interval is continued ad infinitum and
the remaining points make up the Cantor set. See Figure 2 for
a visualization of this iterative process.

Motivated by the Cantor ternary set, we now define gen-
eralized Cantor sets. In a preliminary step, we center the set
around the origin. Therefore, we start with the interval [−1, 1]
instead of the unit interval. The next step is to allow not only
the middle third of each interval to be removed, but arbitrary
ratios. We introduce a scaling factor f such that from each
interval I , the middle portion of size |I|(f − 2)/f is deleted.
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Iterative construction of the Cantor ternary set (f=3)
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Fig. 2. This figure shows the iterative construction of the Cantor set for the
special case fi = 3, i ∈ N. Shown are the Cantor sets of stage 0 to 5.

Clearly, the choice f = 3 yields the Cantor ternary set. Finally,
we allow the use of different factors fi at every stage of the
iteration.

We now formally define the generalized Cantor set C on
the interval [−1, 1] subject to scaling factors (fi)i∈N with fi ≥
2, i ∈ N. Let Cn denote the Cantor set of stage n, n ∈ N0.
Starting with C0 = [−1, 1], the Cantor set of stage i is obtained
by removing a portion from the middle of each interval I
in Ci−1, such that two intervals of size |I|/fi remain. For the
special case fi = 2, it holds that Ci = Ci−1 as an empty
interval is removed, but we still regard this step as a further
division into two equidistant intervals. We obtain the iterative
definition

C0 = [−1, 1], (5)

Ci =
1

fi
(Ci−1 − (fi − 1)) ∪ 1

fi
(Ci−1 + (fi − 1)) (6)

for all i ≥ 1, in which we use the notation

a · S + b = {as+ b | s ∈ S} (7)

for a set S and a, b ∈ R. Clearly, Cn is a union of 2n

intervals of length 2/
∏n
i=1 fi. The generalized Cantor set

itself is defined as

C = lim
n→∞

Cn, (8)

however, for obvious practical reasons, we focus on Cantor
sets of finite stage in this paper. Note that the generalized
Cantor set can be extended to multiple dimensions. In partic-
ular, C ×C denotes the two-dimensional Cantor set, which is
generally referred to as Cantor dust. Consequently, Cn × Cn
describes the Cantor dust of stage n.

Following this definition, we analyze particular discrete
subsets of stage-n Cantor sets. Let Pn denote the set of centers
of all intervals of Cn. Clearly, |Pn| = 2n holds. Furthermore,
the family (Pn)n∈N0

can be represented through a binary tree,
in which the nodes at depth n correspond to Pn. With the
description

P0 = {0}, (9)

Pi =

(
Pi−1 −

fi − 1∏i
j=1 fj

)
∪

(
Pi−1 +

fi − 1∏i
j=1 fj

)
(10)
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each node x at depth n−1 has offspring x±(fn−1)/
∏n
i=1 fi

and all levels of the tree are ordered from left to right. This
binary tree representation allows to map each element of Pn to
a bit sequence of length n. We derive a closed-form expression
for the average power of a real-valued symbol Xn taking on
the values Pn.

Proposition 1. For n ∈ N0, let Xn be a uniformly distributed
random variable with support Pn, i.e., P (Xn = p) = 1

2n for
all p ∈ Pn. Then, the average power of Xn computes to

E(X2
n) =

n∑
j=1

(
fj − 1∏j
i=1 fi

)2

. (11)

Proof: It holds that E(X2
0 ) = 0 and

E(X2
n) =

1

2n

∑
p∈Pn

p2 (12)

=
1

2n

∑
p∈Pn−1

(
p− fn − 1∏n

i=1 fi

)2

+

(
p+

fn − 1∏n
i=1 fi

)2

(13)

=
1

2n−1

∑
p∈Pn−1

p2 +

(
fn − 1∏n
i=1 fi

)2

(14)

= E(X2
n−1) +

(
fn − 1∏n
i=1 fi

)2

=

n∑
j=1

(
fj − 1∏j
i=1 fi

)2

. (15)

This result concludes the section on the generalized Cantor
set. In the following section we show how the fractal nature
of generalized Cantor sets naturally motivates hierarchical
modulation schemes.

IV. CANTOR SET MODULATION

Let n ∈ N denote the number of bits to be transmitted, with
corresponding scaling factors f1, . . . , fn ≥ 2. The transmis-
sion of an arbitrary bit sequence (b1, . . . , bn) ∈ {0, 1}n is real-
ized through the following steps. To reduce the overall bit error
rate, the sequences corresponding to two adjacent symbols are
only allowed to differ by one bit. This is easily accomplished
with Gray coding [13]. The Gray coded sequence is computed
with an exclusive-or operation (⊕) and given by (b′1, . . . , b

′
n)

as

b′1 = b1, (16)
b′i+1 = b′i ⊕ bi+1. (17)

Through the binary tree representation of Pn, we obtain a
one-to-one mapping

{0, 1}n → Pn, (18)

(b1, . . . , bn) 7→
n∑
i=1

(−1)1−b
′
i
fi − 1∏i
j=1 fj

. (19)

Therefore, the constellation points of the n-bit Cantor set
modulation are the elements of Pn. At the receiver side,

iterative decoding of the received value Y = y1 is performed
as follows:

si = sgn(yi), (20)
yi+1 = fiyi − si(fi − 1), (21)

c′i =
1

2
(1 + si), (22)

c1 = c′1, (23)
ci+1 = ci ⊕ ci+1. (24)

Thus, (c1, . . . , cn) denotes the received bit sequence. In the
case of an error-free reception, bi = ci, i = 1, . . . , n, holds.
The iterative decoding in (21) is made possible by the fractal
nature of the generalized Cantor set. We traverse the nodes of
the binary tree containing the elements of Pn at depth n and at
each step decide whether to go left (c′i = 0) or right (c′i = 1)
based on the sign of yi. Despite the complexity of the Cantor
set, it is possible to exactly describe the decision regions of
this modulation scheme. Those are the intervals bounded by
the points

D =

n−1⋃
i=0

Pi ∪ {±∞}. (25)

Furthermore, the elements of Pi−1 are the boundary points of
the decision regions which are relevant for the decoding of bi,
the i-th most significant bit.

We call a modulation of this type Cantor set pulse
amplitude modulation, or CPAM for short. The nota-
tion CPAM(f1, . . . , fn) is used to describe the choice of
scaling factors. Clearly, this modulation allows for almost
arbitrary signal constellations while maintaining a simple
iterative demodulation procedure. In fact, CPAM can be used
to holistically describe arbitrary hierarchical PAM schemes as
introduced in Section II.

Proposition 2. For n ∈ N, the constellation points of PAM
with M = 2n coincide with the constellation points of
CPAM(f1, . . . , fn) with f1 = · · · = fn = 2. The same is
true for the decision regions. Thus, PAM is a special case of
CPAM with PAM = CPAM(2, . . . , 2).

This result extends to hierarchical PAM schemes of arbitrary
size. Let d1, . . . , dk describe the distance parameters of a
full N1/ . . . /Nk-PAM scheme with Ni = 2i, i = 1, . . . , k.
Then,

N1/ . . . /Nk-PAM = CPAM(f1, . . . , fk) (26)

with

fk = 2, (27)

fi =
di
di+1

fi+1 − 1

fi+1
+ 1, (28)

for i = 1, . . . , k − 1.

Proof: From (10) we conclude that the distances di have
to coincide with

Fi =
fi − 1∏i
j=1 fj

(29)
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Fig. 3. Sample of constellation points of CPAM(f, 2). Note the equidistant
4-PAM spacing at f = 2 and the slow convergence towards BPSK (2-PAM).

up to a constant factor. Thus, (26) is equivalent to

Fi
Fi+1

=
di
di+1

(30)

for i = 1, . . . , k − 1. This is easily verified with (28):

Fi
Fi+1

= (fi − 1)
fi+1

fi+1 − 1
(31)

=
di
di+1

fi+1 − 1

fi+1

fi+1

fi+1 − 1
=

di
di+1

. (32)

For an example of this equivalence, refer to Figure 3, which
depicts the constellation points of CPAM(f, 2) for varying
values of the scaling factor f . Here, a 2-bit transmission is
modulated in which the sign of the symbol determines the
value b1 of the first bit of information. For f = 2, the CPAM
constellation coincides with regular PAM. For increasing f ,
the distance between points carrying different values of b1
increases, while the distance between points with the same first
bit decreases. Thus, the reception of the first bit is simplified at
the cost of a more complicated reception of the whole symbol.

V. CANTOR DUST QAM

To extend PAM with constellation size M to QAM, the
real-valued symbols are placed into the complex plane in
a square fashion. The resulting modulation scheme has M2

distinct symbols with an average energy per symbol which
is twice as high as for PAM. This is equivalent to a halving
of the SNR γ computed for PAM. The extension of CPAM
to Cantor dust QAM (CQAM) follows the same rules and
results in a similar formula for the average symbol error
probability. Let PCPAM

s (γ) denote the average symbol error
rate of CPAM at SNR γ. Then, the average symbol error rate
in two dimensions is computed as

PCQAM
s (γ) = 1−

(
1− PCPAM

s

(γ
2

))2
. (33)

See Figure 4 for a sample of the CQAM(f, 2) constellation
points for different values of f . Here, the quadrant of the
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Fig. 4. Sample of constellation points of CQAM(f, 2). Note the 16-QAM
spacing for f = 2 and the slow convergence towards QPSK (4-QAM).
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Fig. 5. Required SNR for CPAM(f, 2) transmission at PCPAM
s = 10−3.

symbol carries the information of the first two bits. For
increasing f , this information is protected at the cost of a
more complicated reception of the whole symbol.

For non-square constellations, the extension to two-
dimensional rectangular CQAM is performed analogously. We
omit the details.

VI. HIERARCHICAL INFORMATION TRANSMISSION

In this section, we investigate the symbol error rates of a
2-bit transmission with two layers of information, i.e., 2/4-
PAM. Correct reception is assumed as long as the average
symbol error rate does not exceed a target Ps. We show that
by applying a CPAM(f, 2)-modulation, the required SNR for
the first layer can be decreased while the required SNR for the
second layer increases compared to a regular 4-PAM scheme.
See Figure 5 for the numerical results for varying scaling
factors f .

Next, we cover the extension of this example to two
dimensions, i.e., 4/16-QAM. As the number of symbols is
squared, the number of transmitted bits in each layer doubles.
This means that the first layer of CQAM transmission includes
two bits of information, while the second layer transmission
includes four. From (33), it is possible to compute the required
SNR for a successful CQAM(f, 2)-transmission. See Figure 6
for the results. Evidently, the extension to two dimensions
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Fig. 6. Required SNR for CQAM(f, 2) transmission at PCQAM
s = 10−3.

has no significant influence on the general behavior of the
modulation scheme.

In a final step we analyze how path loss naturally enables
the broadcasting of hierarchical information. We assume a
simple path loss model with a path loss exponent α such that
the SNR γ at the receiver is proportional to D−α, with D
denoting the distance between the transmitter and the receiver.
We denote the maximal distance for layer one and layer
two reception by D1 and D2, respectively. Note that this
implies D2 ≤ D1. Thus, the quotient ρ = D2/D1 denotes
the portion of the maximal distance for second layer reception
normalized by the maximal distance for first layer reception.
As a result, the SNR gap between distances D1 and D2 is
computed as ∆γ = ρ−α.

If we require the first layer reception to include two bits
of information, the SNR at the receiver has to be at least
equal to that of QPSK, or 4-QAM, reception (see Figure 6).
If we utilize a multi-layered CQAM(f, 2) scheme with 16
symbols instead, the additional energy required to guarantee
the same first layer reception quality can be calculated as the
difference between the dashed red line and the dotted black
line in Figure 6. From the same figure, we obtain the SNR
gap ∆γ between second layer and first layer reception as
the difference between the blue line and the dashed red line.
With the above, it is possible to convert this SNR gap into
a distance quotient ρ, computed as ρ = (∆γ)

−1/α. Thus,
we achieve a trade-off of investing an amount of additional
energy required for multi-layered CQAM (compared to low-
layer QAM) at the gain of a second layer of reception at
receivers within a portion ρ of the overall distance. For path
loss exponents α ranging between 2 and 4, this trade-off
between ρ and additional energy is visualized in Figure 7. For
example, at α = 3, the energy cost for a full 4-bit reception
at 50% of the distance (ρ = 0.5) is approximately 2.5 dB.

VII. CONCLUSION

In this paper, we present a novel perspective on the classifi-
cation and parametrization of practical hierarchical modulation
schemes. We introduce generalized Cantor sets and CPAM,
a pulse amplitude modulation scheme based on Cantor sets.
This scheme is parametrized through an appropriate choice of
scaling factors fi. We show that CPAM classifies arbitrary hi-
erarchical PAM schemes and present a formula for the average
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Fig. 7. Trade-off between distance quotient ρ = D2/D1 and additional
energy required for CQAM(f, 2) at PCQAM

s = 10−3.

symbol energy, a low-complexity demodulation procedure, as
well as a natural description of the boundary points of the
decision regions. All of the results can be extended to two
dimensional hierarchical QAM schemes by replacing Cantor
sets with Cantor dust. Finally, we present exemplary numerical
symbol error rates and study the beneficial effects of path loss
on hierarchical information transmission.
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