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ABSTRACT
Multi Layer Perceptron (MLP) features extracted from

different types of critical band energies (CRBE) —derived
from MFCC, GT, and PLP pipeline— are compared on
French broadcast news and conversational speech recogni-
tion task. Though the MLP structure is kept fixed, ROVER
combination of different CRBE based systems leads to 4%
relative improvement. Furthermore, aiming at the combina-
tion of state-of-the-art features based on various signal anal-
ysis methods into one single stream, posterior feature space
based combination technique is proposed. The speaker nor-
malized features originated from different CRBEs are merged
after additional MLP training by Dempster-Shafer rule. The
performance of these posterior features unifying the different
CRBE based features is superior to the best single CRBE
based posterior features by 6% relative. Further results reveal
that the concatenated cepstral and unified posterior features
perform nearly as well as the ROVER combination of the
different CRBE based systems.

Index Terms— MFCC, GT, PLP, CRBE, MRASTA,
Dempster-Shafer, LVCSR

1. INTRODUCTION

Recently numerous MLP based feature extractions have been
used in state-of-the art large vocabulary continuous speech
recognition (LVCSR) systems. Besides the investigation of
(more and more complex) MLP topologies, several different
short and long-term representations of speech are suggested
in the literature to train the MLPs. As short-time input fea-
tures to MLP, the different cepstral coefficients (MFCC or
PLP) are directly used [1, 2]. Considering the long-term
features, different CRBE processing structures have been
shown to improve the recognition performance substantially,
like MRASTA [3], TRAPS/HATS [4]. A fair comparison of
the different MLP structures on the same CRBE has been
done for LVCSR only recently [1]. Although the origi-
nal MRASTA and TRAPS/HATS were introduced on Bark-
scaled CRBE, the long-term features could be extracted using
Mel-triangular filterbank, as well [5].

The different cepstral features have been shown to be
complementary and could be efficiently combined [2] e.g.
through ROVER [6], nevertheless they are based on the same
concepts. However, the effect of different signal analysis
methods on the MLP based posterior features has not been

fully investigated, in particular not on the long-term posterior
features.

Therefore, keeping the MLP and the long-term feature
extraction structures fixed, the posterior features are inves-
tigated from the viewpoint of signal analysis. In this paper
we systematically compare the different CRBE based short-
term (cepstral) and long-term (MRASTA based) posterior fea-
tures. We extend our study not only to MFCC and PLP but
also to the GT [7] based CRBE. Furthermore, we also exam-
ine the performance of Dempster-Shafer (DS) [8] combined
(multi-stream) short and long-term posteriors of the different
CRBEs. Our goal is not only to find the best CRBE which
we think should be task dependent, as shown in the past for
cepstral features [2, 7], but also to find an effective way to
combine those different but similarly performing state-of-the-
art features into a single feature stream. Based on the results
of our previous work where we showed that MLP training
could benefit from the features normalized for Speaker Adap-
tive Training (SAT) [9], we demonstrate through experiments
that the different CRBE based features can be efficiently com-
bined – after speaker normalization and additional MLP train-
ing – into one single stream by the use of DS rule.

The paper is organized as follows: Section 2 shortly sum-
marizes the different cepstral (and CRBE) feature extraction
steps. Section 3 gives the details of the corpus used in our
experiments. We describe the experimental setups in Section
4 followed by results (Section 5). The paper closes with con-
clusion (Section 6).

2. FEATURE EXTRACTION

This section gives a brief overview of the three cepstral fea-
tures and the corresponding CRBEs and points out their dif-
ferences.

2.1. Mel-Frequency Cepstral Coefficients — MFCC
The feature extraction is based on the Short-Time Fourier
Transform (STFT) of the pre-emphasized speech signal [10].
After integration of the amplitude spectrum with triangular
filterbank, where the filters are equally spaced on Mel-scale,
the logarithm is taken. The MFCC features are extracted by
applying Discrete Cosine Transformation (DCT) on the out-
put of the previous step. Finally, segment-wise mean and vari-
ance normalization is applied. As MFCC-CRBE we refer to
the logarithmized triangular filter energies.
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2.2. GammaTone features — GT
Instead of the STFT based analysis, the features are extracted
by an audiologically motivated filterbank realized by time-
domain gammatone filters [7]. The auditory filters are equally
spaced on Greenwood-scale. After spectral and temporal in-
tegration the 10th root is taken instead of the logarithm. The
DCT decorrelation is followed by mean and variance normal-
ization. In the rest of the paper GT-CRBE means the spectro-
temporal smoothed and root compressed filterbank energies.

2.3. Perceptual Linear Predictive coefficients — PLP
These features were proposed in [11] and they are based again
on the STFT of speech. Simulating the critical band mask-
ing, the amplitude spectrum is integrated with trapezoid fil-
ters equally spaced on Bark-scale. The filterbank output is
pre-emphasized according to equal-loudness curve. To sim-
ulate the relation between the intensity and perceived loud-
ness of sound, cubic root amplitude compression is performed
followed by all-pole model parameter estimation (linear pre-
dictive (LP) analysis). The autoregressive coefficients are di-
rectly transformed to cepstral coefficients which are mean and
variance normalized. In the followings the PLP-CRBE de-
notes the logarithmized critical band energies reconstructed
from the LP coefficients.

2.4. Summary
One of the main differences between the features refers to
the shape of the critical band filters: triangular, gamma-
tone, or trapezoid. Further difference concerns the distinction
how the decreasing frequency resolution of the human ear
is modeled with higher frequencies: Mel, Greenwood, or
Bark-scales. Moreover, all-pole model fitting and Hamming-
windowing are applied in PLP and GT pipeline, respectively,
to smooth the CRBE, whereas there is no additional smooth-
ing in the MFCC extraction. The cepstral features also differ
w.r.t loudness-intensity compression: MFCC uses logarithm,
whereas PLP and GT apply root function. However, the
PLP-CRBE is compressed by logarithm as in case of MFCC-
CRBE.

3. CORPUS DESCRIPTION

The QUAERO project is a large vocabulary speech recog-
nition task focusing on transcription of web data. The data
include different speech types: Broadcast News (BN) and
Broadcast Conversation (BC) like comedy, cooking sessions,
interviews, and talk-shows. Recognition on the data is chal-
lenging due to the huge variability in the acoustic conditions
and to the relatively large portion of spontaneous speech.
Within the QUAERO project about 250 hours of transcribed
French speech data are collected and used for training the
acoustic models and neural networks (Train). While the sys-
tem parameters are tuned on development corpus (Dev10) of
2010, the evaluation set (Eval10) of 2010 is used for mea-
suring the final recognition performance. According to the
aim of the project the fraction of the BC is increased every
year. The evaluation set of the present year consists of 50%

BN and 50% BC. Table 1 summarizes the corpus statistics of
training and testing data.

Table 1. Training and testing corpora
Train Dev10 Eval10

total data [h] 257 3.7 2.9
# running words 9,800,000 41,000 36,000

4. EXPERIMENTAL SETUPS

4.1. Feature extraction
We follow the feature extraction method as described in our
earlier work [9], however, the cepstral feature and CRBE cal-
culation is changed according to the Section 2. Based on
our previous result, vocal tract length normalized CRBEs and
cepstral features are extracted. The dimensions of the differ-
ent cepstral features and CRBEs are showed in Table 2.

Table 2. Dimension of the Cepstral features and CRBEs

Dimension
Feature extraction

MFCC GT PLP
Cepstral 16 15 16
CRBE 20 15 20

First, the cepstral features are extracted from the audio
signal. Then two MLPs are trained in parallel and their
phoneme posterior outputs are combined by Dempster-Shafer
[8] rule. The cepstral features are fed to the first MLP (short-
term), while the second (long-term) posterior estimates are
based on hierarchical processing [12] of two MLPs, where
the corresponding inputs are the fast and slow modulation
frequencies of multi-resolution rasta filtered (MRASTA) [3]
CRBE with temporal context of one second.

Thus, in this study the following five types of features
from three different CRBEs are calculated for the experi-
ments: cepstral coefficients, short and long-term posteriors,
their DS-combination, and the concatenated cepstral and DS
features. In order to combine the three different CRBE based
features in posterior space by applying again the DS rule,
three MLPs are trained on the corresponding speaker normal-
ized features in addition. The feature combination experi-
ments are done with concatenated cepstral and DS combined
short and long-term posterior features only (Fig. 1). The
reason for the choice of DS rule is that it has been experi-
mentally proven to be one of the most efficient method to
combine MLP classifiers [8].

Fig. 1. Combination of different CRBE based features in pos-
terior feature space after speaker normalization
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All MLPs consist of three layers and are trained to ap-
proximate class posterior probabilities of 44 phonemes. Fur-
thermore, the number of nodes in the hidden layer is fixed
to 7000. According to the TANDEM approach [13] the ex-
tracted posteriors are logarithmized and PCA transformed.

4.2. Acoustic modeling
Triphone-level acoustic models (AM) with cross-word con-
text are modeled by 3-state left-to-right Hidden Markov Mod-
els, where the number of different triphone states are reduced
to 4,500 with phonetic decision tree based state-tying.

The Gaussian Mixtures Models (GMM) parameters of the
AM are trained by Maximum Likelihood estimation resulting
in 2M Gaussians. Instead of training the AMs from scratch,
an initial alignment is generated by the previous best system
[14], and used to estimate the decision tree of the state-tying,
the LDA matrix for cepstral features, and the mixture param-
eters in the first iteration steps.

To mitigate the effect of speaker variation, the Con-
strained Maximum Likelihood Linear Regression (CMLLR)
speaker normalization technique is applied in training and
recognition, where the affine transformation matrix w.r.t
speaker is estimated using simple target model approach
[15]. Compared to [14] we skip the cross adaption and dis-
criminative training steps due to computational reasons.

4.3. Language modeling
Based on the available data in the QUAERO project, 4-gram
language model was estimated and smoothed by the modified
Kneser-Ney method. The vocabulary contains 200K words
and the out-of-vocabulary ratio is about 0.5%. More details
are available in [14].

5. EXPERIMENTAL RESULTS

In the following, all of the results reported below are ob-
tained with CMLLR based speaker adaptive trained AM in
two recognition passes. In contrast to [14] the LM rescoring
with the unpruned LM is not performed.

5.1. Performance of cepstral features based system
The results of the first experiment, where the performance
of the cepstral features is compared, are shown in Table 3.
All the cepstral features give comparable results, however,
the best performance is achieved on this task by MFCC on
both the development and evaluation sets. Though cepstral
features follow similar concepts and provide similar repre-
sentation of the speech signal, the ROVER [6] combination
of these systems leads to more than 4% relative Word Error
Rate (WER) improvement compared to the best single sys-
tem. This result indicates the complementarity between the
three cepstral features.

5.2. Comparison of the different CRBE based posterior
features
In the second experiment we measure the recognition perfor-
mance of the short and long-term posterior features extracted

Table 3. Word Error Rate (WER) for different Cepstral Coef-
ficients (CC)

WER [%]
CC

ROVER
MFCC GT PLP

Dev10 23.8 24.3 24.3 22.8
Eval10 25.1 25.2 25.8 24.0

from different Cepstral Coefficients (CC) and CRBEs respec-
tively. Table 4 shows that the short-term posteriors give sim-
ilar results; however, the MRASTA based long-term poste-
rior features show larger differences w.r.t CRBE. Moreover,
compared to the best single stream posterior results, the DS-
combination of the short and long-term features improves the
recognition performance by more than 7% relative in case
of MFCC-CRBE and GT-CRBE. Surprisingly, PLP-CRBE
based DS posteriors achieve modest results, the relative gain
in WER is 4%. The lowest WER is achieved by the MFCC-
CRBE based DSMFCC posterior features.

Table 4. Recognition performance of posterior features

WER
[%]

Posterior features
CC MRASTA DScrbe

(short-term) (long-term) (combined)
CRBE Dev10 Eval10 Dev10 Eval10 Dev10 Eval10
MFCC 25.3 27.2 25.6 26.8 23.4 24.3

GT 25.4 26.9 26.2 27.3 23.5 24.8
PLP 25.2 27.0 26.1 27.2 24.2 25.9

5.3. Comparison of different CRBE based concatenated
cepstral and posterior features
In state-of-the-art GMM/HMM speech recognition systems
the concatenated cepstral and posterior features are widely
used. Therefore, Table 5 shows the WER for the different
CRBE based cepstral features augmented with the corre-
sponding DS features. There is less than 4% rel. WER differ-
ences between the distinct CRBE based systems, nonetheless
the MFCC based system gives the best results. The ROVER
combination of them leads to 4% improvement relative to
the best system as in case of pure cepstral systems. The re-
sults underline that the different speech signal representations
could be exploited even with MLP based features.

Table 5. Recognition results for the concatenated cepstral
and DS-combined short and long-term posterior features

WER [%] CC+DScrbe ROVER
CC/CRBE MFCC GT PLP

Dev10 21.5 21.8 21.8 20.7
Eval10 22.5 22.8 23.3 21.6

5.4. Combination of different CRBE based features into
single stream
Based on our previous work [9] we transform the speaker nor-
malized concatenated cepstral and DS features into posterior
feature space with an additional MLP training. The recogni-
tion results of these posterior features (without concatenation
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to cepstral features!) are shown in Table 6. Comparing to the
DS results in Table 4, we can confirm our former statement,
that the MLP could profit from the speaker normalized (SAT)
features. Furthermore, by DS combination of the posteriors
extracted from the different CRBE based speaker normalized
features, we are able to improve the recognition performance
further. The posterior features unifying the different CRBE
based speech representation are denoted as DSunited and out-
perform the DSMFCC features from Table 4 by relative 6%.

Table 6. Recognition performance in WER [%] of the speaker
normalized (SAT) and MLP transformed concatenated cep-
stral and DS combined short and long-term posterior features

WER [%] MLP(SAT(CC+DScrbe)
DSunitedCC/CRBE MFCC GT PLP

Dev10 22.8 23.4 23.2 22.4
Eval10 23.4 23.9 24.4 22.8

Table 7. Recognition performance of the concatenated cep-
stral and the different CRBEs unifying posterior features

WER [%] CC+DSunited

CC MFCC GT PLP

Dev10 21.1 21.1 21.2
Eval10 21.9 21.8 22.0

Since the posterior and cepstral features tend to make
complementary errors, the performance of the concatenated
cepstral and the DSunited features is also investigated (Table
7). All of the cepstral features benefit from the concatenation
of the united posterior features resulting in very similar per-
formance which is comparable to the ROVER based system
combination results in 5. Comparing to the corresponding
concatenated cepstral and DS features based system in Table
5, the relatie improvement is between 3% (MFCC) and 5%
(PLP).

6. CONCLUSION AND FUTURE DIRECTIONS

Different types of critical band energy based cepstral and pos-
terior features were evaluated on a French LVCSR task. Be-
sides, experimentally selecting the CRBE giving the best re-
sults (MFCC-CRBE), an effective way was presented to com-
bine the different state-of-the-art features based on different
signal analysis methods. Reconfirming our previous state-
ment that MLP could benefit from the SAT features, the pro-
posed combination method operates in posterior feature space
to merge the different CRBE based speech signal representa-
tions. The unified posterior features in concatenation with
MFCC performed comparable to ROVER based system com-
bination. In this study three layer perceptrons and hierarchical
MRASTA based long-term feature extraction were applied as
part of the experiments. As direction of future work, we in-
tend to repeat the experiments with other long-term feature
representations (TRAPS, HATS, DCT/wLP-TRAPS), which
could serve as further basis for a final system combination.
Increasing the complexity of the MLP – more hidden-layer
and more phonetic targets in the output layer – should be also
part of the further investigation.
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