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ABSTRACT

A major challenge for Arabic Large Vocabulary Continuous

Speech Recognition (LVCSR) is the rich morphology of Ara-

bic, which leads to high Out-of-vocabulary (OOV) rates, and

poor Language Model (LM) probabilities. In such cases, the

use of morphemes rather than full-words is considered a bet-

ter choice for LMs. Thereby, higher lexical coverage and less

LM perplexities are achieved. On the other side, an effective

way to increase the robustness of LMs is to incorporate fea-

tures of words into LMs. In this paper, we investigate the use

of features derived for morphemes rather than words. Thus,

we combine the benefits of both morpheme level and fea-

ture rich modeling. We compare the performance of stream-

based, class-based and Factored LMs (FLMs) estimated over

sequences of morphemes and their features for performing

Arabic LVCSR. A relative reduction of 3.9% in Word Error

Rate (WER) is achieved compared to a word-based system.

Index Terms— language model, morpheme, stream-

based, class-based, factored

1. INTRODUCTION
Arabic is considered one of the morphologically complex lan-

guages. In fact, it is a highly inflected Semitic language. Ara-

bic words are derived from roots which have, in most cases,

three letters by applying templates to get stems and then at-

taching prefixes and suffixes to obtain a very large number of

different surface forms. This huge lexical variety causes data

sparsity problems and leads to high OOV rates and high LM

perplexities. A traditional approach to overcome this prob-

lem is to use a very large recognition vocabulary. Yet, still

relatively high OOV rates are obtained. Moreover, the speech

recognition system suffers from high resource requirements

such as CPU time and memory.

An alternative approach is to use morpheme-based LMs

in order to lower the OOV rate and perplexity, reduce data

sparsity, decrease resource requirements and achieve lower

WERs. Normally, morphemes are generated by applying

morphological decomposition to words. In some cases mor-

phological decomposition is based on linguistic knowledge

as in [1], and in other cases it is based on unsupervised ap-

proaches like in [2]. Some of the linguistic methods make use

of the Buckwalter Arabic Morphological Analyzer (BAMA)

like in [3]. Alternatively, in our previous work [4], we use

the Morphological Analyzer and Disambiguator for Arabic

(MADA) [5].

Another approach to overcome the data sparseness and to

reduce the dependence of the traditional word-based LMs on

the discourse domain, is to assign proper features (classes) to

words and build LMs over those features. This yields bet-

ter smoothing and, hopefully, better generalization to unseen

word sequences. The features can be generated based on lin-

guistic methods as in [6], or via data driven approaches as

in [7]. Possible approaches for incorporating word features

into LMs are: stream-based LMs [8], class-based LMs [9] and

factored LMs [10]. In stream-based LMs, a normal back-off

N-gram model is built over a stream of word classes, where

the stream consists of sequences of a single class type called

class stream. However, a class-based LM combines the N-

gram model over classes with the probability distribution of

words in classes in order to better estimate smoothed proba-

bilities of word sequences. On the other side, an FLM uses

a complex backoff mechanism across multiple features in the

same model in order to obtain robust probability estimates.

All these types of LMs can be used for LM rescoring of the

hypothesized N-best lists.

This paper presents a technique that attempts to gain the

benefits from the incorporation of features into LMs, while

in the same time retain the advantages of using morpheme-

based LMs. This is accomplished by generating features on

the level of morphemes rather than full-words. In a previous

work [11], we investigated the use of morpheme level FLMs

for Arabic LVCSR. Here, we compare the performance of

FLMs to stream-based and class-based LMs all estimated on

morpheme level. Moreover, we examine the interpolation of

normal N-gram LMs with class-based LMs, and the combina-

tion of different N-best scores obtained from different LMs.

2. METHODOLOGY

2.1. Data processing and feature derivation

Our LM training data is processed using MADA 2.0 tool.

MADA is a morphological analyzer and disambiguator tool

for Arabic, which is built over BAMA [5]. It is able to asso-
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ciate a complete set of morphological tags with each word in

context. These tags are used to produce robust diacritization

and tokenization for the words. Based on this tokenization,

we produce decomposed words in the form of “ prefix+ stem
+suffix”. The ‘+’ sign is used as a marker for full-word re-

combination. For a detailed description of the decomposition

process and constraints, see our previous publication [4].

Starting from the MADA morphological tags along with

the decomposition, we derive two different features namely,

“Lexeme” and “Morph”. Lexeme is an abstraction over

the inflected words that groups together all word forms that

differ only in one of the morphological categories such as

number or gender. Morph is the morphological description

of the word; it includes the word Part-of-speech (POS) and

indicates whether a conjunction, particle, article or a clitic

are agglutinated to the word. In addition, a third feature

called “Pattern” is derived by subtracting root letters from

the word. The root is generated by “Sebawai” tool [12].

Finally, The LM training corpus is re-written so that every

word is replaced by a vector of features as in the form: {W-
<word>:L-<lexeme>:M-<morph>:P-<pattern>}. The

same features are similarly defined for morphemes as well as

words. A sequence of individual vector components defines

a feature stream (class stream). A vector example in the case

of words is: wAl$rqyp → {W-wAl$rqyp:M-conj+art+AJ-
FEM-SG:L-$rqy:P-wAlCCCyp}. However, in the case of

morphemes: wAl$rqyp → {W-wAl+:M-conj+art:L-wAl+:P-
NUL} {W-$rqyp:M-AJ-FEM-SG:L-$rqy:P-CCCyp}; given

that root(wAl$rqyp) = $rq. From these examples we can see

that a careful handling of word morphological features could

help to produce valid features for morphemes, these are called

morpheme level features.

2.2. Stream-based language models

Given a sequence of words W = w1, w2, ..., wM , a standard

N-gram LM is expressed as:

p(w1, w2, ..., wM ) ≈
M∏

i=1

p(wi|wi−1
i−N+1) (1)

If this model is built over decomposed words (mor-

phemes), then it is called a morpheme level model. However,

instead of building the N-gram LM over sequences of words

or morphemes, we could build the model over sequences of

some selected class stream defined for words or morphemes

like sequences of lexemes, morphs or patterns. Similar to

Equation 1, given a sequence of classes c1c2, ..., cM , an N-

gram stream-based model is:

p(c1, c2, ..., cM ) ≈
M∏

i=1

p(ci|ci−1
i−N+1) (2)

Such models can be used for N-best list rescoring. There-

fore, the hypothesized N-best sentences are mapped to the

corresponding class stream suitable for the underlying model.

2.3. Class-based language models

The class-based LMs are initially described in [9]. Assuming

multiple (ambiguous) class membership, where a word can be

a member of multiple classes, an example bigram class-based

LM is shown in Equation 3, where the word is denoted by w
and c is the class. An analogous model could be estimated for

morphemes and their features.

p(wi|wi−1) =
∑

ci,ci−1

p(wi|ci)p(ci|ci−1)p(ci−1|wi−1) (3)

Normally, the standard word-based LMs are performing

better in capturing the relations between words for in-domain

text. Thus, an effective way to retain the advantages of both

word-based and class-based LMs is to combine them. the

combination may rely on backing-off or linear interpolation.

Here, we use linear interpolation expressed as:

p(W ) = λpw(W ) + (1− λ)pc(W ) (4)

where W is the word sequence, pw(W ) is the word-based

probability, pc(W ) is the class-based probability, and λ is the

interpolation weight optimized on some development data.

2.4. Factored language models

FLMs were first introduced in [10]. In an FLM, a word

is viewed as a vector of K parallel factors, so that wt :=
{f1

t , f
2
t , ..., f

K
t }. A factor could be the word itself or any

feature of the word such as morphological class, stem, root

or even a data driven class or a semantic feature. A prob-

abilistic LM is estimated over both words and their factors.

In other words, the objective of the FLM is to produce a

statistical model over the individual factors, namely p(f1:K
1:T ).

Using an N-gram-like formula, the goal is produce accu-

rate models of the form p(f1:K
t |f1:K

t−1 , f
1:K
t−2 , ..., f

1:K
t−n+1) [13].

This model represents the interdependencies among fea-

tures of words both across time and within word. It uses a

complex backoff mechanism across multiple features. The

model backs off to other factor combination when some

word N-gram is not sufficiently observed in the training

data, which improves the probability estimates. In our

experiments, we use an FLM corresponding to the model

P (Wt|Wt−1,Mt−1, Lt−1,Wt−2,Mt−2, Lt−2), where W is

word, M is morph, L is lexeme. The details of how the model

is created and optimized are found in our previous work [11].

2.5. Score combination

The score used for re-ranking the N-best hypotheses is nor-

mally a weighted combination of several components: the

acoustic score, the LM score and the number of words.

However, scores from various LMs can be added, such as

the scores from various stream-based, class-based LMs and

FLMs. The final score for each hypothesis can be com-

puted as a log-linear combination of the invoked scores. The

weights of this combination can be optimized to minimize the

WER [8]. For the weight optimization, we use “Amoeba”
search which is available in SRILM toolkit [14].
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3. EXPERIMENTAL SETUP
Our acoustic models (AMs) are triphone models trained on

1100h of audio material taken from two domains: Broad-

cast News (BN) and Broadcast Conversation (BC). The basic

AMs are trained using Maximum Likelihood (ML) method.

Then, a discriminative training based on Minimum Phone Er-

ror (MPE) criterion is performed to enhance the models [15].

Our LM training corpora have around 206 Million running

words including data from Agile Arab text, FBIS, TDT4 and

GALE BN and BC data. For word level systems, a lexicon of

70k full-words is used. However, for morpheme-based sys-

tems, 70k or 256k lexicons are used while preserving the 20k

most frequent full-words without decomposition [4]. Differ-

ent types of LMs are estimated as described in Section 2. All

models are smoothed via modified Kneser-Ney smoothing us-

ing SRILM toolkit [14]. Our speech recognizer works in 3

passes. In the first pass, within-word AMs are used with-

out adaptation. The second pass uses across-word AMs with

Constrained Maximum Likelihood Linear Regression (CM-

LLR) adaptation. Then, a third pass with additional Max-

imum Likelihood Linear Regression (MLLR) adaptation is

performed. In each pass, a word-based or morpheme-based

bigram LM is used to construct the search space and to pro-

duce lattices then these lattices are rescored using a word-

based or morpheme-based 4-gram LM correspondingly. Ad-

ditionally, in the third pass, we produce a set of N-best lists

which are rescored with different LMs or a combination of

them as described in Section 2. The recognition performance

is evaluated on the GALE 2007 dev and eval sets [dev07:

2.5h; eval07: 4h]. During score combination, the weights of

LMs are optimized over dev07 corpus.

4. EXPERIMENTS
In Table 1, the column labeled “WB” shows the WERs of a

70k word-based system for dev07 corpus after the third pass

rescoring. N-best sentences with N = 5 to 25 are generated

and processed as illustrated in Section 2 so as to produce a

representation suitable for the rescoring LM. Without score

combination, the best WER is obtained using the FLM model

previously given in Section 2.4 [11]. After the score com-

bination (no. 11) of lexeme, morph and pattern class-based

models each interpolated with a word model in addition to

the FLM, a little more improvement of [dev07: 3.68% rel-

ative (0.6% absolute)] is achieved compared to the baseline

lattice rescoring via a word-based LM. The column labeled

“MB” shows the WERs of a 70k morpheme-based system for

dev07 corpus. The performance of the morpheme-based sys-

tem is better than the word-based system (WB column). We

achieve a WER reduction of [dev07: 11% relative (1.78% ab-

solute)] due to the use of morphemes. This is mainly caused

by the better lexical coverage (OOV rate is 1.33% compared

to 3.65% ). Without score combination, the best improvement

is obtained using a lexeme class-based LM interpolated with a

morpheme-based LM. The WERs using the interpolated mod-

els (no. 7, 8, 9) and the FLM (no. 10) are almost equal. The

score combination (no. 11) yields a little better WER reduc-

tions of [dev07: 1.86% relative (0.27% absolute)] compared

to the baseline lattice rescoring via a morpheme-based LM.

Also, generally, the class-based models perform better than

the stream-based models.

Table 1. WERs [%] for dev07 [WB: a 70k word-based sys-
tem, OOV rate = 3.65%; MB: 70k morpheme-based system
(20k full-words + 50k morphemes), OOV rate = 1.33%; w/m:
word- or morpheme-based model].

Dev07
3rd pass WB MB
4-gram lattice rescoring (baseline) 16.30 14.52

N-best rescoring:

1. stream-based: lexeme 15.99 14.54

2. stream-based: morph 16.43 14.99

3. stream-based: pattern 16.58 14.81

4. class-based: lexeme 16.12 14.49

5. class-based: morph 16.12 14.61

6. class-based: pattern 16.19 14.90

7. w/m + class-based: lexeme 15.92 14.27
8. w/m + class-based: morph 15.90 14.29

9. w/m + class-based: pattern 15.94 14.33

10. FLM: word, lexeme, morph 15.74 14.32

11. combination: 7 + 8 + 9 + 10 15.70 14.25

Table 2 shows the WERs of a 256k morpheme-based sys-

tem on dev07 and eval07 corpora. For completeness, the first

row of Table 2 shows the WERs of a 256k word-based sys-

tem after a lattice rescoring via a word-based LM. Without

score combination, the best WER is achieved using the FLM.

Using score combination, WER reductions of [dev07: 2.11%

relative (0.3% absolute); eval07: 1.43% relative (0.23% abso-

lute)] are obtained compared to the baseline lattice rescoring

via a morpheme-based LM. On the other side, this achieves

WER reductions of [dev07: 6.71% relative (1% absolute);

eval07: 3.94% relative (0.65% absolute)] compared to the

standard word-based 256k system. The obtained performance

improvements indicate an improvement in LM probability es-

timation due to the use of morpheme-level features.

5. CONCLUSIONS
We investigated the use of morpheme level features for Arabic

LMs. We compared the performance of stream-based, class-

based LMs and FLMs in an Arabic LVCSR task. We verified

that those feature-based LM techniques could be used in mor-

pheme domain as efficient as in word domain. Thereby, we

retain the advantages of morpheme-based LMs in addition to

the benefits of feature rich modeling. Morpheme-based LMs

achieve better lexical coverage and reduce the problem of data

sparsity. While the feature-based models try to achieve bet-

ter generalization to unseen word sequences. We used dif-

ferent types of morphological features derived from MADA

morphological analyzer. In most cases, FLMs provide better
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Table 2. WERs [%] for a 256k morpheme-based system (20k
full-words + 236k morphemes), OOV rate = [dev07: 0.51%,
eval07: 0.64%]; first row gives WER [%] for a 256k word-
based system for completeness.

3rd pass Dev07 Eval07
word-based 4-gram 14.90 16.50

morpheme-based 4-gram (baseline) 14.20 16.10

N-best rescoring:

1. stream-based: lexeme 14.25 16.14

2. stream-based: morph 14.70 16.31

3. stream-based: pattern 14.53 16.37

4. class-based: lexeme 14.20 16.01

5. class-based: morph 14.27 16.08

6. class-based: pattern 14.56 16.34

7. morpheme + class-based: lexeme 13.93 15.89

8. morpheme + class-based: morph 13.94 15.96

9. morpheme + class-based: pattern 13.99 16.04

10. FLM: word, lexeme, morph 13.90 15.87
11. combination: 7 + 8 + 9 + 10 13.90 15.85

performance compared to other models. Moreover, using a

combination of different LM scores during the N-best rescor-

ing could improve the performance a little bit more.
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