
Loop Refinement Using Octagons and Satisfiability

Jörg Brauer, Volker Kamin,
Stefan Kowalewski

Embedded Software Laboratory
RWTH Aachen University

lastname@embedded.rwth-aachen.de

Thomas Noll
Software Modelling and Verification Group

RWTH Aachen University
noll@cs.rwth-aachen.de

Abstract

This paper presents a technique for refining the control
structure of loops in programs operating over finite bit-
vectors. This technique is based on abstract interpreta-
tion using octagons and affine equalities in order to iden-
tify infeasible sequences of loop iterations. Our approach
naturally integrates wrap-around arithmetic during the
generation of abstractions. Abstract interpreters operat-
ing on a refined control structure then typically derive
strengthened program invariants without having to rely
on complicated domain constructions such as disjunctive
completions.

1 Introduction

Microcontroller programs typically consist of an infinite
while-loop that incorporates several tasks such as sensing
inputs or processing data. These loops exhibit a complex
control structure, based on conditional branching, which
depends on certain bits of the status register. Hence,
when verifying microcontroller programs, it is required
to reason about programs at the granularity of bits [8, 4].
This poses one problem to verification efforts based on
abstract interpretation [13].

Further, the analysis of such loops often requires the
application of widenings [15] to guarantee or accelerate
termination, which often induces a significant loss of pre-
cision. To alleviate this problem, we propose to refine the
control flow graph (CFG) of the program, following the
ideas described by Balakrishnan et al. [5]. Our method is
based on deriving systems of transfer functions for se-
quences of instructions that constitute paths through a
loop [7]. The transfer functions, which are derived us-
ing SAT solving, consist of pairs of guards on the inputs
and updates on the outputs to incorporate the effects of
register overflows. Based on the application of the trans-
fer functions, infeasible sequences of loop iterations are
detected to guide the refinement of the CFG.

1.1 Illustrative Example

To illustrate the application of this technique, consider
the (stripped) program given in Fig. 1. This code
fragment implements a state machine typical to micro-
controller code, taken from a program that controls a
light switch with three operation modes (on, off, and
dimmed). The task of the program is to change the in-
ternal state of the program in case a button is pushed.
A typical property to be verified for this program is that
when m = 0 holds, then m = 1 has to hold before m = 2.
This means that, when the light is turned off, it starts
as dimmed before it is fully turned on. Typical path-
insensitive analyses that operate on the original CFG fail
to verify this property because the abstract values are
merged at the end of the switch statement. Overall,
there are five possible paths through the loop:

π1 = 〈1, 2, 3, 4, 10〉 π2 = 〈1, 2, 3, 5, 6, 8, 10〉
π3 = 〈1, 2, 3, 5, 7, 8, 10〉 π4 = 〈1, 2, 3, 9, 10〉
π5 = 〈1, 2, 10〉

The infeasibility of the sequence 〈π1, π4〉 corresponds to
the property to be verified. Our approach first identifies
the postcondition of π1 and the precondition of π4:

post(π1) = (m = 1) pre(π4) = (m = 2)

Based on post(π1) u pre(π4) = ∅, the CFG is refined
to resemble the infeasibility of this sequence. Similarly,
the infeasibility of 〈π4, π2〉 and 〈π4, π3〉 can be derived.
Finally, this leads to the refined CFG depicted in Fig. 2.
The edges for π5, which can be executed from any state,
are omitted to make the presentation accessible. The de-
sired property can then be verified using a straightfor-
ward analysis on the refined CFG, dismissing the appli-
cation of more sophisticated domain constructions such
as disjunctive completion [29].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publikationsserver der RWTH Aachen University

https://core.ac.uk/display/36490746?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1: while (1) {
2: if (isButtonPressed()) {
3: switch (m) {
4: case 0: m = 1; break;
5: case 1:
6: if (TIFR & (1 << OCF1A)) m = 0;
7: else m = 2;
8: break;
9: case 2: m = 0;
10: }
11: }

Figure 1: Loop from a light-switch controller

1.2 Abstract Interpretation of Sequences

Our tool for binary code verification, called
[MC]SQUARE, is based on abstract interpreta-
tion [30, 31]. Given a concrete domain C, the key
idea of abstract interpretation is to simulate the ex-
ecution of a concrete operation f : C → C using
an abstract counterpart g : D → D, where D is an
abstract description of C, written as g ∝ f . Suppose
that a program fragment consists of a sequence of n
concrete operations f1, f2, . . . , fn, where each concrete
operation fi : C → C has its own abstract counterpart
gi : D → D, called its transfer function. Then, the effect
of applying the n concrete operations to some input is
described by applying the composition of the n transfer
functions, that is, (gn ◦ · · · ◦ g1) ∝ (fn ◦ · · · ◦ f1).

However, a more precise description of fn ◦ · · · ◦ f1
can be found by deriving a single transfer function g such
that g ∝ (fn◦· · ·◦f1). This approach is particularly valu-
able in the context of bit-twiddling programs [20, 21, 7]
by allowing to capture relational information among in-
termediate instructions whose semantics exceeds the ex-
pressiveness of the respective abstract domain.

1.3 Refining Loops

Our approach builds upon the work presented in [7,
21], where transfer functions for numeric abstract do-
mains such as octagons [25], bit-level congruences [21],
and affine relations [19] are automatically derived us-
ing SAT solving. Given a set of program variables
V = {v1, . . . , vn}, our method derives preconditions for
whole paths through a loop in terms of octagons, which
are relationships of the form ±vi ± vj ≤ c with c ∈ Z.
These preconditions are induced through guards (such as
the conditions on the value of m in the introductory ex-
ample).

Further, we use the technique from [7] to derive
affine transfer functions of the form

∑n
i=1 λi · vi = d

(λi, d ∈ Z) for paths. Observe that instructions may
cause overflows, whereas the expressiveness of affine re-

π3

π3

π4

�

m = 1 m = 2m = 0

π1

π2

π1

π4

Figure 2: Refined CFG of light-switch controller

lations does not suffice for representing modular arith-
metic. Hence, our approach derives additional octagons
that over-approximate combinations of inputs leading to
overflows, underflows, or normal operation. This results
in several pairs of octagons and affine updates to describe
the effects of a path. Each of these pairs covers a single
wrap-around mode.

Example To illustrate, consider j = i+1. If the op-
eration is applied to i = 127 (in two’s complement), the
operation results in −128. Hence, this operation is non-
affine over finite bit-vectors. The operation, however, can
be described by two guarded affine relations:

(−128 ≤ i ∧ i ≤ 126) ⇒ (j = i + 1)
(127 ≤ i ∧ i ≤ 127) ⇒ (j = −128)

Note that a disequality on a single variable, say, x ≤ c
can equivalently be expressed as an octagonal constraint
x+ x ≤ 2 · c.

Approach Given two paths πi and πj through a loop,
a precondition pre(πi) is derived and pre(πi) is trans-
formed into a postcondition post(πi) using the affine
update. This step is based on linear programming. If
post(πi) u pre(πj) 6= ∅, an execution of πi could be fol-
lowed by πj , and the control flow graph of the program
is extended in order to resemble the feasibility of this se-
quence. This idea is fully developed in the remainder.

1.4 Contributions
In this paper, we make the following contributions:

• We describe how to derive pre- and postconditions
for sequences of operations over bounded integers,
which are expressed in terms of octagons.

• We show how to refine the CFG of a program based
on feasible sequences of loop iterations.

• We detail several refinement strategies and discuss
the issue of convergence.

• We discuss two approaches for analyzing nested
loops, namely bottom-up and top-down refinement.

2

2 A Primer on SAT-Based Abstraction

Encoding the semantics of instructions using proposi-
tional logic, often colloquially referred to as bit-blasting,
has become a standard technique in program analysis
and model checking [7, 8, 11, 12, 20, 22, 21, 36]. Our
approach for deriving transfer functions of sequences is
based on the approach of Brauer and King [7], who ex-
tended the techniques put forward by Monniaux [26] to
derive abstractions of Boolean formulae for linear tem-
plate constraint domains, most notably octagons [25].

2.1 Bit-Blasting Blocks
To illustrate the process of deriving octagonal abstrac-
tions, let V = {v1, . . . , vn} denote the set of pro-
gram variables accessed in a block. Given a word-
length w, bit-vectors v = 〈v[0], . . . ,v[w − 1]〉 and
v′ = 〈v′[0], . . . ,v′[w − 1]〉 for the inputs and outputs
of the block are introduced for each v ∈ V . Further, let
V = {v | v ∈ V} and V ′ = {v′ | v ∈ V} such that
V ∩ V ′ = ∅. Then, the semantics of the block (or path)
π can be described propositionally using a Boolean for-
mula ϕπ(V ,V ′) over V ∪ V ′ that relates the inputs V
to the outputs V ′.

2.2 Deriving Octagon Abstractions
To explain the derivation of an octagonal relation x+y ≤
c between two bit-vectors x,y ∈ V , let V = {x,y}
and V ′ = {x′,y′} for simplicity. Further, introduce
an additional bit-vector c for the upper bound. Here,
we assume that operands are signed, and therefore, let
〈〈x〉〉 =

∑w−2
i=0 2ix[i]− 2w−1x[w − 1]. Then put:

θ = ∀x : ∀y : (ϕπ(V ,V ′)⇒ (〈〈x〉〉+ 〈〈y〉〉 ≤ 〈〈c〉〉))

Clearly, θ characterizes sound values of c for the con-
straint 〈〈x〉〉 + 〈〈y〉〉 ≤ 〈〈c〉〉. However, for an 8-bit
architecture, the value 〈〈c〉〉 = 510 satisfies θ because
〈〈x〉〉 ≤ 255 and 〈〈y〉〉 ≤ 255. Optimality can be specified
using an additional formula ψ that operates over disjoint
bit-vectors V̂ and V̂

′
, respectively, in order to avoid ac-

cidental coupling. Then, optimality is imposed using the
following characterization:

ψ = ∀x̂ : ∀ŷ : ∀ĉ :

((ϕπ(V̂ , V̂
′
)⇒ 〈〈x̂〉〉+ 〈〈ŷ〉〉 ≤ 〈〈ĉ〉〉)⇒

(〈〈c〉〉 ≤ 〈〈ĉ〉〉))

The formula expresses that, whenever there exists an-
other bound ĉ for the octagonal constraint, then c ≤ ĉ
has to hold. Hence, while θ characterizes sound valu-
ations of c, the formula ψ induces optimality. Conse-
quently, θ ∧ ψ characterizes safe and optimal solutions

of the constant c. The force of this approach is that by
putting θ and ψ into conjunctive normal form, univer-
sal quantifier elimination becomes trivial: Eliminating a
variable simply amounts to removing all corresponding
literals [22].

Finally, a quantifier-free version of θ ∧ ψ is passed to
a SAT solver and the value of c is extracted from the
satisfying assignment. A generalization of this idea for
all octagonal constraints is found in [7]. We abstain from
presenting further details and refer to this operation as
αOct(π).

2.3 Deriving Affine Abstractions
Based on the same propositional encoding ϕπ(V ,V ′),
affine relations among program variables can be derived
using successive calls to a SAT solver. The algorithm de-
scribed in [7] computes the affine closure of ϕπ(V ,V ′)
for range constraints. In essence, the method used cor-
responds to a symbolic implementation of the best trans-
former as described by Reps et al. [28].

Our technique used here is simpler in that it discards
range constraints in the propositional encoding, and only
computes direct affine relations between input and out-
put variables. This is a straightforward application of the
closure computation described in [7, Sect. 3.2]. In the
following, we refer to this operation, which yields a con-
junction of affine equalities connecting input and output
variables, as αAff(π).

Example Consider an assignment such as z = y + z.
Whereas the semantics of this assignment is trivial over
unbounded integers, this is not so in the bounded case, as
the + operation can over- or underflow. The SAT-based
method derives three octagonal guards that distinguish
overflow, underflow, and normal operation modes:

gO = (1 ≤ x ∧ 1 ≤ y ∧ 128 ≤ x+ y)
gU = (x ≤ −1 ∧ y ≤ −1 ∧ x+ y ≤ −129)
gE = (−128 ≤ x+ y ∧ x+ y ≤ 127)

Now, consider the overflow case only. The wrap-around
leads to a result z that is the sum of x and y shifted by
256. Computing the affine closure of the corresponding
Boolean formula gives:

ϕO = (x+ y − 256 = z)

Accordingly, the transfer functions for the other two
cases are synthesized, which yields:

ϕU = (x+ y + 256 = z)
ϕE = (x+ y = z)

This method can be applied to arbitrary sequences of op-
erations over bounded integers (or bit-vectors, equiva-
lently), as we will see in the following section.

3

1: while (x < 0) {
2: y = y+ abs(x);
3: if (y > 64) {
4: x = abs(y + 1);
5: }
6: }
7: return x;

Figure 3: Termination bug due to wraps

3 Detecting Termination Bugs

To illustrate our method, consider the example program
given in Fig. 3 for an 8-bit architecture. As long as x is
smaller than 0, the loop is executed, and first, the abso-
lute value of x is added to y. If y > 64 holds, then x is
assigned the absolute value of y incremented by 1, and
the loop terminates.

3.1 Termination Bug Explained
This program, however, contains a termination bug that
is introduced through the limited bit-width of machine
arithmetic. Suppose that the loop is entered with x = −1
and y = 126. Then, in line 3, the variable y is assigned
the value 127. Clearly, the condition y > 64 is satis-
fied, and thus, x is assigned the value of abs(y + 1),
where y+1 wraps. However, the absolute value of -128
is -128 (since the domain is bounded by [−128, 127] in
two’s complement), and consequently, x is still negative.
Then, in the second iteration, y is assigned the value -1.
In the third iteration, y is assigned 127 due to an under-
flow, the condition y > 64 is satisfied, and x is set to
-128 again. The loop keeps following these steps and
never terminates.

3.2 Deriving Transfer Functions
Here, we discuss the derivation of the transfer func-
tions step-by-step. Consider the operation y = y +
abs(x). For the function abs(x), we obtain three dif-
ferent guarded updates:

(−128 ≤ x ≤ −128) ⇒ (abs(x) = −128)
(−127 ≤ x ≤ −1) ⇒ (abs(x) = −x)
(0 ≤ x ≤ 127) ⇒ (abs(x) = x)

When considering the assignment y = y + abs(x),
we obtain:

(−128 ≤ x ≤ −128) ⇒ (y′ = y −BV 128)
(−127 ≤ x ≤ −1) ⇒ (y′ = y −BV x)
(0 ≤ x ≤ 127) ⇒ (y′ = y +BV x)

Here, the output variable is primed. It is important to
note that the +BV and −BV in these equations are oper-

ations over bit-vectors, and thus, require a case distinc-
tion when expressed as unbounded operations since they
can wrap. Now, consider the first equation only. For
−128 ≤ x ≤ −128, the assignment y′ = y−128 cannot
overflow, thus we have two remaining equations:

(−128 ≤ x ≤ −128 ∧ 0 ≤ y ≤ 127)
⇒ (y′ = y − 128)

(−128 ≤ x ≤ −128 ∧ −128 ≤ y ≤ −1)
⇒ (y′ = 128 + y)

By splitting −BV into different cases, the difference can-
not wrap anymore. When we additionally include the
guard y′ ≤ 64 in the derivation process (the branching
condition is violated), it turns out that the method yields
stronger preconditions:

(−128 ≤ x ≤ −128 ∧ 64 ≤ y ≤ 127)
⇒ (y′ = y − 128)

(−128 ≤ x ≤ −128 ∧ −128 ≤ y ≤ −64)
⇒ (y′ = 128 + y)

If this process is applied to all possible combinations of
paths through the loop, with the understanding that wraps
are handled using case distinction, we end up with 13
different transfer functions.

Then, the refinement process, starting with >, is ex-
ecuted. Applying the transfer function above yields the
postcondition −128 ≤ x ≤ −128 ∧ 0 ≤ y ≤ 64 from
the precondition>u(−128 ≤ x ≤ −128∧−128 ≤ y ≤
−64). Overall, the process exhibits that there exists a run
that reaches a strongly connected component without any
connection to the exit node. This graph structure exhibits
the termination bug that was described in the beginning
of this section.

4 Refining Loops

This section formally describes the details of the refine-
ment algorithm, which operates on the set of all paths
through a given loop. We abstain from formally defining
loops and paths here and refer the interested reader to
[5]. Informally speaking, we assume that a loop consists
of an input node, a set of paths (sequences of instruc-
tions that have a single successor) through the loop, and
a distinguished exit path.

4.1 Refinement

For refining a loop L, the following preprocessing steps
are performed first:

1. Enumerate the set of all paths πi through the loop
L, denoted Π.

4

proc refine input: T = {〈pre(πi,j), ϕi,j〉}
output: directed graph G

begin
G = (initial, ∅)
worklist = {(initial, f) | f ∈ T};
while (not worklist.isEmpty()) do

〈inv, 〈pre(πi,j), ϕi,j〉〉 = worklist.pop()
if (inv u g 6= ∅) then

post = ϕ(inv u g)
if (not G.contains(post)) then
G.addVertex(post)
worklist.add({〈post, f〉 | f ∈ T})

fi
G.addEdge(inv, post, 〈i, j〉)

fi
od
return G

end proc

Figure 4: Refinement algorithm

2. Derive transfer functions for each πi ∈ Π. The set
of transfer functions for each πi consists of ki pairs
〈pre(πi,j), ϕi,j〉, where the pre(πi,j) = αOct(πi,j)
are octagonal guards and ϕi,j = αAff(πi,j) are
affine updates (with 1 ≤ j ≤ ki).

The refinement process generates a labeled directed
(and most likely cyclic) graph G = 〈V,E, µ〉, where
nodes represent program invariants1 and edges corre-
spond to executions of paths. Additionally, µ : E → Π
is an edge-labeling function. Starting from a root node
that corresponds to the initial invariant, the algorithm (cp.
Fig. 4) proceeds as follows:

1. Build a worklist, consisting of pairs of invari-
ants and transfer functions to be executed. In
the beginning, the worklist contains all pairs of
the initial program invariant and transfer functions
〈pre(πi,j), ϕi,j〉.

2. If the worklist is empty, terminate. Otherwise, re-
move a pair 〈inv, 〈pre(πi,j), ϕi,j〉〉 from the work-
list and compute inv u pre(πi,j).

3. If inv u pre(πi,j) = ∅, proceed with step 2. In this
case, the sequence is infeasible.

4. Apply the transfer function ϕi,j to inv u pre(πi,j),
and denote the outcome by post(inv, pre(πi,j)).
The result is an octagonal invariant.

5. If there exists a node v ∈ V representing the invari-
ant post(inv, pre(πi,j)), add an edge labeled with
〈i, j〉 from the current vertex inv to v.

1Equivalently, one could call the nodes states. The term invariant
expresses that the state represented by the node is an invariant whenever
the program traverses a (possibly infinite) path through G to reach the
respective node.

6. Otherwise, insert a fresh node into G and add an
edge from inv to post(inv, pre(πi,j)). In this case,
add pairs 〈post(inv, pre(πi,j)), 〈pre(πi′,j′), ϕi′,j′〉〉
into the worklist for all transfer functions
〈pre(πi′,j′), ϕi′,j′〉 and proceed with step 2.

Discussion of Intrinsics For all involved operations,
algorithms are known from the literature. Our contribu-
tion here is a novel combination of these existing algo-
rithms. The intersection u of two octagons is computed
by representing the octagons in terms of difference-
bound matrices (DBMs) and computing the component-
wise minimum [25, p. 10]. Whereas the guards derived
for blocks a-priori are tightly closed – intuitively, this
means that all hyperplanes defined through inequalities
actually touch the enclosed volume – the greatest lower
bound operator u does not preserve this property [25, p.
28]. On the other hand, testing emptiness of octagons
is based on investigating cycles in their potential graphs
[1, 25], but the algorithm is only applicable to tightly
closed octagons (in case of integral solutions). Hence,
the tight closure of inv u gi,j , which can be computed in
cubic time [2], has to be used as the input for the empti-
ness test. Essentially, the tight closure makes all implict
constraints explicit.

As an alternative, one could use the two-phase Sim-
plex algorithm for testing emptiness, since the first stage
of the two-phase Simplex algorithm amounts to deciding
feasibility of the system by solving the so-called auxil-
iary problem [10]. Transforming an invariant using an
affine relation to obtain an octagonal postcondition is
based on linear programming.

Finally, a new (larger) CFG for the loop is generated
by simply expanding all edges in the resulting graph G.
We discuss the details of the applied operations in the
remainder of this section.

4.1.1 Transforming inv u pre(π)

The interesting step in our algorithm amounts to apply-
ing an affine transfer function ϕ to an octagonal invariant
invupre(π) in order to obtain post(inv, pre(π)). While it
is possible to directly transform the octagonal constraints
by applying the affine transfer function, this would yield
a convex polyhedron in general: While the dimension-
ality does not grow, the unit gradient of the octagonal
hyperplanes might be scaled arbitrarily.

Numerous ways exist for deriving octagonal abstrac-
tions from convex polyhedra. The seminal paper on oc-
tagons [25, Sect. 4.3] described an exact abstraction
for Q and R, based on a frame representation of the
convex polyhedron. A frame consists of a finite set
of vertices V = {v1, . . . , vk} and a finite set of rays

5

R = R1, . . . , Rl such that:{
k∑
i=1

λiVi +

l∑
i=1

µiRi | λi ≥ 0, µi ≥ 0,

k∑
i=0

λi = 1

}
Extracting octagonal constraints from the frame has

the worst-case complexity O(n2× (|V |+ |R|)), and op-
timality is guaranteed for solutions in Q or R only. To
remedy this computational bottleneck, we use a different
(non-optimal) method based on the Simplex algorithm
[1, 22]. While this method has exponential worst-case
complexity in theory, it is extremely efficient in practical
applications (and has shown linear complexity in all our
experiments).

Algorithm post(inv, pre(π)) consists of a conjunction
of (at most 8) octagonal constraints for every two vi, vj ∈
V , each of which is of the form ±v′i ± v′j ≤ c′. Addi-
tionally, we have a precondition that is a conjunction of
inequalities, and an update that is an affine relation con-
sisting of a conjunction of affine equalities. To obtain c′,
our approach uses linear programming applied separately
to each constraint.

That is, it maximizes the target function±v′i± v′j sub-
ject to the additional constraints pre(π) and ϕ, which
yields c′. In case that c′ 6∈ N, we define the resulting con-
straint as ±v′i ± v′j ≤ bc′c if c′ ≥ 0 and ±v′i ± v′j ≤ dc′e
otherwise, which is safe but non-optimal. This step is re-
peated for each octagonal output constraint, such that the
method yields post(π).

Complexity The Simplex algorithm operates on Q,
while our domain consists of bounded integers. How-
ever, we only consider the relaxed (non-optimal) opti-
mization problem for performance reasons. Further, if
the constraints consist of two variables per inequality, the
worst-case complexity is cubic [34].

Example As an example, consider an octagonal pre-
condition x+ y ≤ 96 and the following affine system:

x′ = 2x+ y y′ = 4y

To derive an upper bound for θ = x′ + y′, maximize θ
subject to the following constraints:

x′ − 2x+ y = 0 x+ y ≤ 96
y′ − 4y = 0

Simplex then computes the maximal solution x′ + y′ =
85.3̄ in three iterations. Since 85.3̄ 6∈ N, we set c′ =
b85.3̄c = 85. This solution over-approximates the inte-
gral system because the maximum value is derived for
x = 10.6̄ and y = 21.3̄, whereas the maximal value ob-
tained through integer linear programming (ILP) is 80.

4.2 Convergence
The refinement is guaranteed to terminate due to mono-
tonicity of the intersection and the finiteness of the do-
main. Even though octagons do not satisfy the finite as-
cending chain condition when defined over unbounded
integers, this is not so for the bounded case, and there-
fore, only a finite number of vertices can be inserted into
the graph.

While the runtime requirements for the refinement did
not cause any problems in our experiments, they might
become an issue for larger and more complex loops. We
suggest two strategies that enforce faster termination of
the refinement process: The maximum depth ofG can be
bounded, or weak refinements can be ignored.

4.2.1 Bounded Refinement

Using this strategy, each node of G stores its minimal
distance from the root node>. This is done by assigning
0 to the root node and assigning∞ to all newly created
nodes. A node’s distance is updated each time a new
edge is added targetting it.

Step 6 of the algorithm then checks whether the cur-
rent node’s distance is already equal to a given upper
bound. In this case, no fresh node is added, but in-
stead an existing node is used as replacement. A valid
candidate for a replacement must represent an invariant
that is weaker than the current post(inv, pre(πi,j)). All
such candidates preserve are sound, and > will always
be a valid candidate. Using a breadth-first strategy in the
worklist, it is guaranteed that all nodes are created before
the first replacement is needed. Therefore, when choos-
ing a replacement, all possible candidates are known and
an optimization criterion can be used for selection.

Algorithm Let post(inv, pre(πi,j)) be the invariant
that no fresh node may be created for and let
inv1, . . . , invn be all valid replacement candidates, that
is, we have invi w post(inv, pre(πi,j)) for all 1 ≤ i ≤ n.
We suggest three different optimization criteria:

1. Select the candidate with the smallest volume.

2. Only consider variables that are directly used in
conditional branches for calculating the volume.
Then, select the candidate with the smallest volume.

3. For all candidates and all variables calculate the in-
crease of range. Select the candidate with lowest
maximum increase.

Using the first strategy, the overall weakening of the
invariant is minimized. Using the second one, special
consideration is given to variables that directly influence
the control flow (i.e., possible paths). The last strategy
inhibits drastic changes in one particular dimension.

6

1: x=1;
2: while (x < len) {
3: y = x + 1;
4: do {
5: if ((y & x) != 0) {
6: a[x] ˆ= a[y];
7: y++;
8: } else {
9: y += x;
10: }
11: } while (y <= len);
12: x <<= 1;
13: }

Figure 5: Hamming code calculation

4.2.2 Norm-Based Refinement

The bounded refinement approach only searches for re-
placements to limit the depth of G. However, it might be
hard to choose a suitable bound a-priori. Another way to
accelerate converge is to inhibit refinements that do not
lead to significantly strengthened invariants, compared
to existing ones in G. Using the norm-based refinement
strategy, each time a fresh node is about to be added to
G, the algorithm compares all existing nodes using one
of the optimization criteria from above. If the new node
is too similar to an existing node (e.g., the volume is not
sufficiently lower), that node is used as a replacement.

4.3 Finite Automata & Regular Languages

Observe that the refined CFG can equivalently be inter-
preted as a finite automaton, and thus, defines a regular
language over the alphabet Π constraining the possible
loop executions. This is the interpretation chosen in [5].
Naturally, this leads to the question if a more expres-
sive class of languages or automata provides additional
benefit. An extension towards context-free languages (or
equivalently, pushdown automata) appears to be natural.

5 Nested loops

Until now, we have only considered simple loops without
inner loops. Nested loops, however, are very common in
practice. This section describes two strategies of extend-
ing the refinement algorithm to nested loops.

For both refinement strategies, the notion of paths is
slightly altered by collapsing inner loops. In the exam-
ple given in Fig. 5, the outer loop has only one path
π = 〈1, L, 12, 13〉 where L denotes the inner loop con-
sisting of two paths. In general, a path πi is devided
into several path fragments π1

i,j , . . . , π
n
i,j to separate in-

ner loops. Further, for each πmi,j the preprocessing step
derives ki,j,m transfer functions 〈pre(πmi,j), ϕmi,j〉, one for

each fragment, and the nodes representing invariants are
augmented with a program counter p of the last statement
in the sequence. From each node, only transfer functions
are applicable that start in p. For the sake of simplicity,
we assume in the following that an outer loop path con-
sists of two path fragments separated by one inner loop.

5.1 Bottom-up Refinement
Here, the inner loop is refined first using the initial in-
variant yielding a graph GL. For the refinement of the
outer loop, let 〈inv, 〈pre(πki,j), ϕki,j〉〉 be the element just
removed from the work list in step 2. Assume that inv
holds for program location p, and 〈pre(πki,j), ϕki,j〉 is a
transfer function for a path through the inner loop.

If inv u pre(πki,j) 6= ∅, apply the fragment update ϕki,j
and denote the result by post(inv, pre(πki,j)). Next, se-
lect a replacement for post(inv, pre(πki,j)) from GL, fol-
lowing one of the strategies described in Sect. 4.2.1. All
terminal states inGL that are reachable from the replace-
ment node in GL are suitable candidates. Then, proceed
with the refinement from the chosen terminal node.

Hence, the bottom-up strategy refines each loop only
once, but can only rely on weak initial invariants.

5.2 Top-down Refinement
In order to enhance precision, top-down refinement uses
the same principle of path fragmentations, but instead
of refining the inner loop with an initial invariant, top-
down refinement does not choose replacement candi-
dates among terminal nodes of an initially created graph
for the inner loop. This approach avoids the pessimistic
over-approximation that takes place during bottom-up
refinement when selecting a suitable replacement node,
and thus, derives the best results the refinement algorithm
can compute (with respect to the given abstract domains).

5.3 Comparison
To illustrate the differences in expressiveness, consider
the intricate program in Fig. 5. The code fragment cal-
culates Hamming code control bits for a bit array a of
length len. Note that indexing starts at 1 and all bits
with an index that is a power of 2 are control bits. In
case the last bit of the array is a control bit, the value
would always be 0 and is, therefore, not calculated.

When the bottom-up strategy is applied, no upper
bound for y in the inital invariants of inner loop can be
derived. Therefore, an interval analyzer operating on the
CFG refined using the bottom-up strategy will detect an
out-of-bounds array access in a[y]. On the other hand,
the validity of the access is determined when using a top-
down refinement.

7

6 Experiments

We have implemented the ideas described in this pa-
per in the [MC]SQUARE verification tool [30, 31], where
SAT4J [23] is used as the SAT solving back-end.

The runtime requirements for deriving a transfer func-
tion for the example program in Fig. 1 are negligible.
For the program in Fig. 3, deriving the six different
transfer functions for the two paths required 0.8s includ-
ing bit-blasting and CNF conversion [22, 27]. Since
the [MC]SQUARE analyzes the compiled binary, the an-
alyzed fragment consists of 23 instructions, and the
abs function is implemented using bitwise operations
to avoid conditional branching.

Observe that this is significantly less than the runtime
for bit-wise linear congruences [8, 21], mainly due to two
reasons: (1) The worst-case chain length for affine equal-
ities is linear, whereas it is polynomial for congruences.
(2) The join applied during transfer function synthesis is
cubic in the number of variables, and thus, susceptible to
the number of variables used. Handling words instead of
bits significantly reduces the complexity.

Applying the refinement process then required approx-
imately 0.1 seconds. When a non-relational interval anal-
ysis [9] is executed on the refined CFG, the runtime nat-
urally increases (by a factor of 3) to 0.15 seconds for
the program in Fig. 3. Whereas the interval analysis
operating directly on the CFG from the Hamming code
calculation (cp. Fig. 5) can only derive the invariant
x < len, but no restriction on y, the invariant from the
refined CFG also states that y ≤ len, proving correct-
ness of the array-access. Existing approaches not reason-
ing about programs at this granularity cannot verify this
property. Deriving transfer functions required 0.9 sec-
onds, and the refinement process was finished after 0.25
seconds, where most of the runtime is spent on detecting
fixed points.

7 Related Work

The problem of analyzing path-specific program prop-
erties using abstract interpretation has led to the devel-
opment of numerous approaches and techniques such as
trace partitioning [24], Boolean partitioning [33], dis-
junctive completion [14, 16, 29], and path-sensitive anal-
ysis [6, 18]. On the one hand, techniques based on
disjunctive domains typically do not scale to large pro-
grams, although recent work by Gurfinkel and Chaki [17]
aims at alleviating this problem by representing disjunc-
tive completions of intervals using BDD-like structures.
On the other hand, partitioning techniques heavily rely
on heuristics to choose split-points. Path-sensitive anal-
yses are typically not well-suited for loops.

Instead of strengthening the power — and thus, the
complexity — of abstract domains to integrate path-
related information, we follow the approach proposed
in [5]. The key idea of their technique is to refine the
CFG of a program in order to increase the precision of
abstract interpreters. However, the details of their ab-
stract interpreter are not discussed and it is not known if
their framework is applicable to bit-manipulating code.

In contrast, our work is tailored towards a specific
combination of abstract domains, namely octagons [25,
2, 3] and affine equalities [19]. To derive invariants, we
utilize transfer functions using Boolean logic [7]. This
technique, which is essentially an adaptation of [26] to
bounded integers, allows us to derive updates for blocks
of non-affine operations. Through the application of
guarded updates, this method handles wrap-around arith-
metic using domains whose expressiveness does not suf-
fice for representing modular arithmetic on their own.

The refinement itself heavily depends on linear pro-
gramming and satisfiability tests, which are specifically
tailored to octagon constraints. For instance, satisfiabil-
ity of a system of octagonal constraints is performed by
computing its tight closure [25, 2, 3]. Analyzing loops
using octagons usually requires widenings [15] to guar-
antee termination. In our case, the sum of two variables
is bounded by twice the width of the domain.

8 Conclusion

Discussion In this paper we have shown how to re-
fine the control structure of loops over bounded integers,
based on pre- and postconditions that are expressed as
octagon constraints. Computing postconditions is based
on applying affine updates to octagonal inputs. This tech-
nique strengthens the invariants computed by abstract
interpreters and also allows to detect termination bugs
stemming from rather intricate cornercases.

Future Work Interestingly, the octagons obtained
through SAT are tightly closed [25]. However, this also
implies that they contain many redundant inequalities,
which can negatively influence the runtime. Thus, it
would be interesting to see if either a reduced represen-
tation [3] can be obtained in advance, or how reducing
constraints prior to the analysis affects the runtime.

Another issue that calls for future work is the handling
of nested loops: Affine transfer functions for inner loops
could be compiled from least inductive invariants [26].
Then, modeling the effects of inner loops amounts to
applying a single transfer function, which could signif-
icantly improve the performance.

Further, in [MC]SQUARE, several abstraction tech-
niques based on abstract interpretation are applied dur-

8

ing model checking, which have to preserve divergence
properties, e.g., a partial-order reduction method [32] for
interrupt-driven software. A drawback is that the execu-
tion of interrupt handlers must not be moved across the
boundaries of loops since their termination is not guar-
anteed. Slicing [35] suffers from similar problems. Con-
sequently, integrating the refinement technique and the
corresponding termination results appears promising.

Acknowledgment

The work of Jörg Brauer and Stefan Kowalewski was,
in part, supported by the DFG Cluster of Excellence
on Ultra-high Speed Information and Communication
(UMIC), German Research Foundation grant DFG EXC
89. The work of Volker Kamin was, in part, funded by
the European FP7 project MULTIFORM, contract num-
ber INFSO-ICT-224249.

References
[1] BAGNARA, R., HILL, P., AND ZAFFANELLA, E. The parma

polyhedra library: Toward a complete set of numerical abstrac-
tions for the analysis and verification of hardware and software
systems. Sci. Comput. Program. 72, 1-2 (2008), 3–21.

[2] BAGNARA, R., HILL, P. M., AND ZAFFANELLA, E. An im-
proved tight closure algorithm for integer octagonal constraints.
In VMCAI (2008), vol. 4905 of LNCS, Springer, pp. 8–21.

[3] BAGNARA, R., HILL, P. M., AND ZAFFANELLA, E. Weakly-
relational shapes for numeric abstractions: Improved algorithms
and proofs of correctness. Formal Methods in System Design 35,
3 (2009), 279–323.

[4] BALAKRISHNAN, G., AND REPS, T. W. WYSINWYX: What
You See Is Not What You eXecute. ACM Trans. Program. Lang.
Syst. (2010). To appear.

[5] BALAKRISHNAN, G., SANKARANARAYANAN, S., IVANCIC, F.,
AND GUPTA, A. Refining the control structure of loops using
static analysis. In EMSOFT (2009), ACM Press, pp. 49–58.

[6] BALAKRISHNAN, G., SANKARANARAYANAN, S., IVANCIC, F.,
WEI, O., AND GUPTA, A. SLR: Path-sensitive analysis through
infeasible-path detection and syntactic language refinement. In
SAS (2008), vol. 5079 of LNCS, Springer, pp. 238–254.

[7] BRAUER, J., AND KING, A. Automatic abstraction for intervals
using boolean formulae. In SAS (2010). To appear.

[8] BRAUER, J., KING, A., AND KOWALEWSKI, S. Range analysis
of microcontroller code using bit-level congruences. In FMICS
(2010), LNCS, Springer. To appear.

[9] BRAUER, J., NOLL, T., AND SCHLICH, B. Interval analysis
of microcontroller code using abstract interpretation of hardware
and software. In SCOPES (2010), ACM. To appear.

[10] CHVÁTAL, V. Linear Programming. W. H. Freeman and Com-
pany, 1983.

[11] CLARKE, E., BIERE, A., RAIMI, R., AND ZHU, Y. Bounded
model checking using satisfiability solving. Formal Methods in
System Design 19, 1 (2001), 7–34.

[12] CLARKE, E., KROENING, D., AND LERDA, F. A tool for check-
ing ANSI-C programs. In TACAS (2004), vol. 2988 of LNCS,
Springer, pp. 168–176.

[13] COUSOT, P., AND COUSOT, R. Abstract interpretation: A unified
lattice model for static analysis of programs by construction or
approximation of fixpoints. In POPL (1977), ACM, pp. 238–252.

[14] COUSOT, P., AND COUSOT, R. Systematic design of program
analysis frameworks. In POPL (1979), ACM, pp. 269–282.

[15] COUSOT, P., AND COUSOT, R. Comparing the Galois connec-
tion and widening/narrowing approaches to abstract interpreta-
tion. In PLILP (1992), vol. 631 of LNCS, Springer, pp. 269–295.

[16] GIACOBAZZI, R., AND RANZATO, F. Optimal domains for dis-
junctive completion. Science of Computer Programming 32, 1–3
(1998), 177–210. 6th European Symposium on Programming.

[17] GURFINKEL, A., AND CHAKI, S. BOXES: A symbolic abstract
domain of boxes. In SAS (2010). To appear.

[18] HARRIS, W. R., SANKARANARAYANAN, S., IVANCIC, F., AND
GUPTA, A. Program analysis via satisfiability modulo path pro-
grams. In POPL (2010), ACM Press, pp. 71–82.

[19] KARR, M. Affine relationships among variables of a program.
Acta Informatica 6 (1976), 133–151.

[20] KING, A., AND SØNDERGAARD, H. Inferring congruence equa-
tions using SAT. In CAV (2008), vol. 5123 of LNCS, Springer,
pp. 281–293.

[21] KING, A., AND SØNDERGAARD, H. Automatic abstraction for
congruences. In VMCAI (2010), vol. 5944 of LNCS, Springer,
pp. 281–293.

[22] KROENING, D., AND STRICHMAN, O. Decision Procedures.
Springer, 2008.

[23] LE BERRE, D. SAT4J: Bringing the power of SAT technology to
the Java platform, 2010. http://www.sat4j.org/.

[24] MAUBORGNE, L., AND RIVAL, X. Trace partitioning in abstract
interpretation based static analyzers. In ESOP (2005), vol. 3444
of LNCS, Springer, pp. 5–20.

[25] MINÉ, A. The octagon abstract domain. Higher-Order and Sym-
bolic Computation 19, 1 (2006), 31–100.

[26] MONNIAUX, D. Automatic Modular Abstractions for Linear
Constraints. In POPL (2009), ACM Press, pp. 140–151.

[27] PLAISTED, D. A., AND GREENBAUM, S. A structure-preserving
clause form translation. Journal of Symbolic Computation 2, 3
(September 1986), 293–304.

[28] REPS, T., SAGIV, M., AND YORSH, G. Symbolic implemen-
tation of the best transformer. In VMCAI (2004), vol. 2937 of
LNCS, Springer, pp. 252–266.

[29] SANKARANARAYANAN, S., IVANCIC, F., SHLYAKHTER, I.,
AND GUPTA, A. Static analysis in disjunctive numerical do-
mains. In SAS (2006), vol. 4134 of LNCS, Springer, pp. 3–17.

[30] SCHLICH, B. Model Checking of Software for Microcontrollers.
Dissertation, RWTH Aachen University, Germany, June 2008.

[31] SCHLICH, B., BRAUER, J., AND KOWALEWSKI, S. Applica-
tion of static analyses for state space reduction to microcontroller
binary code. Sci. Comput. Program. (2010). To appear.

[32] SCHLICH, B., NOLL, T., BRAUER, J., AND BRUTSCHY, L. Re-
duction of interrupt handler executions for model checking em-
bedded software. In HVC (2009), LNCS, Springer. To appear.

[33] SIMON, A. Splitting the control flow with boolean flags. In SAS
(2008), vol. 5079 of LNCS, Springer, pp. 315–331.

[34] WAYNE, K. A polynomial combinatorial algorithm for general-
ized minimum cost flow. In Theory of Computing (1999), ACM,
pp. 11–18.

[35] WEISER, M. Program slicing. In Software engineering (ICSE
81) (1981), IEEE Press, pp. 439–449.

[36] XIE, Y., AND AIKEN, A. Saturn: A scalable framework for
error detection using boolean satisfiability. ACM Trans. Program.
Lang. Syst. 29, 3 (2007), 1–43.

9

