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Abstract

This paper describes the current improvements of the RWTH
Mandarin LVCSR system. We introduce a new reduced toneme
set developed at RWTH. We are using different toneme sets and
pronunciation lexica. For the purpose of discriminative training
we will show a fast way to transform word lattices between sys-
tems using different toneme sets and pronunciation lexica. In
addition to various acoustic front-ends, the current systems use
different kinds of neural network toneme posterior features.
While different kinds of systems are developed, a two stage
decoding framework for combining these systems is applied.
We show detailed recognition results of the development cycle
of the systems. Finally, two methods to integrate tonal features
are compared.
Index Terms: Mandarin speech recognition, LVCSR, system
combination, multiple feature streams

1. Introduction

Within the GALE project, we have developed a automatic
speech recognizer for continuous Mandarin speech, handling
broadcast news (BN) and broadcast conversations (BC). This
paper summarizes the further development and improvement of
our work presented in [1]. The final system is competitive to
current Mandarin speech recognizers, [2, 3, 4].

We start by introducing two different toneme sets and
dictionaries used. The LC-STAR toneme set (denoted as
RWTH—-83) and the corresponding pronunciation lexicon are
taken from the preceding system, [1]. In addition, we use a
toneme set and pronunciation lexicon based on the lexicon of
the University of Washington (UW). Section 3 describes the
acoustic models based on a MFCC and a PLP front-end in
combination with two neural network posterior features [5, 6].
While the computationally most expensive part in discrimina-
tive training is the generation of word lattices for a huge amount
of data, we present a fast and simple way for porting word lat-
tices for discriminative training across different toneme sets.

In Section 4 we describe the training and testing corpora
followed by the experimental sections. We commence by com-
paring the new toneme sets and an investigation to include tonal
features in a single LDA, in Section 5.1 and 5.2 resp. Finally,
Section 6 describes the definite decoding framework used for
the GALE 2007 re-evaluation. The system consists of two de-
coding runs joined by a cross-adaptation step. We present de-
tailed character error rates (CER) for the decoding process fol-
lowed by the final result, competitive to other state-of-the-art
decoders.

2. Pronunciation Dictionary and Language
Model

The RWTH Mandarin LVCSR system follows a common ap-
proach for Mandarin LVCSR systems and uses word-based
toneme pronunciation models [2, 4, 3].

We present two different pronunciation models, both follow
the main-vowel principle as described in [7]. The first toneme
set (RWTH—83) is the one used in [1], a subset of SAMPA-
C [8] which contains 14 vowels (equivalently 55 tonal vowels),
26 consonants, one silence and one garbage phone. The main
source for this pronunciation dictionary is the LC-Star Man-
darin lexicon [9].

The second toneme set (RWTH-71) is an improved version
of the first toneme set. There are three different glides in Man-
darin, /y, w, v/. In RWTH—83 glides are tonal, making
triphones fragmented. For example, syllable dui4 in Pinyin is
pronounced as d w4 e4 y4. It splits /w[ed]y/ triphone
into 16 possibilities, causing the Markov state clustering ex-
tra difficulty. Furthermore, RWTH-83 contains three additional
toneless glides for those Mandarin syllables beginning with
glides, suchas yan2 — /y y2 a2 n/,wan2 — /w w2
a2 n/and yuan2 — / v v2 a2 n/. These extra glides
make the HMM duration unnecessarily longer for that syllable,
and limit the triphone context length.

In light of this flaw, we design RWTH-71 following [2].
Starting from the UW 72-phone set in Table 4 of [2], we add
tonal diphthongs /ey/ and /ay/, get rid of Y, merge tonal
a and A, but keep tonal /IH, I, i/ separate. Next, we re-
place tonal yu with tonal v i to get rid of yul-4, resulting
in RWTH-71.

Table 1: changes in the toneme set
(a) pronunciations (b) syllables with v-glide
duid — dw ey4 jiong3 — Jj v 03 NG
yan2 — 'y a2 n giong2z — g v 02 NG
wan2 — w a2 n xiongl — x v ol NG
yuan — VvV a2 n yong3 — v 03 NG

The pronunciations of the above mentioned syllables are
listed in Table 1.a. Finally, in RWTH-71 we use v-glide (instead
of y-glide, as most Mandarin systems do) for the four syllables
in Table 1.b.

The two language models (LMs) used in this work were
kindly provided by UW and SRI. Both LMs share the same
60K vocabulary. The first 4-gram LM (LM.v1), used in all rec-
ognizers, is the same pruned LM as the one used in the GALE
2007 summer evaluation. The second 4-gram LM (LM.v2) is
an improved version of LM.v1, using more data and no prun-
ing. LM.v2 is used in lattice rescoring.



3. Acoustic Modelling

Similar to the systems presented in [10] and [1], the subsystems
differ only in their acoustic front-ends, and the toneme set, the
pronunciation dictionary, resp. The toneme set and the pronun-
ciation dictionary are described in Section 2. The final system
in the GALE 2007 re-evaluation consists of two subsystems la-
belled sl and s2. While sl is trained using RWTH—83, s2 is
based on RWTH—71. The acoustic training is performed inde-
pendently for each of the subsystems.

3.1. Acoustic Features

The acoustic front-ends of the (sub-)systems consist of MFCCs
or PLPs as base features. In addition, a voicedness feature [11]
is augmented to the PLP feature extraction of s2 while s1 con-
sists of MFCCs only. The features are normalized by segment-
wise mean and variance normalization and are fed into a sliding
window of length nine. All feature vectors within the sliding
window are concatenated and projected to a 45 dimensional fea-
ture space using a linear discriminative analysis (LDA).

In addition, a tonal feature and its first and second deriva-
tives, represented by the first and second order regression co-
efficients, are augmented to the LDA-transformed baseline fea-
tures. Tonal information is crucial for Mandarin ASR systems,
because tonal patterns play an important role in distinguishing
tonemes and words in the Mandarin language. The tonal feature
used is described in [12].

For the experiments in Section 5.2, the setup is slightly dif-
ferent. Instead of augmenting the LDA-transformed baseline
features to the tonal features, a common LDA for both feature
streams is used, following [13]. In this case no derivatives of
the tonal features are used.

Finally, the features of sl and s2 each are concatenated
with toneme posterior features produced by a neural network
trained on a 1200h subset of the training corpus. S1 uses hier-
archical MRASTA (HMRASTA) features, produced by a hier-
archical neural network with multiple time resolution features
(MRASTA) [5] as input. We use a hierarchy of three nets to
produce the HMRASTA-features following [14]. The first and
second net uses the higher and lower frequency parts of the
MRASTA features, combined with PLP features in the last net.
At the end, the toneme posterior features are transformed by a
logarithm and reduced by a principal component analysis (PCA)
to 51 dimensions. Overall, concatenation of all features leads to
a feature dimension of 99 for s1.

In contrast to sl, s2 uses neural network features based
on TANDEM, [15], and hidden activation temporal patterns
phoneme posteriors (HATs) described in [6, 2]. Finally, the
TANDEM and HAT features are combined using the Dempster-
Shafer [16] algorithm, transformed by a logarithm and reduced
by a PCA. Overall, s2 uses 80 feature components.

3.2. Acoustic Training

The acoustic models for all systems are based on triphones with
cross-word context, modelled by a 3-state left-to-right hidden
Markov model (HMM). A decision tree based state tying is ap-
plied resulting in a total of 4500 generalized triphone states.
The acoustic models consist of Gaussian mixture distributions
with a globally pooled diagonal covariance matrix. Both maxi-
mum likelihood (ML) and discriminative training are applied.
The filterbanks underlying the MFCC and PLP feature ex-
traction undergo a vocal tract length normalization (VTLN).
The warping factor classifier is trained beforehand on the com-

plete training corpus. For the training with VTLN on 230 hours
no new classifier was trained.

In order to compensate for speaker variations we have
used constrained maximum likelihood linear regression speaker
adaptive training (SAT/CMLLR). While s1 uses the standard
approach, for s2 a modified version of the SAT/CMLLR train-
ing is applied. The speaker adaptive training is combined with
the LDA-transformation step, resulting in speaker-specific di-
mension reducing feature transformation matrices as introduced
in [17]. In addition, during recognition, MLLR is applied to the
means of the acoustic models.

Minimum phone error (MPE) [18] is applied to refine the
ML trained acoustic models. For the MPE training of the two
different systems we generate word-conditioned word lattices
using the SAT/CMLLR model of sl in combination with a bi-
gram language model. System dependent alignments are pro-
duced for the accumulation and are kept fixed during the train-
ing iterations. The optimal number of training iterations is de-
termined by recognition on the development corpus.

In order to save computation time, we use a fast way to
convert the generated word lattices of s1 to the new toneme set
of s2. Since the two toneme sets share the same lexicon we
do not need to convert these words or to build up words from
the pronunciations matching a second lexicon. In order to cope
with alternative pronunciations we have to combine them first
and split them afterwards. Due to that a weight factor is intro-
duced to allow alternative pronunciations in the converted word
lattices. After mapping the different words to all pronuncia-
tions provided by the pronunciation dictionary of s2, the weight
factors are chosen uniformly w.r.t. the scores. The pronunci-
ations are realigned afterwards and the word boundary times
are kept fixed. During the whole procedure. Finally, the trans-
formed word lattices are used for discriminative training of s2.
As shown in Section 6, the new word lattices work very well.

4. Corpora

1534h of broadcast news (BN) and broadcast conversations
(BC) of speech data collected by LDC are used for training.
The corpus includes data from the Hub4 and TDT4 corpora and
from the first three years of the GALE project (releases P1R1-4,
P2R1-2, P3R1).

For the development cycle of the system, a 230h subset of
the corpus has been created. The subset contains the HUB4
corpus (30h), 100h of BN and 100h of BC from the four releases
of the first year of the GALE project. Table 2 gives detailed
statistics for the corpora used.

Table 2: Acoustic data for training and testing

Training Data Testing Data
230h | 1534h || eval06 | devO7
total data || 230h | 1534h 22h | 2.55h
# segments || 206K 1.3M 1301 1985
# running words || 2.2M | 15.5M 22K 28K
# distinct words 40K 63K 5.3K 5.3K

For the final systems we use the GALE 2007 development
corpus (dev07) for tuning and the GALE 2006 evaluation cor-
pus (eval06) for testing. As shown in Table 2, the eval06 corpus
contains 2.2 hours of BN and BC, while dev07 contains 2.55
hours. The two corpora used are manually segmented and pro-
vided by LDC. However, in the development cycle of the sys-
tem, the segmentations provided by UW, labelled eval06.v1 and
dev07.v1, are used. In addition, the training transcripts were
pre-processed by UW-SRI as described in [19].



Table 3: Improvements of the RWTH Mandarin LVCSR System using different toneme sets and pronunciation lexica.

CER[%]
dev07.v1 eval07.vl
Toneme Set || VTLN [ SAT/CMLLR [ LM-rescore | VTLN [ SAT/CMLLR [ LM-rescore
RWTH-83 21.1 19.5 19.1 24.9 23.0 22.6
RWTH-71 20.7 19.0 18.5 24.3 224 21.7
Table 4: different combination of acoustic feature streams
CER[%]
dev07.v1 eval07.v1
Phoneme Set Integration VTLN [ SAT/CMLLR [ LM-rescore | VILN [ SAT/CMLLR [ LM-rescore
mfcc + tone concatenated 17.3 15.5 14.6 24.4 21.7 20.6
common LDA 16.9 154 14.5 24.3 21.6 20.5
plp + tone concatenated 17.4 15.6 14.6 242 219 21.0
common LDA 17.0 15.6 14.6 24.4 21.9 21.0

5. System Development
5.1. Development of the Toneme Set

In this section we present the results concerning the improve-
ments introduced by RWTH-71 in contrast to the old toneme
set RWTH-83.

The acoustic models based on MFCC features are trained
on the 230 hour subcorpus mentioned in Section 4. The recog-
nition is performed on the two acoustic segmentations eval06.v1
and dev07.v1 of the evaluation and development corpus. The
recognition is divided into three passes, starting with VTLN-
warped features as the first pass. More information of the 3-
pass recognition setup is given in Section 6.1 and Figure 1.
The VTLN warping factor classifier is trained beforehand on
the 1500h corpus. As the second step, SAT/CMLLR adaptation
is applied, followed by a lattice rescoring with LM.v1.

Table 3 summarizes the improvements from the new
toneme set and pronunciation lexicon. The toneme set
RWTH-71 leads to an absolute reduction of the character error
rates (CER) of about 0.4%-0.6% for dev07.vl and more than
0.6% for eval06.v1. Overall, the relative improvement is up to
2%-4% for all three passes and corpora.

5.2. Acoustic Feature Combination

Our standard approach to integrate additional acoustic feature
sets is to augment these features to the LDA-transformed base
features. As an alternative, described in Section 3.1, we feed all
features into a common LDA estimation. The two approaches
are labelled ”concatenated” and “common LDA” in Table 4.

The common LDA approach performs well for the first pass
on dev07 and improves the MFCC and PLP system up to 0.4%
absolute, but eval06 is improved only slightly. Furthermore,
the decrease for all other steps is slightly less. Nevertheless,
a common LDA results in a small improvement, but has to be
investigated further.

6. Evaluation System

In this section, the final system used in the GALE 2007 re-
evaluation is presented. The final system consists of two sub-
systems labelled s1 and s2, trained on the complete training
corpus. The detailed acoustic front-ends used are introduced
in Section 3.

cross-adapt

LM-rescore

i

s1
| I

Figure 1: Two stage cross-adaptation: 3-pass stage for a single
system followed by a 2-pass cross-adaptation stage

6.1. Decoding Architecture

Similar to [1], the decoding framework is divided into two main
stages, starting with a multipass recognition stage. The first
two passes are realized by a 4-gram Viterbi decoder, while the
third pass uses lattice based LM rescoring. Figure 1 shows the
complete decoding process for the final system.

While the first pass uses the ML model with VTLN normal-
isation, the SAT/CMLLR recognition is performed by the MPE
trained model. The adaptation statistics for this step are col-
lected from the previous recognition result. For VTLN normal-
isation, we estimate a classifier on the complete training corpus.
Finally, the word lattices produced in the last recognition step
are rescored with the full LM.v2. Experimental results on the
tune and development sets are given in Table 5.

Table 5: recognition results for first decoding stage

CER[%]
corpus | system || VILN | SAT/CMLLR | LM-rescore
dev07 | sl 15.8 12.4 11.7
s2 12.9 10.8 10.5
eval06 | sl 22.0 194 18.6
s2 194 16.6 16.1

Overall, the three passes of the first decoding stage result in
an error reduction of more than 20% relative for the test corpora,
compared to the VTLN baseline. Detailed CERs for each pass
are listed in Table 5.

The second stage of the decoding pipeline is divided into 2
passes. The first pass consists of cross-adaptation which pro-
vides a simple and effective way to combine systems [20]. In
particular, it allows to benefit from systems that show a signifi-
cantly higher WER or CER than the target system.



As shown in Table 6, s2 clearly outperforms s1. The differ-
ence between these systems is more than 1% absolute for dev07
and about 2% for eval06. Overall, the best benefit is reached
by cross adapting s2 with the output of s1, denoted by s1 — s2.
As alast step, we applied the min.fWER decoding method [21].
As shown in Table 6, the CER decreases by 0.5% absolute for
eval06 and 0.7% for dev07.

Table 6: Experimental results of the second decoding stage.

system CER[%]
dev07 | eval06
sl 11.7 18.6
s2 10.5 16.1
s1 —s2 9.8 15.6

7. Conclusion and Further Work

Recent improvements for the current RWTH LVCSR system
for Mandarin are presented. An new toneme set, RWTH-71,
is introduced, which decreases the character error rate by about
3% relative. Furthermore, we have presented a fast and sim-
ple technique to transform word lattices of another toneme set
without repeating the complete word lattice generation by a full
recognition. These word lattices have been used in the discrim-
inative training of the acoustic models. In addition, we have
compared two approaches to combine multiple feature streams.
While concatenation is the simplest approach, a common LDA
slightly improves the system. Research on this area will be con-
tinued at RWTH.

Finally the Mandarin system used in the GALE 2007 re-
evaluation is presented, consisting of two subsystems, differing
in the acoustic baseline features. Two different neural network
posterior features are used and cross-adaptation has been per-
formed.

In order to further improve the RWTH Mandarin system,
currently new methods for system and acoustic feature combi-
nation are investigated. Furthermore, we are planning to in-
tegrate new discriminative training criteria in the development
cycle of the RWTH Mandarin system.
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