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Abstract
The acoustic models of conventional state-of-the-art speech
recognition systems use generative Gaussian HMMs. In the past
few years, discriminative models like for example Conditional
Random Fields (CRFs) have been proposed to refine the acous-
tic models. CRFs directly model the class posteriors, the quanti-
ties of interest in recognition. CRFs are undirected models, and
CRFs do not assume local normalization constraints as HMMs
do. This paper addresses the issue to what extent such less re-
stricted models add flexiblity to the model compared with the
generative counterpart. This work extends our previous work in
that it provides the technical details used for showing the equiv-
alence of Gaussian and log-linear HMMs. The correctness of
the proposed equivalence transformation for conditional proba-
bilities is demonstrated on a simple concept tagging task.
Index Terms: Gaussian HMMs, language models, CRFs

1. Introduction
Conditional Random Fields (CRFs) [1, 2] and Hidden CRFs
(HCRFs) [3] are discriminative approaches which were intro-
duced in pattern recognition only a few years ago. These dis-
criminative models are considered to be superior to the conven-
tional Gaussian mixture models (GMMs) and Gaussian HMMs
(GHMMs) because of the more direct and flexible modeling of
CRFs [1, 4, 5] and HCRFs [3]. Some authors have reported
on experimental results supporting this claim [4, 3]. Only lit-
tle work, however, has been done so far to compare HCRFs
and GHMMs on a theoretical level. It has been shown, for in-
stance, that (discriminatively estimated) GMMs and log-linear
mixture models (LMMs) are equivalent from a functional point
of view [6]. Here, LMMs refer to mixture models with log-
linear rather than Gaussian components. In [6], it was also
claimed that this result extends to HMMs and language mod-
els. Here, we provide the technical details to prove this claim.

Assuming a class of log-linear HCRFspCRF,Λ(c|x) parame-
terized withΛ and a class of generative distributionspGen,θ(x, c)
parameterized withθ, we use the following notion of equiva-
lence.

Definition 1 The two probabilistic models pCRF,Λ(c|x) and
pGen,θ(c|x) induced by pGen,θ(x, c) via Bayes rule, are called
equivalent if for each Λ, there exists someθ such that
pCRF,Λ(c|x) = pGen,θ(c|x) (∀c, x), and vice versa.

A direct consequence of such an equivalence is that all
posterior-based algorithms would be equivalent, e.g. decoding
or discriminative training (MMI, MCE, MPE). Note that it is
not difficult to establish equivalence in the general case where
there are no (or only little) restrictions to the models. It is, how-
ever, not always obvious how additional parameter constraints

like for example the local normalization constraints of HMMs
can be imposed to the model without changing the induced class
posteriors. Keep in mind that the equivalence requires the trans-
formation in either direction, i.e., from the discriminative to
the generative model and from the generative to the discrimina-
tive model. The latter transformation is well-known and rather
straightforward [3, 6]. For this reason, we shall focus on the
opposite direction.

In contrast to [6] where the basics can be found, this work
focuses on the problem and the technical details of transform-
ing CRF parameters associated with conditional probabilities.
Besides the usual constraints of probabilities

p(c|c′) ≥ 0,
∑

c

p(c|c′) = 1, ∀c′ (normalization), (1)

conditional probabilities (cf. Markov models) often have acou-
ple of additional restrictions on the structure

p(cn|c
n−1
1 ) ≡ p(cn|cn−1), ∀n (dependence) (2)

pm(cm+n|cm+n−1) ≡ p(cn|cn−1), ∀m≥ 0,n (stationarity). (3)

The basic idea consists of first normalizing the joint prob-
abilities p(x, c), which define the complete probabilistic model.
Conditional probabilities, for instance, can be derived from the
joint probabilities by marginalization and applying Bayesrule.
The normalization constant cancels in the resulting ratiosof
pseudo probabilities, e.g.pCRF(c|x) without normalization con-
stant. So, the tricky thing about normalizing conditional proba-
bilities is to make sure that the structure (e.g. dependenceand
stationarity assumptions) is preserved.

The remainder of this paper is organized as follows. In
Sec. 2, we discuss the conditional probabilities by means ofa
simple tagging problem using a bigram model. This result is
used to show the equivalence of GHMMs and LHMMs in Au-
tomatic Speech Recognition (ASR) in Sec. 3. The theoretical
result is experimentally verified in Sec. 4 on a simple real-world
task.

2. Tagging Problem
The construction of conditional probabilities from a log-linear
CRF model is illustrated by means of a simple, yet non-trivial
model: concept tagging with a bigram model. Unlike ASR, the
tagging problem assumes a one-to-one mapping from the words
xN

1 to the conceptscN
1 , i.e., the alignment problem is deferred

until Sec. 3. For the time being, consider the CRF (without
normalization constant)

pCRF(c
N
1 |x

N
1 ) ∝ exp(α(cN,$))

N∏

n=1

exp(α(cn−1, cn) + β(cn, xn)) (4)
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In addition to the regular conceptsc ∈ Σ, we use the special con-
cept $ indicating the sentence end. Assume that this boundary
concept is also part of the bigram model and that the sequences
cN

1 start and end with this boundary concept, i.e.,c0 = cN+1 = $.
This model serves as preparation for the transition and language
models in ASR, which typically include such information (en-
try/exit states for HMMs, sentence boundary symbol for lan-
guage models), see Sec. 3.

As outlined in the introduction, the goal is to find a genera-
tive modelpGen(xN

1 , c
N
1 ) that is equivalent to the CRF in Eq. (4)

in the sense of Def. 1. The generative probabilities can be
decomposed into the emission probabilitiesp(x|c) associated
with β(c, x) and the bigram probabilitiesp(c|c′) associated with
α(c′, c)

pGen(x
N
1 , c

N
1 ) = p($|cN)

N∏

n=1

p(cn|cn−1)p(xn|cn). (5)

It is assumed that the emisssion probabilities are subject to the
constraints in Eq. (1) and the bigram probabilitiesp(c|c′) are
subject to the constraints in Eq. (1-3).

The pseudo emission probabilities exp(β(c, x)) can be nor-
malized positionwise

p(x|c) =
exp(β(c, x))

Z(c)
. (6)

The normalization constantZ(c) =
∑

x exp(β(c, x)) carries over
to the bigram parameters, i.e.,

α(c′, c) + β(c, x) =
(
α(c′, c) + logZ(c)

)
+
(
β(c, x) − logZ(c)

)

= α̃(c′, c) + β̃(c, x)

with α̃(c′, c) = α(c′, c)+ logZ(c) andβ̃(c, x) = β(c, x)− logZ(c)
such that the CRF remains unchanged. The normalization of the
bigram probabilities is based on these modified pseudo proba-
bilities, exp(α̃(c′, c)) and exp(̃β(c, x)).

The bigram probabilities can be constructed in a similar
way as in [7]. To avoid lengthy calculations, we state the so-
lution and verify that this solution satisfies the properties in
Eq. (1-3). In contrast to [7], we do not only assume that a so-
lution exists but also provide an existence proof. Furthermore,
our result does not only apply in the limit of infinite sequences
as in [7] but it also applies to finite sequences.

The result is based on the matrix notation of the bigram
probabilities. The transition matrixQ is defined to hold the un-
normalized bigram probabilities, i.e.,Q = [exp(α̃(c′, c))] where
c′ ∈ Σ ∪ {$} andc ∈ Σ ∪ {$} denote the previous and the current
concepts, respectively. Our “guess” is

p(c|c′) =
Qc′cvc

λvc′
. (7)

As will become clear in the proof of the next lemma,λ is the
largest eigenvalue of the transition matrixQ andv is the right
eigenvector ofQ associated withλ, vc are the components ofv.

Lemma 1 Assume the emission probabilities p(x|c) from
Eq. (6) and the bigram probabilities p(c|c′) from Eq. (7). Then,
the CRF pCRF(cN

1 |x
N
1 ) in Eq. (4) and the generative model

pGen(xN
1 , c

N
1 ) in Eq. (5) with these emission and bigram prob-

abilities are equivalent in the sense of Def. 1 subject to thecon-
straints in Eq. (1-3).

Proof First, the equivalence of the two models defined in
Eq. (4) and Eq. (5) can be verified by plugging the definitions

for p(x|c) in Eq. (6) andp(c|c′) in Eq. (7) into Eq. (5)

pGen(x
N
1 , c

N
1 ) =

1
λN+1

N+1∏

n=1

vcn

vcn−1

× QcN$

N∏

n=1

Qcn−1cn exp(β̃(cn, xn)).

(8)

These joint probabilities induce the posteriorspGen(cN
1 |x

N
1 ) =

pGen(x
N
1 ,c

N
1 )

∑

c̃N
1

pGen(x
N
1 ,c̃

N
1 )

. So, the term 1
λN+1 cancels because it appears both

in the numerator and the denominator of the posterior. The
(telescope) product overvc

vc′
is 1 by our model assumption that

vc0 = vcN+1 = $. Hence, equivalence holds.
Second, we check thatp(c|c′) is well-defined and satisfies

the properties in Eq. (1-3). The properties in Eq. (2-3) are
satisfied by definition. All coefficients of the transition matrix
Q are positive. According to thePerron-Frobenius Theorem[8,
p.473], the largest eigenvalueλ of Q is positive and unique.
Moreover, the eigenvectorv associated withλ has only
positive coefficients. Hence, the bigram probabilities in Eq. (7)
are non-singular (no division by zero) and positive. These
quantities are normalized becausev is an eigenvector ofQ,
i.e.,
∑

c Qc′cvc = λvc′ , ∀c′. This identity is equivalent to the
normalization constraint in Eq. (1).

In general, the transition matrix describes the transition
probabilities between two states where the states encode the
contexts. In the case ofm-gram models, the contexts consist
of the previousm− 1 words. For a vocabulary of sizeC, the
transition matrix is approximately aCm−1×Cm−1 matrix. In par-
ticular, higher orderm-gram models can be tackled in the same
way as bigram models. This is in contrast to the belief in [7] that
higher orderm-gram models require tensors of rank more than
two which would go beyond the standard matrix formalism.

This is the key result used in the next section where the
equivalence of GHMMs and LHMMs in ASR is proven.

3. Automatic Speech Recognition (ASR)
Assume a feature vectorxT

1 , HMM state sequencessT
1 , andW

which denotes either a single word or a word sequence. Con-
sider the log-linear HCRF with the state sequences as the hidden
variables

p(W|xT
1 ) ∝ exp(α(W))×

∑

sT
1

T∏

t=1

exp(α(st−1, st,W)) exp(λ(st,W)⊤xt + α(st,W)).

The goal of this section is to construct the generative mod-
els, i.e., the emission probabilitiesp(x|s,W), the transition
probabilitiesp(s|s′,W), and the language model probabilities
p(W), corresponding to the HCRF parametersλ(s,W), α(s,W),
α(s′, s,W), andα(W), respectively. This is accomplished in dif-
ferent steps. First, equivalence is shown for the simpler task of
single word recognition (HMMs). Then, this result is extended
to the task of continuous speech recognition where a non-trivial
language model is considered in addition. Finally, the effect
of scaling factors like for example the language model scaleis
discussed.

Emission probabilities. The reader refers to [6] for an in-
depth discussion concerning the equivalence of LMMs and
GMMs. The same approach can be used here. Similar to Sec. 2,
modified α̃(s′, s,W) compensate for the additional normaliza-
tion factors in the emission probabilities.
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Figure 1: Finite state automaton representing the valid state
sequences for word-based transition probabilities, only loop
l(s,W) and forward f(s,W) transitions,0 and S+ 1 are the
entry and exit states.

Word-based transition probabilities. The left-right topol-
ogy of the transition probabilities leads to an upper triangu-
lar band matrix, see Fig. 1. In contrast to the bigram matrix
Q in Sec. 2, this transition matrix is not strictly positive and
is reducible (a state cannot be reached by one of its subse-
quent states). Hence, the algorithm in Sec. 2 is not guaran-
teed to work. Instead, we employ the general approach via the
marginalization of the pseudo joint probabilities as described in
the introduction. To guarantee convergence in the marginaliza-
tion step (summation over state sequences), the loop transitions
(the only cycles in the automaton) need to have costs less than
1. Observe that this is no real restriction because all sequences
under consideration have the same length and thus, all transition
probabilities can be multiplied by the same constant factor.

If only loop and forward transitions with pseudo probabil-
ities l(s,W) = exp(α̃(s, s,W)), f (s,W) = exp(α̃(s, s+ 1,W)),
f (0,W) = entry, and f (S,W) = exit are allowed (cf. Fig. 1),
the transition probabilities can be calculated explicitlyfrom the
partial sumsZs(W) :=

∑

T>0
∑

sT
1 :s1=s,sT=S+1

∏T
t=1 p(st |st−1,W)

which is the sum over all sequences of different length start-
ing with state s and ending in the final stateS + 1, i.e.,
ZS(W) = exit,Zs(W) = f (s,W)Zs+1(W)

1−l(s,W) ,Z0(W) = entry · Z1(W),

for s = S − 1, . . . ,1 and for allW. The factor 1
1−l(s,W) arises

from the infinite sum accounting for the loop transitions andcan
be interpreted as geometric series. Applying Bayes rule to the
marginalized probabilities based on these partial sums, results
in the transition probabilitiesp(s|s,W) = l(s,W), p(s+1|s,W) =
1− l(s,W), andp(1|0,W) = p(S|S − 1,W) = 1. The transition
probabilities do not depend onf (s,W) because the contribution
of the forward transitions is the same for all state sequences and
is absorbed by the language model, ˜α(W) = α(W) + logZ0(W).
The same approach can be used for more complex topologies
(e.g. skips). In general, however, the solution is not so simple
and compact.

This word-based transition model is reasonable for phone
recognition [3] whereas in ASR, a phone-based transition model
is preferred. Such models are discussed in the next paragraph.

Phone-based transition probabilities. In ASR, typically
(allo)phone-based rather than word-based transition probabili-
ties are used. These transition probabilities can be represented
by a finite state automaton which is similar to that in Fig. 1.
The main differences are that now there is a sub-automaton for
each phoneφ and that the exit arcs go back to the initial state.
This model can be described by a non-negative and irreducible
transition matrixQ. Hence, the approach of Sec.2 applies, us-
ing the extendedPerron Frobenius Theoremfor non-negative
matrices [8, p.475]. The normalization constant does not de-
pend onW and thus, cancels. The equivalence holds as long as
the state tying (e.g. CART) for the transition probabilities is no
coarser than the state tying used for the emission probabilities.
Otherwise (and as long as the tying scheme is reasonable), the
equivalence holds only approximately.

M-gram language model. In continuous speech recognition,
W stands for the word sequencewN

1 = (w1, . . . ). Instead of
the simple priorsp(W), an m-gram language model is typi-
cally used, adding some additional structure. Note that the
factor 1

λN+1 in Eq. (8) does not cancel in ASR because of vari-
able N. However, this is not an issue forλ = 1. An eigen-
value of 1 is achieved by taking advantage of the ambiguity of
the discriminative formulation, or more precisely, by choosing
a suitable constant offset for allα(s′, s,w) subject to the con-
straint that the maximum loop pseudo probability is less than
1, e.g. lmax = maxs,φ{exp(α̃(s, s, φ))} (see paragraph on phone-
based transition probabilities). This is always possible because
λ : (0,1) 7→ (0,∞) is a continuous function oflmax and thus, ac-
cording to theIntermediate Value Theorem, somelmax (or more
precisely an offset) exists such thatλ(lmax) = 1. Then, the al-
gorithm from Sec. 2 applies to the transformation matrixQ in-
duced by ˜α(w) = α(w) + logζ(w) whereζ(w) accounts for the
normalization of the transition probabilities. The equivalence
extends to across word models under the common assumption
that the (unique) final HMM state of a word cannot be skipped.
Note that due to the added dependence of across word models,
equivalence requires at last a bigram language model.

Scaling factors. Typically, the different submodels are scaled
independently. Obviously, these scaling factors do not break
the equivalence of GHMMs and LHMMs. Moreover and unlike
for the maximum likelihood estimation, these additional scal-
ing factors do not add any flexibility in the log-linear approach
because the log-linear parameters can be redefined to include
these scaling factors. Transforming the log-linear model back
results in an equivalent GHMMwithout scaling factors. Keep
in mind that these scaling factors might indirectly have impact
on the results in practice because of spurious local optima of
HCRFs. However, these rather heuristic parameters are redun-
dant in the discriminative framework, i.e., they do not needto
be tuned or justified.

4. Experimental Verification
In this section, we check the correctness of the theoreticalre-
sults experimentally. Different testing scenarios are reasonable.
An equivalent CRF/generative pair can be optimized separately
and then, the performance of the two classifiers can be com-
pared. This was done in the past, e.g. [3, 6]. This indirect
approach has the disadvantage that the resulting performance
of the two classifiers usually differs in practice. This might
be due to numerical issues, local optima etc. For this rea-
son, we decided to pursue a more direct approach to avoid un-
wanted effects. Here, we estimate a CRF, transform the CRF
into an equivalent generative model, and show that this gener-
ative model produces the same posteriors and decisions as the
CRF. For the experiment, we used the CRF in Eq. (4) which
shall serve as a prototype for conditional probabilities. With
this choice, the computational complexity can be kept low (cf.
“M-gram language model” in Sec. 3, for instance) while avoid-
ing artificial data.

Semantic concept tagging is a comparatively straightfor-
ward application domain of CRFs [9]. It is usually defined as
the extraction of a sequence of concepts out of a given word se-
quence. A concept represents the smallest unit of meaning that
is relevant for a specific task. A concept may contain various
information, e.g the attribute name or the corresponding value.
An example from the French Media corpus [10] is given by

...au sept avril
︸                     ︷︷                     ︸

temps-date[07/04]

dans cet hôtel...
︸                       ︷︷                       ︸

objetBB[hotel]



Table 1: Concept Error Rate (CER) for different setups on the
Media Corpus eval set (notused for verification of equivalence).

Setup Simple w/o $ Simple w/ $ Standard w/o $
CER [%] 15.0 14.7 11.5

where the attribute values are written in square brackets behind
the attribute name.

For our experiment we used the French Media corpus [10],
which deals with hotel reservation and tourist information. We
only used the attribute name. All additional information given
by the Media corpus was omitted. We tag an attribute name for
every source word to get a one-to-one alignment and use a pre-
fix “start ” indicating a new sentence. The feature functions of
the CRF use lexical features considering the current word only
and transition features similar to a concept bigram model asin
Eq.( 4). This CRF was estimated on the training part of the Me-
dia corpus. This corpus consists of 13k sentences, 94k running
word, and 43k running concept tags. The vocabulary comprises
2,210 words, and 146 concepts tags. The resulting CRF was
transformed according to the rules in Sec. 2 into an equivalent
generative model as given in Eq. (5). The tagging of the train-
ing corpus using this generative model leads to exactly the same
number of errors as using the original CRF, 9.3% concept error
rate. The (differences of the) logarithmic probabilities of both
models are illustrated in Fig. 2. They can be considered iden-
tical within the numerical precision as the large peak at zero in
Fig. 2 clearly shows.

Tab. 1 provides a few error rates on the Media Corpus task
to give the interested reader an idea of the relative importance of
the different feature functions. Like for speech recognition, the
additional boundary symbol $ has some effect. Our best stan-
dard setup differs from the simple setup mainly by using lexical
features that consider the previous and subsequent words inad-
dition to the current word. As already mentioned, the corpus
does not fully comply with the Media evaluation guidelines but
fits well for a comparison of the systems.

5. Conclusions
We have shown that the common GHMMs and LHMMs used
in ASR are equivalent. This result is surprising and counter-
intuitive because this means that the parameter constraints of
GHMMs (e.g. local HMM normalization constraints, positiv-
ity of variances) do not restrict the model flexibility compared
with the related LHMMs. This equivalence does not necessar-
ily imply identical performance of GHMMs and LHMMs in
practice. Potential differences might be due to numerical issues
(e.g. inversion of covariance matrices for GHMMs), local op-
tima (HCRFs do not guarantee a global optimum), or different
optimization criteria (e.g. generative vs. discriminative estima-
tion). Keep in mind that in general, it is essential to consider
the complete optimization problem and not only parts of it (e.g.
not only the acoustic model) to establish exact equivalenceof
GHMMs and LHMMs. This equivalence might be useful for
the refined analysis and design of algorithms: for instance,why
is it hard to outperform state-of-the-art conventional GHMMs
with conceptionally much more refined approaches? Finally,
the correctness of the presented equivalence transformation for
conditional probabilities has been verified experimentally on a
simple real-world task.
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