
A Situation-Calculus Semantics for an Expressive Fragment of PDDL

Jens Claßen
Dept. of Computer Science
RWTH Aachen University

52056 Aachen
Germany

classen@cs.rwth-aachen.de

Yuxiao Hu
Dept. of Computer Science

University of Toronto
Toronto, Ontario
Canada M5S 3G4

yuxiao@cs.toronto.edu

Gerhard Lakemeyer
Dept. of Computer Science
RWTH Aachen University

52056 Aachen
Germany

gerhard@cs.rwth-aachen.de

Abstract

The Planning Domain Definition Language (PDDL) has be-
come a common language to specify planning problems, fa-
cilitating the formulation of benchmarks and a direct com-
parison of planners. Over the years PDDL has been extended
beyond STRIPS and ADL in various directions, for exam-
ple, by adding time and concurrent actions. The current se-
mantics of PDDL is purely meta-theoretic and quite complex,
which makes an analysis difficult. Moreover, relating the lan-
guage to other action formalisms is also nontrivial. We pro-
pose an alternative semantics for an expressive fragment of
PDDL within the situation calculus. This yields at least two
advantages. For one, the new semantics is purely declara-
tive, making it amenable to an analysis in terms of logical
entailments. For another, it facilitates the comparison with
and mapping to other formalisms that are defined on top of
the same logic, such as the agent control language Golog. In
particular we obtain the semantical foundation for embedding
efficient PDDL-based planners into the more expressive, yet
computationally expensive Golog, thus combining the ben-
efits of both. Other by-products of our investigations are a
simpler account of durative actions in the situation calculus
and a new notion of compulsory actions.

Introduction

The Planning Domain Definition Language (PDDL), intro-
duced in (Ghallab et al. 1998), has become a quasi standard
for the formulation of planning domains and problems. It
is used to define benchmarks for the empirical evaluation
and comparison of planning systems, such as those used at
the International Planning Competitions. During the last
decade, the language has been extended by numerous fea-
tures beyond what can be expressed by STRIPS and ADL
(Pednault 1989). Among the most important steps in this
development are the introduction of numerics, durative ac-
tions and concurrency in version 2.1 (Fox & Long 2003),
the (re-)integration of derived predicates and timed initial
literals in PDDL 2.2 (Edelkamp & Hoffmann 2004) and the
extension with quantitative preferences and trajectory con-
straints in PDDL 3.0 (Gerevini & Long 2005). Today, many
fast planners exist that support all or at least some of these
features, e.g. (Hsu et al. 2006).

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The first formal semantics was provided by Fox and
Long for PDDL 2.1. They extend Lifschitz’ (1986) state-
transitional semantics for STRIPS to cope with numerics,
time, durative actions and concurrency. All later versions of
PDDL use that semantics for defining the meaning of their
newly introduced features.

Although that semantics has served its purpose, we see
a major drawback in its purely meta-theoretic and complex
definition. As an example, for assuring that in a given plan
an invariant condition is not violated during the duration in-
terval of an action, Fox and Long insert dummy actions be-
tween each two happenings (i.e. simple actions) in that inter-
val. Those actions then take the invariant as their precondi-
tion. Similarly, an action with a conditional effect (ψ ⇒ ϕ)
is split up into two, where one has ¬ψ as an additional pre-
condition and the other requires ψ and has the additional
effect ϕ. Apart from the fact that these kinds of reductions
would mean an exponential blowup in a 1-to-1 implemen-
tation (Nebel 2000), the complexity of its 19-page defini-
tion makes the semantics also difficult to grasp. Further,
the analysis and comparison to other action formalisms be-
comes thus difficult and tedious. In this paper we propose an
alternative semantics for PDDL (or its temporal fragment,
to be more precise). The cardinal difference is that ours is
a declarative one, meaning that we define it by means of
entailments of theories formulated in a certain logic whose
properties are well understood.

In (Claßen et al. 2007), the first step in this direction
was taken, where it was shown that the state updates in the
ADL fragment of PDDL can be understood as progression
steps for a certain class of situation calculus (Reiter 2001)
action theories, extending work by Lin and Reiter (1997)
who did the same for STRIPS. Claßen et al. used this result
as the semantical basis for embedding efficient PDDL-based
planners into an interpreter of the more expressive, yet com-
putationally more demanding agent control language Golog
(which is based on the situation calculus). They provided ex-
perimental results that supported that this approach is ben-
eficial in terms of the system’s computation time. In this
paper, we will extend their work by providing a mapping
of the temporal fragment of PDDL to the situation calculus,
including numerics, durative actions with discrete and con-
tinuous effects and timed initial literals. In the process we
obtain a simpler account of durative actions in the situation

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publikationsserver der RWTH Aachen University

https://core.ac.uk/display/36489947?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

calculus and a new notion of compulsory (natural) actions.

We proceed as follows. In the next section we introduce
the logic ES, a fragment of the situation calculus well suited
for our approach. The next section shows how the usual
ES theories can be extended to cope with numerics, durative
actions, concurrency and coercive actions. After that we re-
view the temporal fragment of PDDL before presenting the
actual mapping to an ES action theory. Then we conclude.

The Logic ES

ES was introduced by Lakemeyer and Levesque (2004;
2005) as an alternative logic for reasoning about an agent’s
knowledge, action and sensing. It captures precisely the
non-epistemic fragment of the situation calculus and Golog.
Due to its special syntax and semantics, using the logic in
this paper significantly simplifies the translation from PDDL
and the accompanying semantical proofs.

The language is a first-order modal dialect with equality
and sorts of type object, action and number. It includes
countably infinitely many standard names for each of the
sorts, allowing for a substitutional interpretation of quantifi-
cation. Also included are both fluent and rigid predicate and
function symbols1. Fluents vary as the result of actions, but
rigids do not. The logical connectives are ∧, ¬, ∀, together
with the modal operators 2 and [r] where r may be any term
of sort action, including a variable. Other connectives like
∨, ⊃, ⊂, ≡, and ∃ are used as the usual abbreviations.

Terms and formulas are built from these primitives in the
usual way. We read [r]α as “α holds immediately after ac-
tion r” and 2α as “α holds after any sequence of actions”.
We call a formula without free variables a sentence and a for-
mula fluent, when it does not contain 2 and [r] operators and
does not mention the special predicates Poss. In addition, we
introduce the following special notation: a type τ is a rigid
unary predicate; we write ∀x:τ. φ instead of ∀x. τ(x) ⊃ φ;
we further extend this definition to tuples of variables ~x and
types ~τ in the obvious way.

The Semantics

Intuitively, a world w will determine whether or not a sen-
tence α is true after a sequence of actions z (we then write
w, z |= α.). It does so by assigning truth values to the
primitive sentences and co-referring standard names to the
primitive terms, given z. By a primitive sentence (term) we
mean an expression of the form h(n1, . . . , nk), where h is a
rigid or fluent predicate (function) symbol and all the ni are
standard names. More precisely, let N denote the set of all
standard names and Z the set of all finite sequences of stan-
dard action names, including 〈 〉, the empty sequence. Then
a world w ∈W is any function from the primitive sentences
and Z to {0, 1}, and from the primitive terms and Z to N
(preserving sorts), and satisfying the rigidity constraint: if g
is a rigid function or predicate symbol, then for all z and z′

in Z, w[g(n1, . . . , nk), z] = w[g(n1, . . . , nk), z′].
We extend the idea of co-referring standard names to ar-

bitrary ground terms as follows. Given a variable-free term

1For simplicity we however consider only rigid action symbols.

t, a world w, and an action sequence z, we define |t|zw (read:
the co-referring standard name for t given w and z) by:

1. If t ∈ N , then |t|zw = t;

2. |h(t1, . . . , tk)|zw = w[h(n1, . . . , nk), z], if ni = |ti|zw.

Here then is the semantic definition of truth. Given a sen-
tence α and w ∈ W , we define w |= α (read: α is true) as
w, 〈 〉 |= α, where for any z ∈ Z we have:

w, z |= h(t1, . . . , tk) iff w[h(n1, . . . , nk), z] = 1,
where ni = |ti|

z
w;

w, z |= (t1 = t2) iff n1 and n2 are identical,
where ni = |ti|zw;

w, z |= [t]α iff w, z · n |= α, where n = |t|zw;
w, z |= (α ∧ β) iff w, z |= α and w, z |= β;
w, z |= ¬α iff w, z 6|= α;
w, z |= ∀x. α iff w, z |= αx

n,
for every std. name n of the same sort as x;

w, z |= 2α iff w, z · z′ |= α, for every z′ ∈ Z .

The notation αt1
t2

means the simultaneous substitution of all
t1 by t2 in α. When Σ is a set of sentences and α is a sen-
tence, we write Σ |= α (read: Σ logically entails α) to mean
that for every w, if w |= α′ for every α′ ∈ Σ, then w |= α.
Finally, we write |= α (read: α is valid) to mean {} |= α.

Basic Action Theories

Basic action theories can be defined similar to Reiter’s. A set
of sentences Σ is a basic action theory iff it only mentions
the fluents in a given set F and is of the form

Σ = Σ0 ∪ Σpre ∪ Σpost, (1)

where Σ0, the initial database, is a finite set of fluent sen-
tences and Σpre is a precondition axiom of the form2

2Poss(a) ≡ π, (2)

with π being a fluent formula whose only free variable is a.
Σpost is a finite set of successor state axioms (SSAs)3

2[a]F (~x) ≡ γF , (3)

2[a]f(~x) = y ≡ γf (4)

for each relational fluent F ∈ F \ {Poss} and each func-
tional fluent f ∈ F , incorporating Reiter’s (2001) solution
to the frame problem. γF has to be a fluent formula with free
variables ~x, and γf one with free variables among ~x and y.

Extensions to ES

In this section we will show how the standard definition of
basic action theories of the previous section has to be ex-
tended to deal with numerics, durative and coercive actions.

2Free variables are understood as universally quantified from
the outside; 2 has lower syntactic precedence than the logical con-
nectives, i.e. 2Poss(a) ≡ π stands for ∀a.2(Poss(a) ≡ π).

3The [t] construct has higher precedence than the logical con-
nectives. So 2[a]F (~x) ≡ γF abbreviates ∀a.2(([a]F (~x)) ≡ γF).

Numerics and Time

Without going into much detail about numerics here, suffice
it to say that we use the first-order subset of an axiomatiza-
tion of the reals (Tarski 1951) that has models with countable
domains, thus being also satisfiable in ES. For the restricted
usage of arithmetic in this paper, the resulting models are
completely sufficient. We denote these axioms by Σnum.

Now let us turn to the question of how to represent the
flow of time in ES. What is presented below is based on
work by Pinto (1994) and Reiter (1996).

The idea is to extend each action term by an additional nu-
meric argument denoting the happening time of that action;
the action pickup(x) thus turns into pickup(x, t). For being
able to refer to the happening time of arbitrary actions, we
introduce a new fluent time(a) defined by the axiom

2time(a) = t ≡
∨

i

∃~xi.a = Ai(~xi, t), (5)

where the Ai are all the action symbols of the applica-
tion domain. In the above example, this will entail that
time(pickup(block, 3)) = 3.

Next, we use a functional fluent now of sort number
whose value always represents the happening time of the last
action (i.e. the time of the “current” situation):

2[a]now = time(a) (6)

We fix now’s initial value by letting Σ0 contain now = 0
and assert4 that actions only happen chronologically:

2Poss(a) ⊃ now ≤ time(a) (7)

Concurrent Durative Actions Further adapting Pinto and
Reiter’s idea, we represent processes with a duration by a
corresponding start and end happening. Unlike them5, we
only need two additional action symbols start(a′, t) and
end(a′, t) taking an action term a′ as first and the corre-
sponding happening time as second argument. The fluent
Performing(a′) then denotes whether the durative action
a′ is currently in progress. Its SSA is

2[a]Performing(a′) ≡ ∃t.a = start(a′, t)∨
Performing(a′) ∧ ¬∃t′.a = end(a′, t′)

(8)

If c is chew(gum), this entails [start(c, 3)]Performing(c)
and [start(c, 3)][end(c, 5)]¬Performing(c).

Additionally, a start event is only allowed when the cor-
responding action is currently not running; similarly the end
event is only allowed if that action is currently in progress:

2Poss(start(a′, t)) ⊃ ¬Performing(a′) (9)

2Poss(end(a′, t)) ⊃ Performing(a′) (10)

Sometimes we have to refer to the starting time of a running
process. The fluent since “records” this value:

2[a]since(a′) = t ≡ a = start(a′, t)∨
since(a′) = t ∧ ¬∃t′.a = end(a′, t′)

(11)

4We will state more assertions of the form 2Poss(a) ⊃ ψi in
the following. We get a precondition axiom of the form (2) by
making a completeness assumption, yielding 2Poss(a) ≡

V

i ψi.
5They introduce a new fluent and new action symbols for

each action type (e.g. Chewing(x, s), startChew(x, t) and
endChew(x, t)) yielding correspondingly many SSAs. Our ap-
proach allows a more compact representation.

Continuous Change So far, our extensions to ES only al-
low for discrete changes applied at the (start or end) hap-
pening times of actions. This is however not sufficient for
modelling continuous change, for instance when the drive
action of an electric car constantly drains the car’s power.
Our target language PDDL on the other hand is expres-
sive enough for formulating such facts (but restricted to
linear changes over time). We therefore include continu-
ous changes by following the approach of Grosskreutz and
Lakemeyer (2000). The main idea is that we do not let flu-
ents take on numerical values directly, but instead we assign
them terms of the form linear(x, v, t). Intuitively, when
power(car) = linear(5,−1, 3) holds in the current situa-
tion then it means that the car’s power level is linearly de-
creasing by 1 per time unit, starting at an initial value of 5 at
time 3.

We define appropriate axioms (left out for space rea-
sons) for + and = wrt linear functions and constant val-
ues. We further identify constant numerical values c with
linear(c, 0, t). Next, we need a way to obtain the value of a
continuously changing fluent at a given time point. We can
extract this information from the linear term by defining

2eval(x, t) = y ≡
∃x′, v′, t′.x = linear(x′, v′, t′) ∧ y = x′ + v′(t− t′) ∨
∀x′, v′, t′.x 6= linear(x′, v′, t′) ∧ y = x

(12)
Let then Eval[φ, t] be an operation that replaces all terms r
in a formula φ by eval(r, t). We can thus evaluate a formula
containing continuously changing fluents against a specified
time point t. In a domain with such fluents, instead of (2),
the precondition axioms needs then to take the form

2Poss(a) ≡ Eval[π, time(a)]. (13)

The reason is that when, for example, power(car) > 0 is a
precondition of an action drive(car), we have to ensure that
eval(power(car), time(drive(car))) > 0, i.e. the car has
to have power at the time we start to drive for the action to
be possible.

Let Σtime be all additional axioms for temporal properties.

Obligatory Actions

Our notion of coerciveness includes both the one forced by
natural laws as well as predetermined exogenous actions.
For that matter, we introduce another special fluent Obli,
for which we have an axiom Σobli similar to the one for Poss:

2Obli(a) ≡ Ω (14)

where Ω is a fluent formula that describes all necessary and
sufficient conditions under which a is an action that must
occur in the current situation. For example

2Obli(a) ≡ ∃t.a = boil(t) ∧ Performing(heat)
∧t− since(heat) > 5 ∨ a = closeShop(8pm)

states that a pot of water heating more than five minutes will
boil and the shop closes at 8 p.m.

The execution of coercive actions is enforced by

2Poss(a) ⊃ Obli(a)∨
¬(∃a′.Obli(a′) ∧ now ≤ time(a′) ≤ time(a))

(15)

which intuitively says that a is not allowed to happen when
there are currently pending coercive actions unless a itself
is an obligatory action that has to happen now. The latter
condition is because we do not want to have two obligatory
actions scheduled for the same time blocking one another.

Executability

Finally we define a fluent Executable which will hold in
all situations reachable by valid (according to Poss) actions.
For this purpose let Σ0 contain (16) and Σpost contain (17):

Executable ≡ TRUE (16)

2[a]Executable ≡ Executable ∧ Poss(a). (17)

With these extensions, the complete action theory now is

Σ = Σnum ∪ Σtime ∪ Σ0 ∪ Σpre ∪ Σpost ∪ Σobli. (18)

Temporal PDDL

Instead of using the somewhat awkward LISP-based PDDL
syntax directly, we will resort to the following more
logic-like representation. It can easily be verified (Gerevini
& Long 2005) that it corresponds exactly to the fragment
of PDDL we obtain by only allowing the requirement
flags :adl, :fluents, :durative-actions and
:timed-initial-literals. We therefore assume
that a PDDL problem instance consists of these parts:

1. a finite list of types τ1, . . . , τl;
2. finitely many fluent predicates Fj with types ~τj

associated to their arguments;
3. finitely many numeric functions fj with types ~τj

associated to their arguments;
4. finitely many object standard names with associated

types o1:τo1
, . . . , ok:τok

;
5. finitely many operators (described below);
6. a finite list of timed initial literals 〈t1, L1〉, . . . 〈tr, Lr〉,

where each ti is a number and each Li is a relational
atom or the negation of a relational atom;

7. the initial state description, consisting of a finite
collection of functional and relational atoms, for which
the closed-world assumption is made;

8. a goal description ψ in form of a precondition formula.

The non-logical symbols appearing in operators, timed ini-
tial literals, initial state and goal description have to be
those from items 1-4. A relational atom Fj(~o) is a primitive
sentence, a functional one has the form fj(~o) = c, where
fj(~o) is a primitive term of sort number and c a number.

Precondition formulas are the following: A formula F (~t)
and every equality atom (t1 = t2), where each of the ti
is either a variable or an object constant, is a precondition
formula. Further, a comparison of the form exp1 op exp2 is
a precondition formula, when op is one of <,=,> and exp1

and exp2 are arithmetic expressions built from operators +,

−, ×, /, numeric literals and terms f(~t) where each ti is an
object constant or a variable. If φ1 and φ2 are precondition
formulas, then so are φ1 ∧ φ2, ¬φ1 and ∀x:τ.φ1.

We distinguish simple from durative actions. A simple ac-
tion is given by a triple A = 〈~z:~τ , πA, ǫA〉, where ~z are A’s
arguments with associated types ~τ , πA is its precondition

(a precondition formula) and ǫA its effect, the latter being a
conjunction of conditional effects of the forms

∀ ~xj:~τj . γ
+
Fj ,A(~xj , ~z) ⇒ Fj(~xj),

∀ ~xj:~τj . γ
−
Fj ,A(~xj , ~z) ⇒ ¬Fj(~xj),

∀ ~xj:~τj . γ
v
fj ,A(~xj , yj , ~z) ⇒ fj(~xj) = yj .

(19)

The meaning of γ ⇒ ψ is that when γ holds before doing
action A, ψ will hold afterwards. γ has to be a precondition
formula in each of the cases. Without loss of generality we
can assume that there is at most one single effect of each
form for any given Fj or fj in ǫA. Further γv

fj ,A is required

to ensure a unique value for the number variable yj given
appropriate instances for ~xj and ~z.

A durative action A = 〈~z:~τ , δA, πA, ǫA〉 now is given by

• δA = 〈δs
A, δ

e
A〉, the start and end duration constraints,

each of which a conjunction of expressions of the form
duration op expr, where op ∈ {≤,≥,=} and expr is
a numerical expression constructed from numbers, func-
tional fluents, + and ×. δs

A relates the special symbol
duration to the values of numeric fluents when starting
the action and δe

A to their values when ending A.

• πA = 〈πs
A, π

o
A, π

e
A〉, the start, overall and end conditions

of A, each one a precondition formula. The intended
meaning is that πs

A has to hold at the starting time of the
action, πo

A during the open interval between start and end
and πe

A at the ending time.

• ǫA = 〈ǫsA, ǫ
o
A, ǫ

e
A〉, where

– the start effect ǫsA is a conjunction of conditional effects
of the form (19) taking place at the starting time of A;

– the overall effect ǫoA is a conjunction of continuous ef-

fects 〈op, f(~t), expr〉, where op is + or −, f is a nu-
meric fluent, each of the ti is either one of A’s parame-
ters or an object name and exp is a numeric expression;

(The intended meaning is that f(~t) is linearly increased
(op = +) or decreased (op = −) over the action’s du-
ration by expr.)

– the end effect ǫeA is a conjunction of effects of the form
∀~xi:~τi.〈ϕ

s
i , ϕ

o
i , ϕ

e
i 〉 ⇒ ψi, stating that ψi (which is ei-

ther some Fj(~xj), some ¬Fj(~xj) or some fj(~xj) = yj)
will be true at the ending time of the action when the
precondition formula ϕs

i was true at the starting time,
ϕo

i did hold during the open interval between start and
end and ϕe

i holds at the ending time.

A PDDL plan P then is a finite set of simple ac-
tion instances (ti:Ai(~oi)) and durative action instances
(ti:Ai(~oi)[di]), where Ai is the name of the operator, the
oi are the actual parameters, ti is the happening of the sim-
ple action respectively the starting time of the durative ac-
tion and di is the duration. Let the maximum of all ti and
ti + di be the ending time of P . For the details of PDDL’s
semantics, the reader may consult (Fox & Long 2003).

The Mapping
In the course of this section we will put together the parts of
an ES action theory Σ as in (18), given a PDDL problem as
defined in the previous section. We conclude with our main
result, a theorem stating the correctness of this mapping.

The Initial State

The encoding of the initial state description is similar to the
one in (Claßen et al. 2007). In addition to the corresponding
axioms for the relational fluents, we let Σ0 contain a com-
plete description of each numeric function’s initial values:

fj(~xj) = yj ≡ ~xj = ~oj1 ∧ yj = cj1
∨ · · · ∨ ~xj = ~ojkj

∧ yj = cjkj

(20)

where fj(~oj1) = cj1 , . . . , fj(~ojkj
) = cjkj

are all the func-

tional atoms in the initial state mentioning fj . Note that
Σ0 further contains axioms encoding all typing information,
among them for each type τj an axiom

τj(x) ≡ x = o1 ∨ · · · ∨ x = ok, (21)

where the oi were all the objects defined to be of type τj .
This, together with the fact that all quantifiers in the PDDL
problem are typed, ensures that PDDL’s domain closure is
also present in the resulting ES action theory.

Simple Actions

We handle simple actions again similar to Claßen et al. For
each simple Ai, we include the axiom

2Poss(Ai(~zi, t)) ⊃ ~τi(~zi) ∧ πAi
. (22)

Like those for the relational ones, we additionally construct
SSAs for the functional fluents:

γv
fj

def
=

∨

fj(~xj) effect in ǫAi

∃~zi, t.a = Ai(~zi, t) ∧ γ
v
fj ,Ai

(23)

γfj

def
= γv

fj
∧ τfj

(~xj) ∨ fj(~xj) = yj ∧ ¬∃y′.(γv
fj

)
yj

y′ (24)

In (23), all the actions’ effects that change the value of an fj

are collected. (24) then expresses that the value of fj will
be yj iff one of the actions changes it to yj or it has been
already equal to yj before and is not changed by any action.
Remember from (19) that yj is a free variable in γv

fj ,Ai
.

Durative Actions

For representing a durative PDDL action A(~z) with du-
ration d and starting time t, it seems natural to split it
into two happenings start(A(~z), t) and end(A(~z), t + d).
First consider the case when there are no continuous ef-
fects, no inter-temporal effects (i.e. end effects have the form
∀ ~xj:~τj .〈TRUE, TRUE, ϕe

i 〉 ⇒ ψi), no invariants and no start
duration constraints: we can just treat start(A(~z), t) like
a simple action with precondition πs

A and effects ǫsA and
end(A(~z), t) like a simple action with precondition πe

A and
effects ∀ ~xj:~τj .ϕ

e
i ⇒ ψi. The end duration constraint can be

enforced by making it a precondition of end(A(~z), t)):

2Poss(end(A(~z), t)) ⊃ (δe
A)duration

t−since(A(~z)) (25)

Invariant Conditions To protect the invariant condition
πo

Aj
during the open duration interval of Aj , we disallow

any action a that would violate it. A violation happens when
πo

Aj
does not hold after doing a (and Aj is still running):

2Poss(a) ⊃
∧

j

R[a, Performing(Aj(~zj)) ⊃ πo
Aj

] (26)

Here, R[a, φ] denotes the regression (Lakemeyer &
Levesque 2004) of φ through a: R[a, φ] is entailed by Σ iff
[a]φ is entailed. The former however does not contain any
[a] operators which are disallowed in precondition axioms.

Inter-Temporal Effects These are present in a durative
action Aj(~zj) with an end effect ∀~xi:~τi.〈ϕ

s
i , ϕ

o
i , ϕ

e
i 〉 ⇒ ψi

which also depends on the truth of conditions at the starting
time (ϕs

i) and during the open interval of the duration (ϕo
i)

of the action. At the situation where end(A(~z), t) is to be
applied, this information is however no longer accessible.
We therefore introduce new fluents Cs

i and Co
i which will

“remember” the truth of those conditions. Their SSAs are

2[a]Cs
i (~zj , ~xi) ≡ ∃t.a = start(Aj(~zj), t) ∧ ϕ

s
i∨

Cs
i (~zj , ~xi) ∧ ¬∃t′.a = end(Aj(~zj), t

′)
(27)

2[a]Co
i (~zj , ~xi) ≡ ∃t.a = start(Aj(~zj), t) ∧R[a, ϕo

i]∨
Co

i (~zj , ~xi) ∧ ¬∃t′.a = end(Aj(~zj), t
′) ∧R[a, ϕo

i].
(28)

We then simply have to let end(Aj(~zj), t) have the effect

∀~xi:~τi. C
s
i (~zj , ~xi) ∧ C

o
i (~zj , ~xi) ∧ ϕ

e
i ⇒ ψi.

Start Duration Constraints Again, the information about
the actual duration of an action Aj is not yet available in the
situation where the start happening is executed, so it is not
possible to just test its start duration constraint there directly.
However by introducing a new functional fluent fs

j,i that re-
members the values of each fluent fi appearing in δs

Aj
by

2[a]fs
j,i(~zj , ~xi) = y ≡

∃t.a = start(Aj(~zj), t) ∧ y = fi(~xi) ∨
fs

j,i(~zj , ~xi) = y ∧ ¬∃t.a = start(Aj(~zj), t),
(29)

we can test δs
Aj

at the end happening by replacing (25) with6

2Poss(end(Aj(~zj), t)) ⊃

(δs
Aj

)
fi(~xi) duration

fs
j,i(~zj , ~xi) t−since(Aj(~zj))

∧ (δe
Aj

)duration
t−since(Aj(~zj))

.

(30)

Continuous Effects So far we ignored the fact that dura-
tive PDDL actions may contain continuous effects. Remem-

ber that ǫoA consists of effects 〈op, f(~t), expr〉, where op is

+ or −, meaning that f(~t) increases or decreases linearly by
expr over A’s duration. Representing this in the ES action
theory is actually straightforward: We just let start(A(~z), t)
have the effect that it adds linear(0, op×expr, t) to f(~t) and
end(A(~z), t) the effect of subtracting linear(0, op×expr, t)
again. This approach covers even the case where multiple
actions concurrently change the value of the same numeric
fluent: The changing rates then simply add up.

However, now it might be the case that an invariant pre-
condition πo

Aj
is violated during the execution interval of

Aj . Suppose the drive action of an electric car has the in-
variant condition that always power(car) > 0 and the con-
tinuous effect that the power level decreases by 1 per time

6By φ
fi(~xi)

fs
j,i

(~zj , ~xi)
we mean the result of replacing any occurrence

of fi in φ by the corresponding fs
j,i with additional parameters ~zj .

unit. If we start driving at time 3, the initial power level is 4
and we want to end driving at 10, then the action should not
be possible since the power level already reaches zero at time
point 7. To handle this scenario, our proposal is to schedule
a force stop of the action at the time point where an invari-
ant would get violated. The invariant then still holds in the
open interval ending before that particular time point, just as
required in PDDL. The idea is implemented by asserting

2Obli(end(Aj(~zj), t)) ⊂
Performing(Aj(~zj)) ∧ ¬Eval[πo

Aj
, t]. (31)

Timed Initial Literals

Finally, we can easily implement the timed initial literals by
introducing for each 〈ti, Li〉 a new simple action A〈ti,Li〉(t)
whose only effect is to make Li true and for which we have:

2Poss(A〈ti,Li〉(t)) ⊃ t = ti (32)

2Obli(A〈ti,Li〉(t)) ⊂ t = ti (33)

Correctness

Before we can formulate our main result, we will need the
following definition: A linearization of a PDDL plan P is a
smallest sequence of actions 〈r1, . . . , rk〉 such that:

• Ai(~oi, ti) is one rj , if (ti:Ai(~oi)) is a simple action in P .

• start(Ai(~oi), ti) and end(Ai(~oi), ti + di) are among the
rj , if (ti:Ai(~oi)[di]) is a durative action in P .

• A〈ti,Li〉 is one of the rj , if 〈ti, Li〉 is a timed initial literal
whose ti is less or equal to the ending time of P .

• For all 1 ≤ j ≤ k − 1, Σtime |= time(rj) ≤ time(rj+1).

Since we are using an interleaved model of concurrency,
there is in general more than one linearization of a plan.

Let Final abbreviate ¬∃a.Performing(a). The theo-
rem below now relates the validity of PDDL plans to the en-
tailments of ES basic action theories, thus drawing the con-
nection between the two semantics definitions.

Theorem 1 Let Σ be the result of applying the above map-
ping to a PDDL problem with goal formula ψ. Let P be a
plan with no concurrent mutex actions. Then P is valid ac-
cording to (Fox & Long 2003) and (Edelkamp & Hoffmann
2004) iff there is a linearization 〈r1, . . . , rk〉 of P such that

Σ |= [r1] · · · [rk](Executable ∧ Final ∧ Eval[ψ, now]).

Conclusion

We presented an alternative, declarative semantics for the
temporal fragment of the planning language PDDL. The new
semantics is defined in terms of entailments of action the-
ories in a variant of the situation calculus. Among other
things, this allows to more easily relate PDDL to other sit-
uation calculus based formalisms such as the agent control
language Golog and provides the semantical foundation for
an integration of the two. Moreover, it may offer an alter-
native view on temporal planning in general, thus helping in
constructing planners that are complete for temporally ex-
pressive domains (Cushing et al. 2007). In the future we
want to extend the results to also include the yet missing fea-
tures of PDDL 3.0, namely preferences and plan constraints.

Acknowledgements
This work was supported by DFG grant La747/13-2.

References
Claßen, J.; Eyerich, P.; Lakemeyer, G.; and Nebel, B. 2007.
Towards an integration of Golog and planning. In Proc.
IJCAI-07. AAAI Press.

Cushing, W.; Kambhampati, S.; Mausam; and Weld, D. S.
2007. When is temporal planning really temporal? In Proc.
IJCAI-07. AAAI Press.

Edelkamp, S., and Hoffmann, J. 2004. PDDL2.2: The lan-
guage for the classical part of the 4th international planning
competition. Technical Report 195, Institut für Informatik,
Universität Freiburg.

Fox, M., and Long, D. 2003. PDDL2.1: An extension to
PDDL for expressing temporal planning domains. J. Artif.
Intell. Res. 20:61–124.

Gerevini, A., and Long, D. 2005. BNF description of
PDDL3.0.

Ghallab, M.; Howe, A.; Knoblock, C.; McDermott, D.;
Ram, A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998.
PDDL—the planning domain definition language.

Grosskreutz, H., and Lakemeyer, G. 2000. cc-Golog:
Towards more realistic logic-based robot controllers. In
AAAI-00.

Hsu, C.; Wah, B.; Huang, R.; and Chen, Y. 2006. New
features in SGPlan for handling soft constraints and goals
preferences in PDDL3.0. In Proc. of IPC-5 at ICAPS’06.

Lakemeyer, G., and Levesque, H. J. 2004. Situations, si!
situation terms, no! In Proc. KR2004. AAAI Press.

Lakemeyer, G., and Levesque, H. J. 2005. Semantics for a
useful fragment of the situation calculus. In Proc. IJCAI-
05. AAAI Press.

Lifschitz, V. 1986. On the semantics of STRIPS. In Rea-
soning about Actions and Plans: Proc. of the 1986 Work-
shop. Morgan Kaufmann.

Lin, F., and Reiter, R. 1997. How to progress a database.
Artif. Intell. 92(1-2):131–167.

Nebel, B. 2000. On the compilability and expressive power
of propositional planning formalisms. J. Artif. Intell. Res.
12:271–315.

Pednault, E. P. D. 1989. ADL: Exploring the middle
ground between STRIPS and the Situation Calculus. In
Proc. KR-1989. Morgan Kaufmann.

Pinto, J. 1994. Temporal Reasoning in the Situation Calcu-
lus. Ph.D. Dissertation, Department of Computer Science,
University of Toronto, Toronto, Canada.

Reiter, R. 1996. Natural actions, concurrency and continu-
ous time in the situation calculus. In Proc. KR-96. Morgan
Kaufmann.

Reiter, R. 2001. Knowledge in Action: Logical Founda-
tions for Specifying and Implementing Dynamical Systems.
MIT Press.

Tarski, A. 1951. A Decision Method for Elementary Alge-
bra and Geometry. University of California Press.

