
A Logic for Non-Terminating Golog Programs

Jens Claßen and Gerhard Lakemeyer
Department of Computer Science

RWTH Aachen University
52056 Aachen

Germany
〈classen|gerhard〉@cs.rwth-aachen.de

Abstract

Typical Golog programs for robot control are non-
terminating. Analyzing such programs so far requires meta-
theoretic arguments involving complex fix-point construc-
tions. In this paper we propose a logic based on the situation
calculus variant ES, which includes elements from branch-
ing time, dynamic and process logics and where the meaning
of programs is modelled as possibly infinite sequences of ac-
tions. We show how properties of non-terminating programs
can be formulated in the logic and, for a subset of it, how ex-
isting ideas from symbolic model checking in temporal logic
can be applied to automatically verify program properties.

Introduction

The action language Golog (Levesque et al. 1997), which
is based on the situation calculus (McCarthy & Hayes 1969;
Reiter 2001), has already been successfully applied to the
control of autonomous agents and robots. Usually, such
robots fulfill open-ended, non-terminating tasks. Before de-
ploying a control program and actually executing it in the
real world, it is often desirable to verify that certain require-
ments are met. Typical examples are safety, liveness and
fairness conditions.

As a simple example (adapted from (De Giacomo, Ter-
novska, & Reiter 1997)) that we will refer to throughout the
paper, consider a mobile robot working in an office envi-
ronment whose task is to serve coffee to people on request.
When a new request arrives before the current one has been
served, it is stored in a queue. A possible control program
for such a robot might look like this:

loop : if ¬Empty(queue)
then (πp)selectRequest(p);

pickupCoffee; bringCoffee(p)
else wait

Here the robot performs an infinite loop. In each itera-
tion, when the queue is currently not empty, the next request
(which comes from person p) is selected to be served, which
means that the coffee has to be obtained at the coffee ma-
chine and brought to p’s office. If there are no requests at
all, the robot waits for a short period. Requests, which con-
stitute exogenous actions in this scenario, may arrive at any

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

time. Examples for program properties one may want to
verify are: “Every request will eventually be served by the
robot;” and “it is possible that no request is ever served.”

Popular means for expressing such properties are tem-
poral logics, in particular LTL, CTL and CTL∗ (Emerson
1990). For these logics, there exists a variety of algorithms
(Clarke, Grumberg, & Peled 1999) and tools (Cimatti et al.
2002; Holzmann 2003) for checking whether a certain for-
mula is satisfied in a given finite model of a concurrent sys-
tem. These model checking methods have been successfully
applied in practice for the verification of circuit design and
communication protocols.

For computational complexity reasons, temporal log-
ics are typically restricted to the propositional case. A
Golog domain designer who wants to verify a certain con-
trol program is now confronted with the problem that the
program and the corresponding background theory has to
be abstracted and translated in order to be compatible with
the temporal logic and the model checking tool that is to
be used. Doing this manually is error-prone. On the other
hand, an automated translation or embedding would cer-
tainly mean a loss of some of the expressive capabilities,
such as first-order quantification. These are however con-
sidered desirable features that one would rather not give up,
but are the reason why the language was chosen in the first
place. It seems more preferable to be able to do the verifica-
tion in the same formalism that is used for the specification
and the actual control of the agent.

De Giacomo, Ternovska and Reiter (1997) show how both
the meaning of programs and the properties to be verified
can be expressed using fix-point constructions in the style
of the µ-calculus, which is known to constitute a superset of
the linear and branching time temporal logics named above.
Fix points are expressed by means of formulas of second-
order logic and one then has to do a manual, meta-theoretic
proof of the desired property. There are automated tools that
are capable of determining fix points of inductive definitions
(Pelov & Ternovska 2005), but they are again often limited
to the propositional case.

In this paper, we present a new logic, called ESG, to ex-
press and reason about programs and their properties. It is
based on the situation calculus variant ES (Lakemeyer &
Levesque 2004) which makes certain restrictions that ease
theoretical treatments, but does not yield a loss of expres-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publikationsserver der RWTH Aachen University

https://core.ac.uk/display/36489941?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

siveness compared to the original situation calculus (Lake-
meyer & Levesque 2005). In the non-epistemic case that we
will consider here, one of these restrictions is that it assumes
a fixed universe of discourse, which allows to treat quantifi-
cation substitutionally. Another one is that future situations
can only be referred to by means of the modal operators [t]
(“after the action t“) and � (“in all future situations”).

Here we propose two extensions of the language. For
one, we will allow not only atomic actions, but arbitrary
Golog programs as arguments of the [·] operator. The for-
mula [δ]α then means that after executing the program δ, for-
mula α will hold. Programs are composed of atomic actions
and tests by means of constructors for non-deterministic
choice, finite and infinite iteration, sequential composition
and concurrency. In particular, this part of the language
resembles dynamic logic (Harel, Kozen, & Tiuryn 2000),
though our formalisms is more expressive in terms of mod-
elling arbitrary atomic actions and using first-order quan-
tification. The meaning of programs is defined inside the
logic’s semantics. We show that in case of terminating pro-
grams it is equivalent to the definition of Golog programs
in (Lakemeyer & Levesque 2005).

For another, we want to go beyond reasoning about what
holds after executing a program (which is especially useless
in case of non-terminating processes) and consider proper-
ties which hold during its execution. For this purpose, we
introduce formulas of the form [[δ]]α which expresses that α
holds for all possible runs of program δ, where α may con-
tain operators like “until”, “eventually” or “globally” known
from temporal logics. As an example, assume that δ refers
to the above program. Then

[[δ]]G(Occ(requestCoffee(p)) ⊃ FOcc(selectRequest(p)))

states that for all possible executions of δ, it is always (G)
the case that when a requestCoffee occurs by some person p,
then eventually (F) that request will be selected to be served.

For the CTL-like fragment of the language we also pro-
vide an automated method to verify program properties.
Roughly, for a given program, we first construct what we call
a characteristic graph, where nodes represent program states
and edges are labelled with actions and conditions, under
which these action can be taken. Conditions involving tem-
poral operators like “until” are then tested by computing fix
points wrt these graphs, using methods from model check-
ing. An adaptation further allows to also check postcondi-
tions of terminating programs. Since first-order reasoning
is involved in each case, only correctness can be guaranteed
but not termination.

The rest of the paper is organized as follows. In the next
section we introduce the logic ESG and show how it relates to
the original ES and Golog. Then we focus on the verification
of properties of non-terminating and terminating programs
with underlying basic action theories. After discussing re-
lated work we conclude.

The Logic ESG
The language is a second-order modal dialect with equality
and sorts of type object, action. It includes countably in-
finitely many standard names for each sort. Also included

are both fluent and rigid predicate and function symbols, as
well as rigid and fluent second-order variables. Fluents vary
as the result of actions, but rigids do not. We assume that the
fluents include unary predicates Poss, Occ, and Exo, whose
argument is of type action.

The logical connectives are ∧, ¬, ∀, together with these
modal operators: X, U, [δ], and [[δ]], where δ is a program
defined below. Other connectives like ∨, ⊃, ⊂, ≡, and ∃ are
used as the usual abbreviations.

Terms and formulas Terms are formed in the usual way.
Note that standard names syntactically are treated like ordi-
nary constants. By a primitive term we mean one of the form
h(n1, . . . , nk) where h is a (fluent or rigid) function symbol
and all of the ni are standard names.

Formulas are divided into two classes, situation and trace
formulas. As their names suggest, situation formulas ex-
press properties that hold in a certain situation, while trace
formulas describe properties of finite and infinite action se-
quences. The set of all formulas is defined to be the least set
such that for the situation formulas:

1. If t1, . . . , tk are terms, and H is a k-ary predicate symbol
then H(t1, . . . , tk) is an (atomic) situation formula;

2. If t1, . . . , tk are terms, and V is a k-ary second-order vari-
able, then V (t1, . . . , tk) is an (atomic) situation formula;

3. If t1 and t2 are terms, then (t1 = t2) is a sit. formula;

4. If δ is a program, α is a situation formula and φ is a trace
formula, then [δ]α and [[δ]]φ are situation formulas;

5. If α and β are situation formulas, v is a first-order vari-
able, and V is a second-order variable, then the following
are also situation formulas: (α ∧ β), ¬α, ∀v.α, ∀V.α.

The trace formulas are further defined as follows:

1. Every situation formula is a trace formula;

2. If φ and ψ are trace formulas, v is a first-order variable
and V is a second-order variable, then φ ∧ ψ, ¬φ, ∀v.φ,
∀V.φ, Xφ and φ U ψ are also trace formulas.

We read [δ] as “α holds after all possible executions of δ”,
[[δ]]φ as “φ holds for all possible executions of δ”, Occ(t) as
“t was the last action”, Xφ as “φ holds after the next action”
and φU ψ as “φwill hold until ψ holds”. To obtain the duals
of [δ]α and [[δ]]α, we let 〈δ〉α stand for ¬[δ]¬α and 〈〈δ〉〉α for
¬[[δ]]¬α.

Formulas without free variables are called sentences. A
primitive sentence is a predicate whose arguments are stan-
dard names. We call a formula without [δ], [[δ]], Poss, Exo
and Occ a fluent formula. A formula that does not contain
[[δ]] and where at most [t] appear where the argument t is an
atomic action is called a bounded formula.

Programs Programs are composed according to the fol-
lowing grammar:

δ ::= t | ϕ? | (δ1; δ2) | (δ1|δ2) | πx.δ | (δ1||δ2) | δ
∗

Here, t is any (not necessarily ground) term of sort action
and ϕ can be any situation formula of the full In the pre-
sented order, the constructs mean a primitive action, a test,
sequence of programs, nondeterministic choice between

programs, nondeterministic choice of argument, concurrent1

execution of programs, and nondeterministic iteration. We
remark that, except for procedures, the program constructs
essentially correspond to those of ConGolog (De Giacomo,
Lespérance, & Levesque 2000). Further control structures
can be introduced as abbreviations:2

if ϕ then δ1 else δ2 endIf
def
= ϕ?; δ1 | ¬ϕ?; δ2

while ϕ do δ endWhile
def
= (ϕ?; δ)∗;¬ϕ?

loop δ
def
= while ⊤ do δ endWhile

For the purpose of this paper, the loop δ construct is partic-
ularly important; we will also abbreviate it as δω.

Our language somewhat generalizes classical CTL∗. The
usual path quantifiers can be introduced by defining Eα as
〈〈anyω〉〉α and Aα as [[anyω]]α, where any is shorthand for
πa.a, i.e. it denotes the execution of an arbitrary action.
Further we abbreviate (⊤ U α) as Fα (“eventually”) and
¬F¬α as Gα (“always”). To stay compatible with the orig-
inal ES from (Lakemeyer & Levesque 2005), we finally un-
derstand �α as an abbreviation for AGα.

The Semantics

To determine the truth of a sentence, we need a world w
which determines the truth values of primitive sentences and
co-referring standard names for primitive terms after any se-
quence of actions. Formally:

A world w ∈W is any function from the primitive sen-
tences and Z to {0, 1}, and from the primitive terms
and Z to N (preserving sorts), and satisfying the rigid-
ity constraint: if r is a rigid function or predicate sym-
bol, then w[r(n1, . . . , nk), z] = w[r(n1, . . . , nk), z

′]
for all z, z′ ∈ Z .

Here, N denotes the set of all standard names and Z the
set of all finite sequences of standard names of sort action,
including the empty sequence 〈 〉.

The idea of co-referring standard names is extended to ar-
bitrary ground terms as follows. Given a variable-free term
t, a world w, and an action sequence z, we define |t|zw (read:
the co-referring standard name for t given w and z) by:

1. If t ∈ N , then |t|zw = t;

2. |h(t1, . . . , tk)|zw= w[h(n1, . . . , nk), z], where ni = |ti|zw.

To interpret formulas with free variables, we proceed as
follows. First-order variables are handled substitutionally
using the standard names. To handle the quantification over
second-order variables, we use second-order variable maps
defined as below:

The second-order primitives are formulas of the form
V (n1, . . . , nk) where V is a (fluent or rigid) second-
order variable and all of the ni are standard names. A
variable map u is a function from second-order primi-
tives and Z to {0, 1}, satisfying the rigidity constraint:
if Q is a rigid second-order variable, then for all z and
z′ in Z , u[Q(n1, . . . , nk), z] = u[Q(n1, . . . , nk), z

′].

1Like in ConGolog, we understand concurrency as interleaving.
2We use ⊤ to denote truth, which can be defined as ∀x.(x = x),

and ⊥ for falsity, i.e. ¬⊤.

Let u and u′ be variable maps, and let V be a second-order
variable; we write u ∼V u′ to mean that u and u′ agree
except perhaps on the second-order primitives involving V .

Now given w ∈ W , we define w |= α for situation for-
mulas α as w, 〈 〉, u |= α for all variable maps u, where for
any sequence z ∈ Z , and variable map u:

1. w, z, u |= H(t1, . . . , tk) iff
w[H(n1, . . . , nk), z] = 1, where ni = |ti|

z
w;

2. w, z, u |= V (t1, . . . , tk) iff
u[V (n1, . . . , nk), z] = 1, where ni = |ti|zw;

3. w, z, u |= (t1 = t2) iff
n1 and n2 are identical, where ni = |ti|zw;

4. w, z, u |= Occ(t) iff z = z′ · n, where n = |t|zw;

5. w, z, u |= α ∧ β iff w, z, u |= α and w, z, u |= β;

6. w, z, u |= ¬α iff w, z, u 6|= α;

7. w, z, u |= ∀v.α iff w, z, u |= αvn for all n ∈ Nv;

8. w, z, u |= ∀V.α iff w, z, u′ |= α for all u′ ∼V u;

9. w, z, u |= [[δ]]φ iff for all τ ∈ ||δ||wu (z), w, z, τ, u |= φ;

10. w, z, u |= [δ]α iff
for all finite z′ ∈ ||δ||wu (z), w, z · z′, u |= α.

Nv refers to the set of standard names of the same sort as
v. αvn means α with every free occurrence of v replaced by
n. ||δ||wu (z), which is defined below, maps, given w, u and z,
a program to a set of program traces, where a trace can be
a finite or infinite sequence of action standard names. Rule
10 only requires that α holds after all finite sequences for
[δ]α to be true. In particular this implies that any formula
is vacuously true “after” the execution of a non-terminating
program δω. On the other hand, in rule 9, the trace formula
φ must hold for any trace τ , be it finite or not. The truth of
trace formulas is given by:

1. w, z, τ, u |= α iff
w, z, u |= α, where α is a situation formula;

2. w, z, τ, u |= φ ∧ ψ iff w, z, τ, u |= φ and w, z, τ, u |= ψ;

3. w, z, τ, u |= ¬φ iff w, z, τ, u 6|= φ;

4. w, z, τ, u |= ∀v.φ iff w, z, τ, u |= φvn for all n ∈ Nv;

5. w, z, τ, u |= ∀V.φ iff w, z, τ, u′ |= φ for all u′ ∼V u;

6. w, z, τ, u |= Xφ iff τ = n · τ ′ and w, z · n, τ ′, u |= φ;

7. w, z, τ, u |= φ U ψ iff
there is z′ such that τ = z′ · τ ′ and w, z · z′, τ ′, u |= ψ

and for all z′′ 6= z′ with z′ = z′′ · z′′′,
w, z · z′′, z′′′ · τ ′ |= φ.

When Σ is a set of sentences and α is a sentence, we write
Σ |= α (read: Σ logically entails α) to mean that for every
w, if w |= α′ for every α′ ∈ Σ, then w |= α. Finally,
we write |= α (read: α is valid) to mean {} |= α. As a
notational convention, we will in the following always use
(possibly with sub- or superscripts) z for finite sequences, π
for infinite ones and τ for arbitrary traces.

The Meaning of Programs The program semantics we
present here is an adaptation of the single step semantics
of (De Giacomo, Lespérance, & Levesque 2000). A key dif-
ference is that we do not define the meaning of programs
axiomatically, but inside the logic. We also treat tests differ-
ently in that we do not view them as transitions, but rather as
conditions under which a transition (which is always a phys-
ical action in our framework) may be taken or under which
the run of a program may terminate.

A central concept is that of a configuration, which we de-
note as a pair (δ, z), where δ is a program (intuitively what
remains to be executed) and z a sequence of actions (that
have been already performed). Program configurations can
be final, which means that the run may successfully termi-
nate in that particular situation, or they can make certain
transitions to other configurations, each of which involves
performing some physical action.

Formally, the set of final configurations Fw,u is the
smallest set such that for all δ, δ1, δ2, situation formulas ϕ
and finite z:

1. (ϕ?, z) ∈ Fw,u if w, z, u |= ϕ;

2. (δ1; δ2, z) ∈ Fw,u if (δ1, z) ∈ Fw,u and (δ2, z) ∈ Fw,u;

3. (δ1|δ2, z) ∈ Fw,u if (δ1, z) ∈ Fw,u or (δ2, z) ∈ Fw,u;

4. (πx.δ, z) ∈ Fw,u if (δxn, z) ∈ Fw,u for some n ∈ Nx;

5. (δ∗, z) ∈ Fw,u;

6. (δ1||δ2, z) ∈ Fw,u if(δ1, z) ∈ Fw,u and (δ2, z) ∈ Fw,u.

Thus, a configuration (ϕ?, z) whose remaining program is
a test is final wrt w and u if the formula ϕ holds at w, z, u.
From the above it also follows that (t, z) 6∈ Fw,u for atomic
t, i.e. if some action t remains to be done, the configuration
cannot be final. Further, sequences are only final when the
involved subprograms are both final etc. The transition
relation among configurations is given as follows:

1. (t, z) →
w,u

(nil, z · n) if n = |t|zw;

2. (δ1; δ2, z) →
w,u

(γ; δ2, z · n) if (δ1, z) →
w,u

(γ, z · n);

3. (δ1; δ2, z) →
w,u

(δ′, z · n)

if (δ1, z) ∈ Fw,u and (δ2, z) →
w,u

(δ′, z · n);

4. (δ1|δ2, z) →
w,u

(δ′, z · n)

if (δ1, z) →
w,u

(δ′, z · n) or (δ2, z) →
w,u

(δ′, z · n);

5. (πx.δ, z) →
w,u

(δ′, z · n)

if (δxn′ , z) →
w,u

(δ′, z · n) for some n′ ∈ Nx;

6. (δ∗, z) →
w,u

(γ; δ∗, z · n) if (δ, z) →
w,u

(γ, z · n);

7. (δ1||δ2, z) →
w,u

(δ′||δ2, z · n) if (δ1, z) →
w,u

(δ′, z · n);

8. (δ1||δ2, z) →
w,u

(δ1||δ
′, z · n) if (δ2, z) →

w,u
(δ′, z · n).

Above, nil denotes the empty program and should be read
as an abbreviation for ⊤?. (t, z) may therefore successfully
terminate after performing physical action n, the latter being
the action standard name by which t is interpreted in w at z.
A sequence of programs can either make a transition in the
first subprogram or a transition in the second subprogram,
provided that the first one is final etc.

We can now define the set ||δ||wu (z) of execution traces of
a program δ, given w, u, z. In general this set may contain
both finite and infinite sequences of action standard names.

If
∗
→
w,u

is the reflexive transitive closure of →
w,u

, ||δ||wu (z) is

{z′ | (δ, z)
∗
→
w,u

(δ′, z · z′) and (δ′, z · z′) ∈ Fw,u} ∪

{π | for all z′ ∈ Pre(π), (δ, z)
∗
→
w,u

(δ′, z · z′)

and (δ′, z · z′) 6∈ Fw,u},

where Pre(π) is the set of all prefixes of π. A finite exe-
cution trace therefore is given by repeatedly following the
transition relation and ending up in a terminating configura-
tion; infinite runs never visit final configurations.

ES is part of ESG

The language presented in the previous section is in fact a su-
perset of the non-epistemic part of ES as presented in (Lake-
meyer & Levesque 2005):

Theorem 1 Let α be a sentence of ES without epistemic op-
erators. Then |=ES α iff |=ESG α.

The theorem, which is proved in the appendix, essentially
tells us that our [δ] operator, when restricted to atomic ac-
tions t, corresponds to Lakemeyer and Levesque’s [t] opera-
tor. Furthermore our definition of �α as an abbreviation for
AGα correctly captures their semantics for this construct.

Lakemeyer and Levesque provide a macro-based defini-
tion of the semantics of terminating Golog programs which
they prove to be equivalent to the one for the classical situa-
tion calculus:

Definition 2 (The Do Semantics) Let α,ϕ be formulas
and δ, δ′ be Golog programs.

1. Do(t, α)
def
= (Poss(t) ∧ [t]α);

2. Do((ϕ)?, α)
def
= (ϕ ∧ α);

3. Do(δ; δ′, α)
def
= Do(δ,Do(δ′, α));

4. Do(δ|δ′, α)
def
= (Do(δ, α) ∨Do(δ′, α));

5. Do(πx.δ, α)
def
= ∃x.Do(δ, α);

6. Do(δ∗, α)
def
=

∀P.{�(α ⊃ P) ∧ �(Do(δ, P) ⊃ P)} ⊃ P .

Do(δ, α) therefore can be expanded to a formula that states
under which condition there is a successfully terminating ex-
ecution of δ after which α will hold. In our logic, this fact
can simply be expressed by a formula:

Theorem 3 Let δ be a program without || and α be a for-
mula. Let δp be δ with every atomic action t replaced by
Poss(t)?; t. Then |= Do(δ, α) ≡ 〈δp〉α.

Basic Action Theories and Regression

Since we established the correspondence to the original ES,
we can make use of all results related to it, in particular con-
cerning action theories and regression.

Basic Action Theories A basic action theory (BAT) is
used to describe the specifics of a certain dynamic appli-
cation domain. In ES and therefore also ESG, they can be
defined similar to Reiter-style BATs for the situation calcu-
lus. A set of sentences Σ is a basic action theory iff it only
mentions the fluents in a given finite set F and is of the form
Σ = Σ0 ∪ Σpre ∪ Σpost where Σ0, the initial database, is a fi-
nite set of fluent sentences and Σpre is a precondition axiom

of the form3
�Poss(a) ≡ π, with π being a fluent formula

whose only free variable is a. Σpost is a finite set of successor

state axioms (SSAs)4

�[a]F (~x) ≡ γF and �[a]f(~x) = y ≡ γf
for each relational fluent F ∈ F \ {Poss} and each func-
tional fluent f ∈ F , incorporating Reiter’s (2001) solution
to the frame problem. γF has to be a fluent formula with free
variables ~x, and γf one with free variables among ~x and y.

In the example case of the coffee delivery robot, F con-
sists of two fluents: HoldingCoffee is relational and holds
when the robot is currently holding coffee; queue is func-
tional and contains the current queue of coffee requests. Fur-
ther we have five primitive actions: requestCoffee(p) is the
exogenous action (not under the robot’s control) of person
p sending a request for coffee. selectRequest(p) means the
next request (which came from person p) from the queue
is selected by the robot to be served. The robot can also
go and get coffee from the coffee machine (pickupCoffee)
and bring it to p (bringCoffee(p)). wait finally means to do
nothing for a while.

A possible initial database expresses that the robot ini-
tially is not holding coffee and the request queue is empty:

Σ0 = {¬HoldingCoffee, Empty(queue)}

The preconditions Σpre are given by:

�Poss(a) ≡ a = wait ∨

∃p. a = requestCoffee(p) ∧ ¬Full(queue) ∨

∃p. a = selectRequest(p) ∧ IsFirst(queue, p) ∨

a = pickupCoffee ∧ ¬HoldingCoffee ∨

∃p. a = bringCoffee(p) ∧ HoldingCoffee

Here, requestCoffee(p) is only possible when the queue is
not already full (assuming a fixed limit), pickupCoffee only
when the robot is not holding coffee etc. Σpost finally con-
tains the following successor state axioms:

�[a]HoldingCoffee ≡ a = pickupCoffee ∨

HoldingCoffee ∧ ¬∃p. a = bringCoffee(p),

�[a]queue = y ≡

∃p. a = requestCoffee(p) ∧ Enqueue(queue, p, y) ∨

∃p. a = selectRequest(p) ∧ Dequeue(queue, p, y) ∨

queue = y ∧ ¬∃p (a = requestCoffee(p) ∨

a = selectRequest(p))

3Free variables are understood as universally quantified from
the outside; � has lower syntactic precedence than the logical con-
nectives, i.e. �Poss(a) ≡ π stands for ∀a.�(Poss(a) ≡ π).

4The [t] construct has higher precedence than the logical con-
nectives. So �[a]F (~x) ≡ γF abbreviates ∀a.�(([a]F (~x)) ≡ γF).

For a queue with size limit k, we use a simple encod-
ing that represents the queue’s state by a term of the form
list(p1, . . . , pk), where empty positions are represented by
having pi = e, e being a distinguished standard name.
Above we made use of these abbreviations:

IsFirst(q, p)
def
= (p 6= e) ∧

∃p2 . . . ∃pk. q = list(p, p2, . . . , pk),

Empty(q)
def
= q = list(e, . . . , e),

Full(q)
def
= ∃x1 . . . ∃xk.

∧k
i=1

(xi 6= e) ∧

q = list(x1, . . . , xk),

Enqueue(qo, p, qn)
def
= (p 6= e) ∧

∨k−1

i=0
∃x1 . . . ∃xi.

∧i
j=1

(xi 6= e) ∧

qo = list(x1, . . . , xi, e, . . . , e) ∧

qn = list(x1, . . . , xi, p, e, . . . , e),

Dequeue(qo, p, qn)
def
= (p 6= e) ∧ ∃x2 . . . ∃xk. ∧

qo = list(p, x2, . . . , xk) ∧

qn = list(x2, . . . , xk−1, e)

Exogenous Actions To model actions that are not under
the agent’s control, we include an additional axiom Σexo
in the BAT. It has the form �Exo(a) ≡ χ, where χ is
a fluent formula whose only free variable is a. It de-
fines the necessary and sufficient conditions under which
a is exogenous. In case of the coffee delivery robot, χ
is ∃p. a = requestCoffee(p). We then have a process
δEXO = (πa.Exo(a)?; a)ω that constantly executes exoge-
nous actions and use (δctrl||δEXO) instead of the actual con-
trol program δctrl.

Regression For such BATs and formulas that only contain
[t] constructs for atomic actions t, (Lakemeyer & Levesque
2004) introduce an ES equivalent of Reiter’s regression op-
erator. The idea behind regression is that whenever we en-
counter a subformula of the form [t]F (~x), we may substi-
tute it by γF , the right-hand side of the successor state ax-
iom of F . This is sound in the sense that the axiom de-
fines the two expressions to be equivalent. The result of the
substitution will be true in exactly the same worlds satisfy-
ing the action theory Σ as the original one, but contains one
less modal operator [t]. Similarly, [t]Occ(t′) is replaced by
(t = t′) and Poss(t) and Exo(t) by the right-hand sides of
the corresponding axiom. Iteratively applying such substi-
tution steps, we end up with a fluent formula that describes
exactly the conditions on the initial situation under which
the original, non-static formula holds. We have an adapted
version of Lakemeyer and Levesque’s regression theorem:

Theorem 4 Let Σ be a BAT and let α be a bounded sen-
tence. Then R[α], the regression of α, is a fluent sentence
and Σ |= α iff Σ0 |= R[α].

Program Verification
We now have everything in hand to reason about programs
properties. Typically, the verification of a program δ, given
a BAT Σ, amounts to checking whether Σ |= (¬)〈〈δ〉〉ϕ (for
non-terminating δ) and Σ |= (¬)〈δ〉α (for terminating δ).

Verifying Non-Terminating Programs

As a motivation, consider again the example control pro-
gram δcoffee that was presented in the introduction and let δ
in the following stand for (δcoffee ||δEXO)p. Then indeed the
BAT presented in the last section entails these two sentences:

[[δ]]G(Occ(requestCoffee(p)) ⊃ FOcc(selectRequest(p)))
〈〈δ〉〉G¬∃p(Occ(selectRequest(p)))

Both properties that we mentioned in the introduction there-
fore actually hold: whenever a request for coffee occurs, it
will eventually be served and it might happen that no re-
quest is ever served. Because of the former, the latter can
only happen when there are no requests at all.

Instead of proving such properties manually, automated
verification is of course preferable. We will present an al-
gorithm that can do so for a restricted CTL-like subset of
ESG. More precisely, we say that ϕ ∈ ESGCTL if it is built
according to the following grammar:

ϕ ::= (t1 = t2) | F (~t) | Occ(t) | ¬ϕ | ϕ ∧ ϕ | ∃x.ϕ |
〈〈δ〉〉Xϕ | 〈〈δ〉〉ϕ U ϕ | 〈〈δ〉〉Gϕ

As in CTL, only using existential path quantifiers is no real
restriction, since the following equivalences are valid:

|= [[δ]]Xϕ ≡¬〈〈δ〉〉X¬ϕ
|= [[δ]]Gϕ ≡¬〈〈δ〉〉(⊤ U ¬ϕ)
|= [[δ]](φ U ψ)≡¬〈〈δ〉〉(¬ψ U (¬φ ∧ ¬ψ)) ∧ ¬〈〈δ〉〉G¬ψ

The second example property above is in ESGCTL, while
the first one is not. We further require that programs have
the form δ1

ω|| · · · ||δkω, which is rather typical for non-
terminating robot control programs and therefore not a rig-
orous restriction. The example δ is of this form, including
the part that encodes exogenous actions.

Characteristic Graphs A central idea of our algorithm is
that we encode the space of reachable program configura-
tions by what we call a characteristic graph of a program.
The nodes V in such a graph are tuples of the form 〈δ′, φ〉,
which intuitively denote the remaining program of the cur-
rent run and the condition under which execution may termi-
nate there. The initial node is denoted by v0. Edges in E are
labeled with tuples π~x : t/ψ, where ~x is a list of variables (if
it is empty, we omit the leading π), t is an action term and ψ
is a formula (which we omit when it is ⊤). Intuitively, this
means when one wants to take action t, one has to choose
instantiations for the ~x and ψ must hold.

The rather lengthy formal definition of characteristic
graphs is presented in the appendix. To get an intuition,
consider Figure 1, which depicts the characteristic graph for
δcoffee ||δEXO, where

v0 = 〈δcoffee || δEXO,⊥〉

v1 = 〈(pickupCoffee; bringCoffee(p); δcoffee) || δEXO,⊥〉

v2 = 〈(bringCoffee(p); δcoffee) || δEXO,⊥〉

The fact that the program is non-terminating is reflected in
the cyclic structure of the graph and the fact that the termi-
nation condition in each node is ⊥. In the initial node, de-
pending on whether Empty(queue) holds or not, either wait

πa : a/Exo(a)πa : a/Exo(a)

wait/Empty(queue)

πa : a/Exo(a)

bringCoffee(p)

pickupCoffee

v1

v2

v0

πp : selectRequest(p)/
¬Empty(queue)

Figure 1: Characteristic Graph for the Coffee Example

or the selectRequest is the only applicable (non-exogenous)
action. In any configuration, an exogenous action (here:
an incoming request) may occur, hence the reflexive edges
πa : a/Exo(a) at each node. Note that the preconditions
of actions are omitted here; the corresponding graph for the
above δ is obtained by simply conjoining the condition φ in
each transition π~x : t/φ with Poss(t).

The Algorithm To check a formula of ESGCTL against
some BAT Σ, we transform it as follows:

C[(t1 = t2)] = (t1 = t2); C[F (~t)] = F (~t);

C[ϕ1 ∧ ϕ2] = C[ϕ1] ∧ C[ϕ2]; C[¬ϕ] = ¬C[ϕ];

C[〈〈δ〉〉Gϕ] = CHECKEG[δ, ϕ]; C[∃x.ϕ] = ∃x.C[ϕ];

C[〈〈δ〉〉Xϕ] = CHECKEX[δ, ϕ]; C[Occ(t)] = Occ(t);

C[〈〈δ〉〉ϕ1 U ϕ2] = CHECKEU[δ, ϕ1, ϕ2].

In each of the cases with path quantifiers, we first deter-
mine the characteristic graph of δ. The procedures for these
cases operate on sets of labels of the form 〈v, ψ〉, where
v = 〈δ′, φ〉 is a node in the graph and ψ is a formula, which
should be regarded as a representation for all the infinitely
many configurations (δ′, z) where ψ holds. Let us first con-
sider the procedure for “next”:

Procedure 1 CHECKEX[δ, ϕ]

X := PRE[Gδ, LABEL[Gδ, C[ϕ]]];
return INITLABEL[Gδ,X]

LABEL[G, α] means the set where all vertices of G are la-
belled only with α, i.e.

LABEL[〈V,E, v0〉, α] = {〈v, α〉 | v ∈ V }.

The preimage of a set of labels is determined by traversing
the edges in G backwards and regressing the formula in the
each label, conjoined with the transition condition:

PRE[〈V,E, v0〉, S] =

{〈v′,R[∃~x.φ ∧ [t]ψ]〉 | v′
π~x:t/φ
→ v ∈ E, 〈v, ψ〉 ∈ S}

Finally, given a set of labels, we need a function that extracts
the information about the initial situation, following the con-
vention that an empty disjunction is understood as ⊥:

INITLABEL[〈V,E, v0〉, S] =
∨

{ψ | 〈v0, ψ〉 ∈ S}

Therefore, to check whether there is some trace such that
ϕ holds at the next situation, we recursively transform ϕ,
label all nodes with the result and compute the correspond-
ing preimage using regression. The labels that are then at
the initial node encode the conditions under which there is a
trace with the desired property.

The procedures for “until” and “always” are presented be-
low. They transform the set of labels iteratively until it con-
verges. In case of “until”, the idea is to start with C[ψ] labels
and in each iteration, go one transition backwards to a con-
figuration where C[φ] must hold. Similarly, for “always”, we
have an initial labelling with C[ϕ] and iteratively conjoin the
labels from the last iteration with its preimage.

Procedure 2 CHECKEU[δ, φ, ψ]

X := LABEL[Gδ, C[ψ]]; XO := LABEL[Gδ,⊤];
while X 6≡ XO do
XO := X;
X := X ∪ AND(LABEL[Gδ, C[φ]], PRE[Gδ,X]);

end while
return INITLABEL[G,X]

Procedure 3 CHECKEG[δ, ϕ]

X := LABEL[Gδ, C[ϕ]]; XO := LABEL[Gδ,⊥];
while X 6≡ XO do
XO := X;
X := AND(X, PRE[Gδ,X]);

end while
return INITLABEL[Gδ,X]

The conjunction of two sets of labels is as expected:

AND(S1, S2) = {〈v, ψ1∧ψ2〉 | 〈v, ψ1〉 ∈ S1, 〈v, ψ2〉 ∈ S2}

The condition “X 6≡ XO” is violated when each label
〈v, ψ〉 ∈ X has a counterpart 〈v, ψ′〉 ∈ XO such that
ΣUNA |= ψ ≡ ψ′, where ΣUNA are unique names axioms for
actions. Since we allow first-order quantification, such tests
for equivalence are in general undecidable. In practice it is
however often sufficient to do simple syntactical simplifica-
tions (e.g. replace φ∧φ by φ) in order to detect convergence,
as we will later see in the example.

Theorem 5 Let ϕ ∈ ESGCTL. If the computation of C[ϕ] wrt
Σ terminates, it is a fluent formula and

Σ ∪ ΣUNA |= ϕ iff Σ0 ∪ ΣUNA |= C[ϕ].

As a remark, our procedures CHECKEU[δ, φ, ψ] and
CHECKEG[δ, ϕ] correspond to the iterative approximation
of least and greatest fix points in Kleene’s constructive proof
of the Tarski-Knaster Theorem, which guarantees that these
fix points exist. Of course since our formalism allows infi-
nite state spaces, they need not be finite like in propositional
CTL, i.e. the computation is not guaranteed to terminate.

Example We can apply the algorithm in order to check
〈〈δ〉〉G¬∃p (Occ(selectRequest(p))) against the example
BAT, where δ denotes (δcoffee || δEXO)p and we have a small
queue of size k = 2. Let rC (p) stand for requestCoffee(p),
sR(p) for selectRequest(p) and ψ for ¬∃p(Occ(sR(p))).
The initial set of labels in CHECKEG[δ, ψ] then is

X = {〈v0, ψ〉, 〈v1, ψ〉, 〈v2, ψ〉}

Starting the first iteration of the loop, we have to determine
the preimage of the currentX . PRE[Gδ,X] consists of seven
different labels, three of those for v0, corresponding to the
edges leaving that node:

〈v0,R[∃a.Exo(a) ∧ Poss(a) ∧ [a]ψ]〉

〈v0,R[Empty(queue) ∧ Poss(wait) ∧ [wait]ψ]〉

〈v0,R[∃p.¬Empty(queue) ∧ Poss(sR(p)) ∧ [sR(p)]ψ]〉

When applying regression and using the unique names as-
sumption for actions, we obtain:

〈v0,∃a.∃p(a = rC (p))∧¬Full(queue)∧¬∃p(a = sR(p))〉

〈v0,Empty(queue) ∧ ⊤ ∧ ⊤〉

〈v0,∃p.¬Empty(queue) ∧ ¬Empty(queue) ∧ ⊥〉

These can be further simplified to

〈v0,¬Full(queue)〉, 〈v0,Empty(queue)〉, 〈v0,⊥〉

Using all seven labels in PRE[Gδ,X], we can determine
AND(X, PRE[Gδ,X]), which contains

〈v0, ψ∧¬Full(queue)〉, 〈v0, ψ∧Empty(queue)〉, 〈v0, ψ∧⊥〉

and four other labels. This set becomes the new X . Iterat-
ing such steps, we will observe convergence after the fifth
iteration, ending up with X consisting of

〈v0, ψ ∧ Empty(queue)〉

〈v1, ψ ∧ ¬HoldingCoffee ∧ Empty(queue)〉

〈v2, ψ ∧ HoldingCoffee ∧ Empty(queue)〉

Therefore, C[〈〈δ〉〉Gψ] = ψ ∧ Empty(queue), which is
clearly entailed by Σ0 ∪ ΣUNA. The result is also intuitively
clear: A trace without sR(P) is possible just in case no
sR(p) has yet occurred and there are no initial requests in
the queue that have to be served.

The example also nicely demonstrates that for the con-
vergence of our method, the state space does not necessarily
have to be finite in a strict sense; it suffices when it is finitely
representable. Remember that the state of the queue fluent
(with an assumed length of 2) is given by a term of the form
list(n1, n2), where the ni can be any of the countably in-
finitely many standard names of sort object. For the purpose
of verification, it however does not matter which requests
the queue actually contains, but only how many, with only
finitely many possible quantities. With the expressive power
of first-order quantification, this simple form of abstraction
can easily be achieved. In the example, the three abstract
states of queue were

(Q1) list(e, e)

(Q2) ∃x1. queue = list(x1, e)

(Q3) ∃x1∃x2. (x1 6= e)∧(x2 6= e)∧queue = list(x1, x2)

where (Q1) was abbreviated as Empty(queue) and (Q3) as
Full(queue). Had we propositionalized the theory using a
fixed number of standard names as possible arguments in or-
der to obtain finiteness, the state space would unnecessarily
blow up exponentially. While it is easy to come up with an
example where the algorithm does not terminate anymore,
we believe that many practical applications share the proper-
ties of our example and that it therefore pays off to adopt the

πp : requestCoffee(p)

〈(πp.requestCoffee(p))∗,⊤〉

Figure 2: Characteristic graph of a simple iteration

higher expressivity of a first-order logic to avoid state space
explosion. A worthwhile direction of future work would
be the identification of classes of syntactically restricted ba-
sic action theories for which termination can be guaranteed,
thus putting our claim on more solid grounds.

Verifying Terminating Programs

Finally, we can adapt the idea of the algorithm to define an
extended form of Reiter’s (2001) regression that is able to
deal with arbitrary [δ] and 〈δ〉 operators even in the pres-
ence of iteration, though it is of course again not guaranteed
to terminate. Intuitively, when we want to decide whether
for a fluent formula α, 〈δ〉α is entailed, then we look for
some trace that makes valid transitions until a final state is
reached. For that purpose, we have a procedure REGR[δ, α]
that is similar to CHECKEU[δ,⊤, α], but where the initial-
ization of X also considers the nodes’ finality conditions:

Procedure 4 REGR[δ, α]

X := FINAL[Gδ, α]; XO := LABEL[Gδ,⊤];
while X 6= XO do
XO := X;
X := X ∪ PRE[Gδ,X];

end while
return INITLABEL[Gδ,X]

The labels encoding the final configurations are:

FINAL[G, ϕ]
def
= {〈v, ψ ∧ ϕ〉 | v = 〈δ′, ψ〉, ψ 6= ⊥}

The following theorem is an adaptation of the previous one:

Theorem 6 Let α be a fluent formula. If the computation of
REGR[δ, α] terminates, it is a fluent formula and

Σ ∪ ΣUNA |= 〈δ〉α iff Σ0 ∪ ΣUNA |= REGR[δ, α].

Again, convergence is only given when the set of possible
traces is finitely representable by some formula. Let us illus-
trate the algorithm briefly. The most interesting case is how
it works in the case of an iteration, therefore consider the
simple program δ = (πp.requestCoffee(p))∗, which non-
deterministically sends a finite number of coffee requests.
The corresponding characteristic graph is depicted in Fig-
ure 2. Assume that we want to know whether there is some
possible execution of this δ such that the queue will be full
afterwards, that is whether Σ |= 〈δ〉Full(queue). The set X
gets initialized to {⊤ ∧ Full(queue)}, which is equivalent
to {(Q3)}. Since the regression of (Q3) can be simplified to
(Q2), we obtain {(Q3), (Q2)} in the first iteration of the al-
gorithm and similarly {(Q3), (Q2), (Q1)} in the second one.
The regression of (Q1) is equivalent to ⊥ and the algorithm
converges; the resulting formula is the disjunction of (Q1)-
(Q3), which is obviously entailed by Σ0.

Related Work

ESG draws its inspiration from a number of other for-
malisms, most importantly dynamic logic (Harel, Kozen, &
Tiuryn 2000), process logic (Harel, Kozen, & Parikh 1982;
Harel, Kozen, & Tiuryn 2000), and temporal logics5 (Emer-
son 1990). Despite the commonalities, there are some dif-
ferences. In particular, although there are first-order exten-
sions of these logics, their expressiveness is often restricted.
Atomic actions, for instance, are usually assumed to be as-
signments of the form x := t, where x is a variable, and t
is some term (Bohn et al. 1998). On the other hand, in the
tradition of the situation calculus, ESG allows to define pre-
and postconditions of actions by arbitrary formulas.

There is a wide spectrum of ongoing research in the area
of model-checking. The fundamental techniques for tempo-
ral logics, from which, in the case of CTL, our algorithm
is clearly inspired, are discussed in (Clarke, Grumberg, &
Peled 1999). Larger state spaces are tackled by resorting
to symbolic model-checking, using an OBDD-based rep-
resentation (Burch et al. 1990). Infinite state spaces are
usually reduced to the finite case by means of predicate ab-
straction techniques (Chechik, Devereux, & Gurfinkel 2001;
Bogunovi & Pek 2006). Many software model checkers are
available, famous examples being NuSMV (Cimatti et al.
2002) and SPIN (Holzmann 2003).

Regarding the verification of Golog programs, besides
the work of (De Giacomo, Ternovska, & Reiter 1997) al-
ready discussed in the introduction, a model checker for
non-terminating ConGolog programs using encodings in
the µ-calculus is reported in (Kalantari & Ternovska 2002).
Liu (2002) presents a proof system in the style of Hoare
logic for proving properties of terminating Golog programs.
Kelly and Pearce (2007) present an algorithm for checking
the persistence of formulas, which can be viewed as a special
case of our method considering the fact that �α is equivalent
to ¬〈〈anyω〉〉⊤ U ¬α. Verification of agent programs has
naturally been studied for other action languages as well,
e.g. in (de Boer et al. 2007), but is mostly limited to the
propositional case.

Conclusion

Based on an existing modal fragment of the situation cal-
culus we proposed a new logic which allows us to formu-
late properties of non-terminating Golog programs in a nat-
ural way. In particular, we are able to express conditions
that need to hold during the execution of a program, where
these conditions may use operators known from branching-
time logic. We further presented a method to automatically
verify such conditions which uses ideas from model check-
ing and regression-based reasoning. We adapted it to verify
postconditions of terminating programs. We remark that,
since (Lakemeyer & Levesque 2004) also provide a regres-
sion method for formulas containing Know operators, both
the logic and all results presented in this paper can be ex-
tended to the epistemic case with few modifications. In the

5Statements of temporal logics were first introduced into the
situation calculus by (Gabaldon 2004), however only for finite se-
quences of actions.

future, we would like to explore verification methods for
larger subclasses of the language.

Acknowledgements

This work was supported by the Deutsche Forschungsge-
meinschaft under grant La 747/14-1. We also thank the
anonymous reviewers for their helpful comments.

Appendix: Characteristic Graphs

For a program δ, the characteristic graph of δ is given by
Gδ = 〈V,E, v0〉, where

• V is a finite set of vertices of the form 〈δ′, φ〉, where δ′ is
a program and φ is a formula;

• E is a finite set of edges of the form v1
π~x:t/ψ
→ v2, where

v1, v2 ∈ V are nodes, ~x is a possibly empty list of vari-
ables, t is a term of sort action and ψ is a formula;

• v0 ∈ E is the initial node.

Gδ is defined by induction on the structure of δ:

• δ = t:
v0 = 〈t,⊥〉;

V = {〈t,⊥〉, 〈nil,⊤〉}; E = {〈t,⊥〉
t
→ 〈nil,⊤〉}.

• δ = ϕ?:
v0 = 〈nil, ϕ〉; V = {〈nil, ϕ〉}; E = ∅.

• δ = δ1; δ2:
Let Gδ1 = 〈V1, E1, v

1
o〉 and Gδ2 = 〈V2, E2, v

2
o〉, where

vi0 = 〈δi, ϕ
i
0〉. Then

v0 = 〈δ1; δ2, ϕ
1
0 ∧ ϕ

2
0〉;

V = {〈δ′1; δ2, ϕ
′
1 ∧ ϕ

2
0〉 | 〈δ

′
1, ϕ

′
1〉 ∈ V1} ∪ V2;

E = {〈δ′1; δ2, ϕ
′
1 ∧ ϕ

2
0〉

π~x:t/φ1

→ 〈δ′′1 ; δ2, ϕ
′′
1 ∧ ϕ2

0〉

| 〈δ′1, ϕ
′
1〉

π~x:t/φ1

→ 〈δ′′1 , ϕ
′′
1〉 ∈ E1} ∪

{〈δ′2, ϕ
′
2〉

π~x:t/φ2

→ 〈δ′′2 , ϕ
′′
2〉

| 〈δ′2, ϕ
′
2〉

π~x:t/φ2

→ 〈δ′′2 , ϕ
′′
2〉 ∈ E2} ∪

{〈δ′1; δ2, ϕ
′
1 ∧ ϕ

2
0〉

π~x:t/φ2∧ϕ
′

1→ 〈δ′2, ϕ
′
2〉

| 〈δ2, ϕ
2
0〉

π~x:t/φ2

→ 〈δ′2, ϕ
′
2〉 ∈ E2, ϕ

′
1 6= ⊥}.

The idea here is to essentially leave Gδ1 as it is, but where
each δ′1 turns into δ′1; δ2 and each termination condition is
augmented by ϕ2

0, the condition under which δ2 is final.
Gδ2 then remains unchanged and we have copies of edges
originally going out of v2

0 also at all δ′1; δ2 nodes, with the
additional constraint that δ′1 is final, i.e. that ϕ′

1 holds.

• δ = (δ1|δ2):
Let Gδ1 = 〈V1, E1, v

1
o〉 and Gδ2 = 〈V2, E2, v

2
o〉, where

vi0 = 〈δi, ϕ
i
0〉. Then

v0 = 〈(δ1|δ2), ϕ
1
0 ∨ ϕ

2
0〉;

V = {v0} ∪ V1 ∪ V2;

E = {v0
π~x:t/φ
→ vi | v

i
0

π~x:t/φ
→ vi ∈ Ei} ∪ E1 ∪E2.

Here we have a copy of each Gδi
. From the new initial

node, there are copies of the outgoing edges of both vi0.
Thus, the first transition corresponds to the commitment

to either δ1 or δ2, and all subsequent transitions have to
be in the chosen subprogram.

• δ = πy.δ1:
Let Gδ1 = 〈V1, E1, v

1
o〉, where v1

0 = 〈δ1, ϕ
1
0〉. Then

v0 = 〈πy.δ1,∃y.ϕ
1
0〉;

V = {v0} ∪ V1;

E = {v0
πy,~x:t/φ1

→ v′1 | v1
0

π~x:t/φ1

→ v′1 ∈ E1} ∪ E1.

In this case we extend a copy of Gδ1 with a new initial
node whose outgoing edges contain the additional choice
for y and whose termination condition also requires the
existence of an appropriate y.

• δ = (δ1||δ2):
Let Gδ1 = 〈V1, E1, v

1
o〉 and Gδ2 = 〈V2, E2, v

2
o〉, where

vi0 = 〈δi, ϕi0〉. Then

v0 = 〈(δ1||δ2), ϕ1
0 ∧ ϕ

2
0〉;

V = {〈(δ′1||δ
′
2), ϕ

′
1 ∧ ϕ

′
2〉 | 〈δ

′
1, ϕ

′
1〉∈V1, 〈δ

′
2, ϕ

′
2〉∈V2};

E =

{〈(δ′1||δ
′
2), ϕ

′
1 ∧ ϕ

′
2〉

π~x:t/φ1

→ 〈(δ′′1 ||δ
′
2), ϕ

′′
1 ∧ ϕ′

2〉

|〈δ′1, ϕ
′
1〉

π~x:t/φ1

→ 〈δ′′1 , ϕ
′′
1〉 ∈ E1, 〈δ

′
2, ϕ

′
2〉 ∈ V2}∪

{〈(δ′1||δ
′
2), ϕ

′
1 ∧ ϕ

′
2〉

π~x:t/φ2

→ 〈(δ′1||δ
′′
2), ϕ′

1 ∧ ϕ
′′
2〉

|〈δ′2, ϕ
′
2〉

π~x:t/φ2

→ 〈δ′′2 , ϕ
′′
2〉 ∈ E2, 〈δ

′
1, ϕ

′
1〉 ∈ V1}.

The set of vertices here is something like the Cartesian
product of the nodes of the Gδi

. Edges are such that ei-
ther a transition in δ1 or one in δ2 is taken, and the other
program remains unchanged.

• δ = (δ1)
∗:

Let Gδ1 = 〈V1, E1, v
1
o〉. Then

v0 = 〈(δ1)∗,⊤〉;

V = {v0} ∪ {〈δ′1; (δ1)
∗, ϕ′

1〉 | 〈δ
′
1, ϕ

′
1〉 ∈ V1};

E = {v0
π~x:t/φ1

→ 〈δ′1; (δ1)
∗, ϕ′

1〉

| v1
0

π~x:t/φ1

→ 〈δ′1, ϕ
′
1〉 ∈ E1} ∪

{〈δ′1; (δ1)
∗, ϕ′

1〉
π~x:t/φ1

→ 〈δ′′1 ; (δ1)
∗, ϕ′′

1〉

| 〈δ′1, ϕ
′
1〉

π~x:t/φ1

→ 〈δ′′1 , ϕ
′′
1〉 ∈ E1} ∪

{〈δ′1; (δ1)
∗, ϕ′

1〉
π~x:t/φ1∧ϕ

′′

1→ v0

| 〈δ′1, ϕ
′
1〉

π~x:t/φ1

→ 〈δ′′1 , ϕ
′′
1〉 ∈ E2, ϕ

′′
1 6= ⊥}.

Here, we introduce a new initial node, which has ⊤ as the
termination condition, and which has copies of the leaving
edges of the initial node of Gδ1 . The new v0 furthermore
has ingoing edges for each transition that leads to a node
at which program execution may terminate.

To obtain simpler graphs, it is safe to drop any nodes and
edges that are unreachable (in the graph theoretic sense)
from v0. In addition, we can identify both (nil; δ) and
(δ;nil) with δ, which further simplifies the resulting graph.

Appendix: Proofs

Theorem 1 Let α be a sentence of ES without epistemic
operators. Then |=ES α iff |=ESG α.

Proof: We show that for each α of classical ES,

w, z, u |=ESG α iff w, z, u |=ES α.

The claim is obvious for the cases H(~t), V (~t), (t1 = t2),
α ∧ β, ¬α, ∀v.α, and ∀V.α since their definition did not
change. The cases [t]α and �α remain.

• For an atomic action term t, the only possible transition
step is (t, z) →

w,u
(nil, z · n), where n = |t|wz . Further

(nil, z · n) ∈ Fw,u, therefore ||t||wu (z) = {n}. Then we
have: w, z, u |=ESG [t]α iff (by definition) for all z′ ∈
||t||wu (z), w, z · z′, u |=ESG α iff w, z · n, u |=ESG α, where
n = |t|wz iff (by induction) w, z · n, u |=ES α, where
n = |t|wz iff (by definition) w, z, u |=ES [t]α.

• First note that (πa.a, z′) →
w,u

(nil, z′ ·n) for any sequence

z′ and any action name n, therefore ((πa.a)ω, z) →
w,u

(nil; (πa.a)ω, z · n) for any n and (nil; (πa.a)ω, z′) →
w,u

(nil; (πa.a)ω, z′ · n) for any z′ and n. Further obvi-
ously ((πa.a)ω, z) 6∈ Fw,u and (nil; (πa.a)ω, z′) 6∈
Fw,u, hence ||(πa.a)ω||wu (z) = Π (the set of all infi-
nite paths). Then we have w, z, u |=ESG �α iff (by
definition) w, z, u |=ESG [[(πa.a)ω]]¬(⊤ U ¬α) iff (by
definition) for all τ ∈ ||(πa.a)ω||wu (z), w, z, τ, u |=ESG

¬(⊤ U ¬α) iff (by the above) for all infinite π,
w, z, π, u |=ESG ¬(⊤ U ¬α) iff (by definition) for all
infinite π, w, z, π, u 6|=ESG (⊤ U ¬α) iff (by defini-
tion) for all infinite π and all z′ with π = z′ · π′,
w, z · z′, π′, u 6|=ESG ¬α iff (by definition) for all in-
finite π′ and all z′, w, z · z′, π′, u |=ESG α iff (since
α ∈ ES is a situation formula, i.e. independent from π′)
for all z′, w, z · z′, u |=ESG α iff (by induction) for all z′,
w, z · z′, u |=ES α iff (by definition) w, z, u |=ES �α.

The next theorem requires the following lemma:

Lemma 7 For any w, z, u, δ and δ′:

1. z′ ∈ ||δ; δ′||wu (z) iff z′ = z′′ · z′′′

where z′′ ∈ ||δ||wu (z) and z′′′ ∈ ||δ′||wu (z · z′′).

2. z′ ∈ ||δ∗||wu (z) iff z′ = z0 · z1 · · · zk, k ≥ 0, z0 = 〈 〉,

where zi+1 ∈ ||δ||wu (z · z0 · · · zi) for 1 ≤ i < k.

Proof: These can be proved by an induction on the length
of z′ and on k, respectively.

Theorem 3 Let δ be a program without || and α be a for-
mula. Let δp be δ with every atomic action t replaced by
Poss(t)?; t. Then |= Do(δ, α) ≡ 〈δp〉α.

Proof: We prove w, z, u |= Do(δ, α) iff w, z, u |= 〈δp〉α
by induction on the structure of δ. Because of limited space,
we only consider the most interesting case δ∗. Obviously
(δ∗)p = (δp)∗.

“⇒”: Let w, z, u |= Do(δ∗, α). Therefore for all u′ with
u′ ∼P u, if w, z, u′ |= �(α ⊃ P) and w, z, u′ |=
�(Do(δ, P) ⊃ P), then u′[P, z] = 1. Now let u0 be a vari-
able map with u0[P, z

′] = 1 iff there is z′′ ∈ ||(δ∗)p||wu (z′)
with w, z′ · z′′, u |= α and which is otherwise like u. Then
clearly u0 ∼P u. Moreover, we will show that

(i) w, z, u0 |= �(α ⊃ P)

(ii) w, z, u0 |= �(Do(δ, P) ⊃ P)

From this it follows that u0[P, z] = 1, which by assumption
implies that there is z′′ ∈ ||(δ∗)p||wu (z) with w, z · z′, u |= α,
therefore w, z, u |= 〈(δ∗)p〉α.

To prove (i), let w, z · z′, u0 |= α. Assuming that α does
not contain free occurrences of P , also w, z · z′, u |= α.
Since 〈 〉 ∈ ||(δ∗)p||wu (z ·z′) for any z′, we have u0[P, z ·z

′] =
1.

For (ii), let w, z · z′, u0 |= Do(δ, P). By induction, w, z ·
z′, u0 |= 〈δp〉P . This means there is z′′ ∈ ||δp||wu0

(z · z′)
and u0[P, z · z′ · z′′] = 1. Since P does not occur freely
in δ, also z′′ ∈ ||δp||wu (z · z′). By definition of u0, there is
now some z′′′ ∈ ||(δ∗)p||wu (z · z′ · z′′) with w, z · z′ · z′′ ·
z′′′, u |= α. By using Lemma 7 item 2 twice, we obtain
z′′ · z′′′ ∈ ||(δp)∗||wu (z · z′), therefore u0[P, z · z′] = 1.

“⇐”: Let w, z, u |= 〈(δ∗)p〉α and

(i) w, z, u′ |= �(α ⊃ P) and

(ii) w, z, u′ |= �(Do(δ, P) ⊃ P)

for some u′ with u′ ∼P u. We have to show that u′[P, z] =
1. By induction, (ii) is equivalent to

(iii) w, z, u′ |= �(〈δp〉P ⊃ P).

By assumption, z′ ∈ ||(δ∗)p||wu (z) and w, z · z′, u |= α. By
Lemma 7 item 2, z′ = z0 · z1 · · · zk, where z0 = 〈 〉 and
zi+1 ∈ ||δp||wu (z · z0 · · · zi) for 1 ≤ i < k. Using (i) we
obtain u′[P, z · z′] = 1. Applying (iii) repeatedly, we get
u′[P, z · z0 · · · zi] = 1 for all 0 ≤ i ≤ k. In particular,
u′[P, z] = 1.

The following lemma, needed for the next theorem, gives a
formal characterization of how characteristic graphs encode
the transition relation and finality of program configurations:

Lemma 8 Let Gδ = 〈V,E, v0〉. Then

1. v0 = 〈δ, φ〉 for some φ.

2. 〈δ, z〉
∗
→
w,u

〈δ′, z · z′〉 iff:

z′ = n0 · · ·nk−1 (k ≥ 0) and there are v0, . . . , vk ∈ V
and standard names ~n0, . . . , ~nk−1 such that

• vi = 〈δi, φi〉 for 1 ≤ i ≤ k;

• vi
π~xi:ti/ψi

→ vi+1 for 1 ≤ i < k;

• ni = |(ti)
~xi−1 ··· ~xo

~ni−1 ··· ~n0
|
z·n0···ni−1

w for 1 ≤ i ≤ k;

• w, z · n0 · · ·ni−1, u |= (ψi)
~xi−1 ··· ~xo

~ni−1 ··· ~n0
for 1 ≤ i ≤ k;

• δ′ = (δk)
~xk−1 ··· ~xo

~nk−1 ··· ~n0
.

3. 〈δ, z〉
∗
→
w,u

〈δ′, z · z′〉 and 〈δ′, z · z′〉 ∈ Fw,u iff the condi-

tions listed in the previous item hold and additionally

• w, z · z′, u |= (φk)
~xk−1 ··· ~xo

~nk−1 ··· ~n0
.

Proof: The first item can be shown by an induction on the
structure of δ. Item 2 and 3 follow by an outer induction on
δ and an inner one on the length of the computation.

Theorem 5 Let ϕ ∈ ESGCTL. If the computation of C[ϕ]
wrt Σ terminates, it is a fluent formula and

Σ ∪ ΣUNA |= ϕ iff Σ0 ∪ ΣUNA |= C[ϕ].

Proof: (Sketch) Let w |= Σ. We prove that w, z |= ϕ iff
w, z |= C[ϕ] by induction on the structure of ϕ. It can also
be proved that C[ϕ] is a fluent formula, thus w, 〈 〉 |= C[ϕ]
iff w′, 〈 〉 |= C[ϕ] for any w′ agreeing with w on the fluents’
values in the initial situation, as defined by Σ0.

The cases without 〈〈δ〉〉 quantifiers are easy. The intuition
for the correctness of the other cases is the following.
w, z |= 〈〈δ〉〉Xϕ iff there is some first step n in some

execution trace of δ such that w, z · n |= ϕ; the latter by
induction being the same as w, z · n |= C[ϕ]. By Lemma 8,
this holds iff Gδ contains some edge, leaving v0, and labelled
π~x : t/ψ, where n is the denotation of t~x~n in w, w, z |= ψ~x~n
for some ~n and w, z · n |= C[ϕ]. Using the correctness of
regression from (Lakemeyer & Levesque 2004), Lemma 4,
this is the same as when w, z |= R[~x.ψ ∧ [t]C[ϕ]], which is
one of the disjuncts in C[〈〈δ〉〉Xϕ].
w, z |= 〈〈δ〉〉Gϕ iffw, z ·z′ |= ϕ (thus alsow, z ·z′ |= C[ϕ]

by induction) for all prefixes z′ of some infinite execution
trace π of δ. By Lemma 8, z′ corresponds to some path
t1, . . . , tk in Gδ , starting in v0. We can express that C[ϕ]
holds along this path by a fluent formula using regression:

w, z |= C[ϕ]∧R[t1, C[ϕ]∧R[t2, C[ϕ]∧· · ·R[tk, C[ϕ]] · · ·]]

It is these formulas that CHECKEG computes iteratively
in the set of labels, and when the procedure terminates,
it means that the finitely many resulting disjuncts in
C[〈〈δ〉〉Gϕ] suffice to capture all of them.
w, z |= 〈〈δ〉〉φ U ψ iff for some execution trace τ of δ and

some prefix z′ of τ , w, z · z′ |= ψ and for all prefixes z′′

of z′, w, z · z′′ |= φ. The property can be expressed for z′

of length up to k, again using Lemma 8 and regression, as a
formula of the form

w, z |=C[ψ] ∨ C[φ] ∧R[t1, C[ψ] ∨
C[φ] ∧R[t2, C[ψ] ∨ · · · C[φ] ∧R[tk, C[ψ]] · · ·]]

which is basically what CHECKEU computes for increasing
k until convergence.

References

Bogunovi, N., and Pek, E. 2006. Model checking pro-
cedures for infinite state systems. In Proc. of ECBS-06,
419–425.

Bohn, J.; Damm, W.; Grumberg, O.; Hungar, H.; and
Laster, K. 1998. First-order-CTL model checking. In Proc.
of the 18th Conf. on Foundations of Software Technology
and Theoretical Computer Science, 283–294.

Burch, J.; Clarke, E.; McMillan, K.; Dill, D.; and Hwang,
L. 1990. Symbolic model checking: 1020 states and be-
yond. In Proc. of the Fifth Annual IEEE Symposium on
Logic in Computer Science, 1–33.

Chechik, M.; Devereux, B.; and Gurfinkel, A. 2001.
Model-checking infinite state-space systems with fine-
grained abstractions using SPIN. Lecture Notes in Com-
puter Science 2057:16–36.

Cimatti, A.; Clarke, E.; Giunchiglia, E.; Giunchiglia, F.;
Pistore, M.; Roveri, M.; Sebastiani, R.; and Tacchella, A.
2002. NuSMV 2: An OpenSource tool for symbolic model
checking. In Proc. of CAV 2002, 359–364.

Clarke, E. M.; Grumberg, O.; and Peled, D. A. 1999.
Model Checking. MIT Press.

de Boer, F. S.; Hindriks, K. V.; van der Hoek, W.; and
Meyer, J.-J. C. 2007. A verification framework for agent
programming with declarative goals. J. Applied Logic
5(2):277–302.

De Giacomo, G.; Lespérance, Y.; and Levesque, H. 2000.
ConGolog, a concurrent programming language based on
the situation calculus. Artificial Intelligence 121(1–2):109–
169.

De Giacomo, G.; Ternovska, E.; and Reiter, R. 1997. Non-
terminating processes in the situation calculus. In Working
Notes of “Robots, Softbots, Immobots: Theories of Action,
Planning and Control”, AAAI’97 Workshop.

Emerson, E. A. 1990. Temporal and modal logic. In Hand-
book of theoretical computer science (vol. B): formal mod-
els and semantics. MIT Press. 995–1072.

Gabaldon, A. 2004. Precondition control and the progres-
sion algorithm. In Proc. of KR-04, 634–643.

Harel, D.; Kozen, D.; and Parikh, R. 1982. Process
logic: Expressiveness, decidability, completeness. Journal
of Computer and System Sciences 25(2):144–170.

Harel, D.; Kozen, D.; and Tiuryn, J. 2000. Dynamic Logic.
MIT Press.

Holzmann, G. J. 2003. The SPIN Model Checker : Primer
and Reference Manual. Addison-Wesley Professional.

Kalantari, L., and Ternovska, E. 2002. A model checker
for verifying ConGolog programs. In AAAI-02, 953–954.

Kelly, R. F., and Pearce, A. R. 2007. Property persistence
in the situation calculus. In Proc. of IJCAI-07, 1948–1953.

Lakemeyer, G., and Levesque, H. 2004. Situations, si!
situation terms, no! In Proc. of KR-2004, 516–526.

Lakemeyer, G., and Levesque, H. J. 2005. Semantics for a
useful fragment of the situation calculus. In Proc. of IJCAI-
05, 490–496.

Levesque, H.; Reiter, R.; Lespérance, Y.; Lin, F.; and
Scherl, R. 1997. GOLOG: A logic programming lan-
guage for dynamic domains. Journal of Logic Program-
ming 31:59–84.

Liu, Y. 2002. A hoare-style proof system for robot pro-
grams. In Proc. of AAAI-02, 74–79.

McCarthy, J., and Hayes, P. 1969. Some philosophical
problems from the standpoint of artificial intelligence. In
Meltzer, B., and Michie, D., eds., Machine Intelligence 4.
New York: American Elsevier. 463–502.

Pelov, N., and Ternovska, E. 2005. Reducing inductive
definitions to propositional satisfiability. In Proc. of ICLP-
05, 221–234.

Reiter, R. 2001. Knowledge in Action: Logical Founda-
tions for Specifying and Implementing Dynamical Systems.
MIT Press.

