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ABSTRACT
Efficiently scheduling and synchronizing parallel event exe-
cution constitutes the fundamental challenge in parallel dis-
crete event simulation. Existing synchronization algorithms
typically do not analyze event interactions within the sim-
ulation model – mainly to minimize runtime overhead and
complexity. However, we argue that disregarding event in-
teractions results in a lack of insight into the behavior of
the simulation model, thereby severely limiting synchroniza-
tion efficiency and thus parallel performance. In this pa-
per, we present a probabilistic synchronization scheme that
obtains extensive knowledge of the simulation behavior at
runtime to guide event execution. Specifically, we design
three heuristics that dynamically derive event dependencies
from tracing event interactions and decide whether or not
to speculatively execute events. Our evaluation shows that
the proposed probabilistic synchronization scheme consid-
erably outperforms traditional conservative and optimistic
schemes.

Categories and Subject Descriptors
I.6 [Simulation and Modeling]: Types of Simulation—
Parallel, Discrete Event

General Terms
Algorithms, Design, Performance

Keywords
Parallel Network Simulation, Probabilistic Synchronization

1. INTRODUCTION
The primary goal of Parallel Discrete Event Simulation

(PDES) is enabling a parallel execution of events while at
the same time guaranteeing deterministic results. To achieve
this goal, dependent events essentially need to be executed
in a deterministic sequential order to avoid causal viola-
tions [7]. In practice, parallel simulation frameworks em-
ploy synchronization algorithms to ensure this requirement.
These algorithms implement one (or even both) of two op-
posing synchronization paradigms: Conservative synchro-
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nization strictly avoids out-of-order execution of dependent
events at any time during the simulation. In contrast, op-
timistic synchronization speculatively executes events, but
provides means of detecting and rectifying out-of-order ex-
ecution. However, the key limiting factor of both synchro-
nization paradigms is their lack of knowledge of event in-
teractions within the simulation. For instance, conservative
synchronization regularly prevents parallel event execution
due to limited knowledge of future events, i. e., short looka-
heads [17]. Similarly, overly optimistic parallel execution of
events causes frequent rollbacks to previous states, thereby
impeding the overall progress of the simulation.

The research community invested considerable efforts in
resolving these issues. For instance, lookahead maximization
techniques [3, 4, 12, 13, 14] aim at expanding the lookahead
of conservative synchronization schemes by analyzing the
simulation model at or before runtime. However, due to the
conservative nature of this synchronization paradigm, the
resulting lookaheads still constitute lower bounds for the
actual degree of parallelism in the model. Corresponding
efforts aim at restricting the degree of speculative execution
in optimistic synchronization, for instance by means of time
windows [25]. However, like conservative schemes, such win-
dows impose artificial restrictions on parallel event execution
if they do not base on accurate knowledge of the simulation
behavior. Finally, pioneering efforts towards probabilistic
synchronization [5, 6, 24] analyze the timing between events,
yet such patterns do not convey enough information to ac-
curately reconstruct event dependencies.

In previous work [11], we developed a parallel discrete
event simulation framework, named Horizon, that builds
upon a centralized event scheduling architecture. Based on
this work, we present in this paper a probabilistic synchro-
nization scheme that gathers extensive knowledge of the sim-
ulation behavior in order to make educated event scheduling
decisions. At simulation runtime, the scheme continuously
collects event scheduling information to gain an insight into
event dependencies. Moreover, for each event not eligible
for parallel execution according to conservative synchroniza-
tion, a heuristic decides based on the derived dependency
information whether or not the event should be processed
in parallel anyway. Specifically, the heuristic determines the
probability that speculative event execution results in an
out-of-order execution. If this probability is below a user-
defined threshold, the event is executed speculatively. This
allows overcoming the restrictive scheduling of conservative
synchronization while at the same time avoiding overly op-
timistic event execution. Adding a heuristic to the event
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scheduling process obviously increases the runtime overhead.
Yet, a complex heuristic might compute more accurate event
dependencies than a less complex one. As a result, we design
three heuristics that trade off complexity against accuracy:
i) an Arrival Pattern Heuristic of low complexity and accu-
racy, ii) a Global Order Heuristic of medium complexity and
accuracy, and iii) a Local Order Heuristic of high complex-
ity and accuracy. In summary, we make the following two
contributions in this paper:

1. We introduce a generic probabilistic synchronization
scheme for parallel discrete event simulations.

2. We design and evaluate three heuristics which trade off
computational complexity against prediction accuracy.

Our evaluation shows that all three heuristics are able to
learn the behavior of a simulation model and considerably
improve simulation performance over traditional schemes.

The remainder of this paper is structured as follows. Sec-
tion 2 gives a brief introduction to our simulation frame-
work Horizon before we analyze the drawbacks of tradi-
tional synchronization techniques in Section 3. From this
analysis we derive the design of the probabilistic synchro-
nization scheme and the three heuristics in Section 4. We
discuss limitations in Section 5, followed by an evaluation in
terms of prediction quality, overhead, and performance gain
in Section 6. Finally, we review related work in Section 7
and conclude in Section 8.

2. BACKGROUND
This section briefly introduces the fundamentals of our

simulation framework Horizon and its underlying paral-
lelization scheme. Horizon enables parallel execution of
discrete event simulations by means of two properties: i) It
defines a modeling paradigm that extends discrete events
with durations to explicitly and naturally model delays in
discrete event simulations [11]. This modeling paradigm lays
the foundation for a conservative parallelization scheme that
exploits the given event durations to determine independent
events for parallel execution. ii) Horizon employs a cen-
tralized event scheduling architecture specifically designed
for multiprocessor systems. In contrast to related paral-
lelization frameworks [18, 23], Horizon retains a central-
ized event scheduler and a single Future Event Set (FES).
Similar to sequential simulators, the central scheduler con-
tinuously removes the first event from the FES, but then
determines whether or not it is independent to currently ex-
ecuting events and finally offloads it to a worker thread for
parallel execution. The centralized architecture limits scal-
ability, but avoids the need for load-balacing and partition-
ing schemes. Horizon hence aims at making parallelization
available to users who do not want to deal with load balanc-
ing and partitioning, but still want to exploit the parallel
processing power of their multi-core desktop systems. As a
result, Horizon focuses on small to medium scale worksta-
tion systems and explicitely trades scalability for simplicity.

Of those two properties of Horizon, only the central-
ized event scheduling architecture is of direct relevance in
the context of this paper. The centralized scheduler allows
for efficiently collecting, maintaining, and querying all event
interactions in a central location without the need for dis-
tributed data management. In contrast, any conservative
synchronization algorithm can form the basis for the proba-
bilistic synchronization scheme presented in this paper.
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(a) Global sequence of events modeling send-packet/re-
ceive-ACK transmissions between senders and receiver.
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(b) Local sequence of send and receive events at sender 1.

Figure 1: Global (upper) and local (lower) sequence
of events in a simple network model consisting of
two senders and a receiver.

3. CHALLENGES
In this section, we motivate the need for probabilistic syn-

chronization by means of a simple example. Furthermore,
we clarify the reasons for designing three different heuristics.

3.1 Limitations of Classic Synchronization
Assume a simple simulation model consisting of three net-

work nodes – two senders and a receiver. The senders con-
tinuously send packets with random interarrival times to the
receiver which immediately replies with an acknowledgment
(ACK). The lookahead is given by the propagation delay
on the link and is thus significantly smaller than the packet
interarrival times. Figure 1(a) shows the sequence of events
modeling two separate send-packet/receive-ACK patterns.
In the following, we demonstrate the weaknesses of conser-
vative and optimistic synchronization in this scenario.

Conservative Synchronization. Initially, the execution of
event e1 (“send packet”) creates two successor events, e2
(“send ACK”) and e3 (next “send packet”). In this situa-
tion, conservative synchronization solely executes e2 because
e3 is beyond the lookahead of e2 and another event might
arrive in-between. This is indeed the case when e2 creates e4
(“receive ACK”). For the same reason, e3 is not executed in
parallel to the events of the subsequent send-packet/receive-
ACK transmissions (e5, e6, and e7). However, e3 in fact
does not interfere with those events, thus actually permit-
ting parallel execution of e3 with any of those events. Hence,
conservative synchronization is too pessimistic in this case,
giving rise to the “blocked waiting problem” [17].

Optimistic Synchronization. In contrast, optimistic syn-
chronization speculatively executes both successors of e1 in
parallel (e2 and e3). However, e2 creates e4, thereby inflict-
ing a causal violation and a corresponding rollback. Hence,
optimistic synchronization is too aggressive in this scenario,
thus limiting progress because of rollbacks.

We argue that the limitations of both schemes are partly
founded in the fact that they do not take the runtime behav-
ior of the simulation into account. However, simulation mod-
els typically exhibit highly repetitive event patterns which
allow for deriving accurate knowledge of event dependen-
cies. By means of this dependency information, synchro-
nization algorithms can significantly improve simulation per-



formance. For instance, Figure 1(b) shows the sequence of
events occurring locally at sender 1. We immediately ob-
serve a pattern in the event sequence: After executing one
“send packet” event, the synchronization scheme needs to
wait for the pending acknowledgment. Upon arrival and ex-
ecution of the ACK, the subsequent “send packet” event is
eligible for parallel execution because no other event arrives
in-between anymore. Thus, our goal in this paper is design-
ing a synchronization scheme which analyzes such event pat-
terns in order to improve parallel simulation performance.

3.2 Complexity vs. Prediction Accuracy
The centralized architecture of Horizon is highly sensi-

tive to event handling overhead as the event scheduler can
easily become a bottleneck. Since a heuristic considerably
increases the event handling overhead, it is imperative to
minimize its complexity. Yet, a complex heuristic using de-
tailed information about the simulation model may be able
to derive more accurate results. Better predictions in turn
may allow for offloading more events while at the same time
reducing the number of rollbacks. Hence, we face a design
trade-off between prediction accuracy and overhead.

One important parameter in this trade-off is the complex-
ity of the simulation model. Probabilistic synchronization
creates a performance gain over conservative synchroniza-
tion if the heuristic decides to offload an event before all
blocking events have been processed. This blocking period
grows with increasing complexity of the individual events in
the simulation model. As a result, complex models toler-
ate more complex heuristics. In fact, such models actually
benefit from more accurate predictions since rolling back a
computationally complex event has a greater impact on per-
formance than rolling back a less complex one. We accom-
modate simulation models of different complexity by devel-
oping three heuristics that implement different complexity
vs. accuracy trade-offs: i) an Arrival Pattern Heuristic of
low complexity and accuracy, ii) a Global Order Heuristic
of medium complexity and accuracy, and iii) a Local Order
Heuristic of the highest complexity and accuracy.

4. PROBABILISTIC SYNCHRONIZATION
We now introduce the goals and the concept of probabilis-

tic synchronization and present the design of each heuristic.

4.1 Design Goals and General Concept
The primary goal of probabilistic synchronization is speed-

ing up parallel discrete event simulations by learning the be-
havior of a simulation model and exploiting this knowledge
to guide speculative parallel event execution. To achieve
this, we state three distinct design goals: The probabilistic
synchronization scheme should

i) guarantee the causal correctness of the simulation de-
spite utilizing speculative event execution,

ii) maximize the number of correct predictions to enable a
speedup over conservative synchronization while mini-
mizing the number of rollbacks,

iii) minimize the prediction complexity to limit its negative
impact on simulation performance.

In its traditional mode, the central scheduler of Hori-
zon employs a conservative synchronization scheme to de-
termine if the first event e in the central FES can safely run
in parallel to currently executing events. If this is not the

case, it blocks until all conflicting events finished process-
ing. Instead of blocking, we extend this scheme by querying
a heuristic for the probability of inducing a causal violation
if e is executed anyway. In case the resulting probability is
below a given threshold, the scheduler in fact offloads e spec-
ulatively. Since the execution of e is stalled while the heuris-
tic computes a decision, we denote e as pending event ep in
the following.

Because speculative execution might inflict a causal vio-
lation, the simulation framework periodically stores check-
points of the simulation state and checks for causal correct-
ness. Exploiting the fact that simulation models typically
exhibit a modular structure, we achieve causal correctness
by ensuring that the local simulation time at each module of
the simulation model increases monotonically. In case of an
event arriving at a module with a timestamp smaller than
the local time, the simulation framework initiates a rollback
to a previous causally correct state.

In the remainder of this paper, we distinguish between the
set of events E and the set of event types T of a simulation
model. Each event e ∈ E is an instance of exactly one event
type τ ∈ T . Moreover, τe denotes the type of event e which
can be uniquely identified at runtime.

4.2 Arrival Pattern Heuristic
The general idea underlying the Arrival Pattern Heuris-

tic is to analyze the patterns in which event types arrive at
the individual modules of the simulation model. This ap-
proach is similar to current state-of-the-art in probabilistic
synchronization [5, 6, 24]. Specifically, the heuristic tracks
at each module

i) the type τ of the event which arrived last,

ii) for every event type υ, its number of occurrences nυ,

iii) for every pair (τ, υ), the number nτυ, indicating how
often an event of type υ followed an event of type τ .

Depending on the type τ of the last event, the heuristic
determines the probability pτυ that the type υ := υep of the
pending event ep occurs next as

pτυ :=

{ nτ
nτυ

, if nτυ 6= 0

0 , else.

The event scheduler then offloads the pending event if the
complementary probability 1 − pτυ (υ does not follow τ) is
below a given threshold.

Applying this heuristic to the previously discussed exam-
ple shown in Figure 1(b) yields the following synchroniza-
tion decisions: The type of the last event is “send packet”
(right-most point in the sequence) and both event types oc-
cur equally often, but “receive ACK”-events occur almost
only after “send packet”-events and vice versa. Thus, the
probability for the next event being of type “receive ACK”
is nearly 1 while it is close to 0 for being another “send
packet”-event. Hence, in contrast to conservative synchro-
nization, the heuristic allows offloading the next event if it is
of type “receive ACK”, but it prevents erroneous offloading
of further “send packet”-events as opposed to purely opti-
mistic synchronization.

The decision making and learning process of the Arrival
Pattern Heuristic is notably simple. Updating and querying
the learned data only requires accessing and modifying the
corresponding counter variables nτ and nτυ for the respec-
tive event types. Hence, these operations exhibit constant
complexity. Similarly, the memory overhead is limited to
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Figure 2: The local sequence of events on a network
node that forwards four uncorrelated data streams.
The pie chart on the right illustrates the computed
probabilities that the next event is of the corre-
spondingly colored type.

those counter variables. Every simulation module maintains
one counter for each occurring event type and one for each
combination of such event types. Finally, since all data is
collected and queried locally at each module, this heuristic is
suitable for distributed simulation and thus does not depend
on the centralized architecture of Horizon.

Nevertheless, the simplicity of the heuristic comes at the
price of reduced accuracy in certain scenarios. Its most se-
vere drawback is that the mere occurrence of an event does
not convey any information about causal dependencies, i. e.,
which event caused another event to occur at a particular
module. Consider, for instance, four uncorrelated packet
streams passing through a module as shown in Figure 2. The
Arrival Pattern Heuristic tries to identify patterns among
the uncorrelated event arrivals which however do not exist.
Thus, the predictions remain inconclusive, i. e., the heuris-
tic computes similar probabilities for most event types (see
segments of the pie chart in Figure 2). In addition, the
heuristic does not distinguish between single events, but just
event types. Hence, even if the type of the pending event
matches the predicted event type, another event of the same
type but with a smaller timestamp might still precede the
pending event and induce a rollback. We conclude that ana-
lyzing the local arrival patterns of events, as done in related
efforts, does not allow for accurately predicting future events
and hence limits synchronization efficiency.

4.3 Global Order Heuristic
To obtain a better insight into causal dependencies among

events, the Global Order Heuristic analyzes the “scheduled-
by” relationship among events. Revisiting the initial exam-
ple shown in Figure 1, we observe that a causal violation
occurs at a module m if

i) two events e1, e2 execute speculatively in parallel, and

ii) e1 with t(e1) < t(e2) creates event e3 with t(e3) < t(e2),

where t(e) denotes the timestamp of event e. Therefore,
when deciding whether or not to offload a pending event ep,
the Global Order Heuristic has to determine the probability
that any of the currently executing events creates a successor
event es with t(es) < t(ep). To this end, the heuristic tracks
the minimum time difference (i. e., delay) between an event
e and all events scheduled by e. Since the delay between two
events might follow a random distribution, the heuristic has
to reconstruct this distribution from a set of samples. We
assume that all events of a particular event type behave sim-
ilarly during a simulation run, thus allowing the heuristic to
collect samples from recurring event instances of the same
type. From these samples, the heuristic constructs the (em-
pirical) Probability Density Function (PDF) as visualized in

delay(e,es)
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Figure 3: The delays between an event e and its
earliest successor events es constitute the samples
of a delay distribution. Each sample belongs to one
bucket of the underlying histogram. The highlighted
area under the curve represents the probability that
an event es precedes ep.

Figure 3. The probability p(τe, de) that an event e of type τe
schedules another event within a delay of de := t(ep)−t(e) is
given by the highlighted area under the PDF. The heuristic
then aggregates these probabilities over the set O ⊆ E of all
currently offloaded events to compute the probability pv for
a causal violation as

pv := 1−
∏
e∈O

(
1− p(τe, de)

)
.

If this probability is below a user-defined threshold, the
pending event ep is executed speculatively.

In comparison to the Arrival Pattern Heuristic, the Global
Order Heuristic is of higher complexity. The heuristic main-
tains all PDFs in the form of histograms, each consisting of
a set of buckets B (see Figure 3). Hence, determining pv
depends on |B| (for computing p(τe, de)) and the number of
offloaded events |O|, yielding a complexity of O

(
|O|·|B|

)
per

query. Furthermore, recording a sample requires finding the
matching bucket in a histogram, resulting in a complexity of
O
(
ld(|B|)

)
using binary search. In Horizon, |O| is limited

by the number of available CPUs, thus ranging between 4
and 32 for typical target platforms. The number of buckets,
however, allows to trade off accuracy for memory usage and
computational overhead. For each histogram, the memory
usage is one integer variable per bucket. Furthermore the
heuristic stores one histogram per event type and module.
In Section 6.1.3, we illustrate that |B| = 10 buckets provide
sufficient accuracy.

Despite allowing a considerably better insight into event
dependencies than the Arrival Pattern Heuristic, the Global
Order Heuristic still wastes parallel performance. In fact,
the Global Order Heuristic is highly conservative in the sense
that it prevents offloading of ep if it predicts that at least
one event es precedes ep anywhere in the model. Figure 4(a)
illustrates the underlying reasoning by showing a sequence of
events eventually resulting in a causal violation. As a result,
this heuristic effectively achieves global in-order execution
of events. However, causal correctness is a local property of
each simulation module: A simulation run is causally cor-
rect if the order of events at each modules increases mono-
tonically [7]. Hence, global in-order execution is too strict.
Specifically, if a sequence of earlier events never crosses the
module of ep no causal violation occurs, thus allowing off-
loading (see Figure 4(b)). We conclude that in order to
predict the probability that an event e in O induces a causal
violation at a given module, we have to analyze the path of
subsequently created events through the simulation model.

4.4 Local Order Heuristic
In order to follow the aforementioned path through the

simulation model, the Local Order Heuristic needs to sample
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each module.

the delay of the successor events and the modules they take
place on. Specifically, at a given module m, the heuristic
tracks for each event e and all successors es created by e

i) the target module ms on which es takes place

ii) the difference in simulated time between e and es.

The latter constitutes the sampling data for constructing
delay distributions analogous to the Global Order Heuristic.
However, instead of sampling just the minimum delay to all
newly created events, this heuristic maintains for each event
type separate delay distributions for all successor events of
different type and different target modules.

Upon a request regarding a pending event ep, the heuristic
constructs a successor tree as follows (see Figure 5): First,
it adds all currently offloaded events in O to the tree, form-
ing a virtual root node. Second, it appends a new node
to the tree for each event type succeeding the events in O.
Third, the heuristic traverses the tree in a breadth-first man-
ner and adds for all existing nodes the respective successor
event type nodes. Within this tree, we denote the set of
nodes which represent event types occurring on the same
module as ep, conflicting nodes. Furthermore, the edges be-
tween nodes contain the delay distributions between event
types, while each node contains the sum of the delay distri-
butions on the path from the root node to itself. Using the
aggregated delay distributions in every conflicting node, the
heuristic can determine the probability that an event cre-
ates a conflicting event ec with t(ec) < t(ep). Computing an
exact value for pc, however, requires constructing the com-
plete tree in order to find all conflicting nodes. Instead, we
iteratively compute lower and upper bounds (pl, pu) for the
conflict probability while traversing the tree. We obtain the
offloading decision as soon as both bounds are either below
or above the threshold. The upper bound pu is given by the
probabilities over all current leafs L ⊆ T in the tree

pu = 1−
∏

τ∈L,e∈O,
path(e,τ)

(
1− p(τ, de)

)
,

where path(e, τ) denotes the existence of a unique path in
the tree from an event e in the root to the leaf node τ .
Since the aggregated delay distributions continuously shift
to the right down the tree, p(τ, de) steadily decreases as
well. Hence, when adding new child nodes to the tree, pu
can only decrease. For the same reason, the heuristic stops
exploring the tree below a conflicting node as any subsequent
conflicting node yields a smaller p(τ, de) than its parent.
The lower bound pl is determined analogously to pu, but
solely based on the conflicting nodes among the leafs. This
probability only increases when encountering new conflicting
nodes which contribute a delay distribution with a larger
p(τ, de).
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Figure 5: Successor tree constructed by the Local
Order Heuristic during the decision making pro-
cess. The edges show the delay distributions be-
tween consecutive event types on different modules.
Each node contains the sum of the delay distribu-
tions along the path from the root to itself. Aggre-
gating the probabilities of all paths to all conflicting
nodes (module C) gives the final conflict probability.

By analyzing the dependencies among events throughout
the whole model, this heuristic can predict the probability
of a causal violation with significant accuracy. However, the
major limitation of this heuristic is its computational over-
head. Successor trees can be huge and for every node in the
tree we have to convolute two delay distributions in order to
compute their sum. The complexity of such a convolution
is O

(
|B|2 · ld(|B|)

)
due to pairwise combining all buckets of

both input histograms and sorting the resulting |B|2 buck-
ets. For a tree with |T | nodes, we hence determine an overall
complexity of O

(
|T | · |B|2 · ld(|B|)

)
per query. In general,

the size of the successor tree heavily depends on the simula-
tion model. As all events in O as well as all their successors
are part of the tree, we expect |T | � |O|. Nevertheless, the
complexity for recording a sample remains at O

(
ld(|B|)

)
,

similarly to the Global Order Heuristic. In terms of mem-
ory consumption, the Local Order Heuristic maintains con-
siderably more histograms than the Global Order Heuristic:
For each event type occurring at a module, it stores one
histogram for each successor event type. Furthermore, the
heuristic requires additional memory for constructing one
successor tree per request. In order to mitigate the perfor-
mance overhead of this heuristic, we develop two optimiza-
tions. Both optimizations improve the performance in the
average case and do not influence the prediction quality.

Determinism Recognition. We eliminate costly convolu-
tion operations along the path down the successor tree if
one or both of the input delay distributions represent a de-
terministic process with static delays. In this case, we can
obtain the target distribution by simply shifting the input
distributions according to the static delays. This optimiza-
tion reduces the complexity of calculating the sum of two
delay distributions to O

(
|B|
)

if one delay is static or even

down to O
(
1
)

if both delays are static.
Distribution Function Cut-off. Figure 3 illustrates that

only those buckets of a PDF are of interest which are below
the delay in question. All buckets beyond the delay do not
contribute to the sought probability. Thus, it is not neces-
sary to include those buckets in a convolution. Instead, we
can ignore those buckets in the input distributions and the
resulting target distribution.



5. DISCUSSION
The histogram-based learning process assumes that com-

munication patterns between modules follow fixed distribu-
tions with steady parametrization. Based on this assump-
tion, we simply add new samples to the existing histograms
during the course of a simulation run. Consequently, this
simplified learning process cannot accurately reflect rapid
and/or large shifts in the patterns of samples. While a com-
plete change of the type of distribution is unlikely, shifts
in patterns can indeed occur due to mobility (e.g., varying
propagation delays). The learning process can accommodate
such changes by detecting the occurrence of a large number
of outliers among the samples and subsequently purge and
re-sample the histograms.

Since the focus of our work is on avoiding rollbacks, we use
a simple fork-based checkpointing and rollback scheme to
reduce the implementation complexity. A checkpoint corre-
sponds to periodically forking and immediately suspending a
new process, while a rollback kills the causally incorrect cur-
rently running process and resumes a previously suspended
one. Although fork utilizes copy-on-write, it is still far less
efficient than dedicated memory management frameworks
[27]. In addition, our probabilistic event scheduling scheme
could be nicely complemented with a probabilistic check-
pointing mechanism [21] to drastically improve the perfor-
mance over our simple periodic checkpointing mechnism. In
general, the contribution of this paper is the probabilistic
synchronization scheme and the three heuristics. The under-
lying simulation framework and its implementation merely
provide a basis for evaluating the viability of our approach.
By utilizing the rich set of optimizations available in the lit-
erature, the performance of the underlying implementation
could be further improved, hence providing a more efficient
runtime environment.

6. EVALUATION
In this section, we evaluate the probabilistic synchroniza-

tion scheme and the three heuristics in terms of prediction
quality, overhead, and performance gain. The evaluation
conceptually consists of two parts. First, we evaluate the
accuracy and overhead of the three heuristics by means of a
simple evaluation model. This model enables us to precisely
adjust parameters such as workloads and delay distributions.
Second, we investigate the user-perceived performance gain.
To this end, we conduct a case study using a realistic wire-
less mesh network model. All measurements were performed
on a dedicated simulation server equipped with two six-core
AMD Opteron 2431 CPUs and 32 GB of RAM, running a 64-
bit Ubuntu 10.04 LTS server OS. Our implementation bases
on Horizon for OMNeT++ 3.3 [26]. The integration of the
synchronization scheme with Horizon for OMNeT++ 4.x
is currently ongoing. Each data point shows the mean and
the 99 % confidence interval over 30 independent runs.

6.1 Synthetic Benchmarks
At first, we perform synthetic benchmarks to measure the

prediction accuracy and the overhead of the three heuristics.

6.1.1 Evaluation Model and Methodology
The synthetic evaluation model is based on a modified

example provided by OMNeT++ and represents a simple
network of 57 nodes (see Figure 6(a)). Each node consists
of an application module sending data packets and receiving

(a) The network structure of the eval-
uation model. All nodes send
packets to the three highlighted
receiver nodes.

Network Node

Routing
Layer

Application
Layer

(b) Each network
node consists
of two modules.

Figure 6: Components of the synthetic evaluation
model.

acknowledgments, and a routing module, forwarding incom-
ing packets towards the destination (see Figure 6(b)). The
application modules generate packets according to a Poisson
process with a mean interarrival time of 1 s and randomly
select one of three possible receiver nodes as destinations.
Routers forward packets along the shortest path through the
network according to pre-computed static routing tables. In
addition, each router introduces a normally distributed de-
lay with a mean of 2 ms and a standard deviation of 0.5 ms.

In order to measure the prediction quality, we compare the
decisions of each heuristic against the correct decision previ-
ously computed based on a sequential simulation run. Fur-
thermore, to avoid divergent behavior among the heuristics,
we discard the actual decision of the heuristic and offload
events only according to the correct decision. Moreover, we
synchronize the computation time of each event to the com-
putation time of the heuristics to factor out timing effects
caused by differences in the complexity of the heuristics. Fi-
nally, all results are derived from the steady-state phase of
the simulation after collecting at least 40,000 samples per
distribution during the initial learning phase. We express
the degree of optimism of a heuristic in terms of the Posi-
tive Rate (PR):

PR =
#positive decisions

#requests
A PR of 0 means purely conservative synchronization while
a PR of 1 corresponds to completely optimistic synchroniza-
tion. Furthermore, we measure the prediction quality by
means of the False Positive Rate (FPR) which is the ratio
of actually false positive decisions to all possible false posi-
tive decisions:

FPR =
#false positives

#true negatives + #false positives
Again, conservative synchronization always yields an FPR of
0 while the FPR in optimistic synchronization is 1. We vary
the threshold from 0.1 % to 99.9 % with a special focus on
both extreme ends. Additionally, we measure the simulation
runtime. Comparing this value to a simulation run without
heuristic provides the overhead added by the prediction and
learning components.

6.1.2 Arrival Pattern Heuristic
Figure 7(a) shows that for thresholds on both ends of

the scale, the heuristic behaves almost like the correspond-
ing conservative and optimistic schemes. For intermediate
thresholds, the PR raises from 17 % to 40 % while the FPR
increases from 1 % to just 4 % (see Figure 7(b)). Thus, de-
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(c) Event handling overhead.

Figure 7: Degree of optimism, prediction quality, and overhead of the Arrival Pattern Heuristic.
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Figure 8: Degree of optimism, prediction quality, and overhead of the Global Order Heuristic.
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Figure 9: Degree of optimism, prediction quality, and overhead of the Local Order Heuristic.

spite its simplicity, the Arrival Pattern Heuristic is able to
predict the next incoming event type with reasonable ac-
curacy. Figure 7(c) illustrates the overhead added by the
heuristic to each event handling operation. This overhead
is independent of the threshold and raises event handling
costs by 40 %. Concluding, this simple heuristic achieves
a surprisingly good prediction quality for a wide range of
threshold values while adding a reasonable overhead.

6.1.3 Global Order Heuristic
In addition to the threshold, the histogram size influ-

ences the prediction quality as more buckets allow for a
finer grained resolution. We hence vary the histogram size
between 3 and 50 buckets. Figures 8(a) and 8(b) indicate
that 3 buckets do not provide enough accuracy to achieve
reasonable predictions. However, both PR and FPR show
only negligible differences for histogram sizes of 10, 20, and
50 buckets. We thus conclude that 10 buckets suffice to
model a distribution reasonably well. Over the whole range
of threshold values, the FPR increases to a maximum of just
1 % with a corresponding PR of 27 %. As expected, this
heuristic is quite conservative due to considering conflicts
from a global perspective, but it is still able to identify a
considerable amount of parallelism in the evaluation model,
allowing offloading of nearly one third of all pending events.
Again, the overhead does not depend on the threshold, but
instead on the histogram size as shown in Figure 8(c). On
average, this heuristic increases the event handling overhead
by 60 %. Concluding, the Global Order Heuristic achieves a
significantly better prediction quality than the Arrival Pat-
tern Heuristic at the price of slightly more overhead.

6.1.4 Local Order Heuristic
The PR of the Local Order Heuristic exhibits a relatively

constant value of approx. 50 % for threshold values ranging
from 0.01 % up to 90 %, before finally increasing to 70 %

for extremely large thresholds (Figure 9(a)). Thus, already
for very small thresholds, the heuristic offloads every sec-
ond event. Despite the large PR at such small thresholds,
the FPR is initially only 0.006 % (0.0004 % for 3 buckets),
but then sharply increases up to 40 % (Figure 9(b)). Al-
though the latter seems disappointing at first, we conclude
from these results that the heuristic is actually able to very
accurately predict the conflict probability: On the one hand,
the heuristic computes small conflict probabilities for events
which are in fact independent, hence allowing for safely off-
loading those events with small thresholds. On the other
hand, large thresholds force the heuristic into taking too op-
timistic decisions since offloading an event with high conflict
probability indeed induces a causal violation. The overhead
of this heuristic grows with increasing histogram sizes and
decreasing thresholds. The latter is due to the fact that for
smaller thresholds, the heuristic needs to further traverse
the successor tree in order to make sure that no conflicting
event exists in the tree. Overall, the overhead of this heuris-
tic exceeds the overhead of the other two heuristics by orders
of magnitude. Hence, this heuristic should only be used in
conjunction with models of non-trivial computational com-
plexity. Nevertheless, we show in the next section that given
such a model, this heuristic outperforms the other two.

6.2 Case Study
To complement the synthetic benchmarks, we conduct a

case study to show the user perceived performance gains in
the context of a wireless multi-hop mesh-network model.

6.2.1 Evaluation Model and Methodology
We integrate a wireless transmission scheme with the syn-

thetic benchmark model: While the topology and the basic
traffic flows remain the same, each transmission is now re-
ceived by all directly neighboring nodes due to the broad-
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Figure 10: Performance of the traditional synchronization techniques and our heuristics in the case study.

cast nature of the wireless channel. To model the wire-
less transmission, we furthermore extend each network node
with an accurate OFDM channel model and a simple PHY/-
MAC component implementing a threshold based packet er-
ror model. For brevity, we do not discuss these models here,
but refer to work by Puñal et al. [19]. Furthermore, the
model abstracts from a concrete MAC scheme, interference,
and transport layer protocols. Figure 10(a) shows the struc-
ture of the extended network nodes, the event durations,
and the delays used in the model. We measure the runtime
performance in terms of the number of computed events per
second during the steady state phase of the simulation while
utilizing all 12 CPUs of our simulation server. In order to
limit the number of results, we selected relevant thresholds
based on the synthetic evaluation. Moreover, we chose a
wide range of checkpoint intervals, ranging from 0.01 s to
10 s of wall-clock time to investigate the trade-off between
checkpointing overhead and work preservation.

6.2.2 Traditional Techniques
Figure 10(b) illustrates the performance of sequential ex-

ecution (black dashed line), conservative synchronization
(gray line) and purely optimistic synchronization (bars) for
varying checkpoint intervals. Note that these baseline re-
sults could be potentially improved, considering the simple
proof-of-concept implementation of our checkpointing mech-
anism. Nevertheless, even in an optimized implementation,
the inherent shortcomings of both synchronization schemes
remain. Hence, if our heuristics are able to prevent a roll-
back or a blocked waiting period, the overall performance
increases also on an optimized simulation platform.

Most noticeably, conservative synchronization does not
achieve any speedup at all in this model. This disappoint-
ing result is due to extremely short lookaheads given by the
short propagation delays (see Figure 10(a)). We furthermore
observe that purely optimistic synchronization is even slower
than conservative synchronization over the whole range of
checkpoint intervals. Hence, optimistic synchronization suf-
fers from frequent rollbacks. This is further underlined by
a tremendous difference in performance between different
checkpoint intervals. For large intervals of 1 s to 10 s, the
simulation makes almost no progress since a rollback is likely
to occur before the next checkpoint is reached.

6.2.3 Arrival Pattern Heuristic
The Arrival Pattern Heuristic performs generally worse

than conservative synchronization (see Figure 10(c)). Only

for short checkpoint intervals of 0.01 s to 0.1 s it is able
to gain a small speedup over the conservative scheme. In
comparison to optimistic synchronization, this heuristic is
nevertheless able to prevent a considerable number of roll-
backs. Hence, the simulation performance exceeds purely
optimistic synchronization. These results support our claim
that arrival patterns do not provide enough information
about event dependencies to accurately predict future events.

6.2.4 Global Order Heuristic
In contrast to conservative synchronization, the Global

Order Heuristic achieves a 2.6-fold higher event process-
ing rate for small thresholds and checkpoint intervals (see
Figure 10(d)). Interestingly, up to thresholds of 10 %, the
two large checkpoint intervals of 1 s to 10 s outperform the
smaller intervals before showing a steep drop in performance
for thresholds larger than 25 %. We accredit this to the fact
that the reduced overhead of larger checkpointing intervals
allows for a higher processing rate at small thresholds. How-
ever, as soon as the threshold grows too large, rollbacks fre-
quently occur before the next checkpoint is reached, thus
preventing progress of the simulation. In this case, a higher
checkpointing rate achieves better performance due to pre-
serving more work.

6.2.5 Local Order Heuristic
Finally, Figure 10(e) shows that the Local Order Heuris-

tic clearly outperforms all other schemes for short checkpoint
intervals and very small thresholds. In particular, we ob-
serve a maximum speedup of about 3.2x over conservative
synchronization. However, as expected based on the syn-
thetic evaluation results, the performance of this heuristic
rapidly declines with increasing threshold sizes.

In conclusion, the results of this case study confirm our
previous assumptions and support our design decisions: A
complex heuristic is indeed able to more accurately predict
causal violations and hence outperform simpler heuristics,
given that the simulation model is of non-trivial complexity.
Nevertheless, we also observe a considerable impact of the
chosen parameters, particularly threshold size and check-
pointing interval, on the overall performance. Hence, in the
current state of this work, a well-founded understanding of
the heuristics is required to choose appropriate parameters.
Future work aims at solving this issue by developing auto-
matic calibration techniques.



6.3 Synchronization Phases
The heuristics need to collect a minimum set of train-

ing data before being able to predict causal violations with
reasonable accuracy. Moreover, the prediction accuracy in-
creases with the size of the training data. As a result, a
probabilistic simulation run passes through three different
phases as illustrated in Figure 11.

Initial Training Phase. While the heuristic collects the
initial training data, the event scheduler employs traditional
synchronization techniques. Our implementation utilizes the
legacy conservative synchronization scheme of Horizon for
this phase. Consequently, the runtime performance is low.

Convergence Phase. After sampling a predefined amount
of training data, probabilistic synchronization commences.
In the example shown in Figure 11, speculative event ex-
ecution is enabled after at least one distribution contains
more than 400 samples. At this point, approx. 3 minutes
into the simulation, runtime performance grows rapidly but
shows large fluctuations due to still incomplete sampling
data. However, with increasing sampling data, runtime per-
formance converges towards a steady state. Determining the
optimal size of the initial training set is left for future work.

Steady State Phase. Finally, after about 3 hours into the
simulation run, the runtime performance completely stabi-
lizes and enters the steady state phase. In this phase proba-
bilistic synchronization achieves its maximum performance.
Hence, probabilistic synchronization primarily targets long
running simulations with runtimes up to several hours or
days. However, we can immediately skip to the steady state
phase by preserving the sampling data between runs if the
simulation model does not change. In practice, this is indeed
often the case since multiple repetitions of the same run are
needed to obtain statistically significant results.

7. RELATED WORK
The community has developed a plethora of optimizations

for the two basic synchronization paradigms. Due to space
constraints, we can only focus on closely related efforts and
refer the reader to an extensive survey [17] for further details.

Probabilistic Synchronization. In their pioneering work on
probabilistic synchronization, Ferscha et al. [5, 6] analyze
the arrival patterns of events. Using statistical methods over
a history of arrival times, the proposed schemes estimate the
timestamp of the next event. Hence, these schemes are sim-
ilar to the Arrival Pattern Heuristic and thus also inherit its
drawbacks. Additionally, they do not distinguish between
different event types, thereby limiting insight into causal de-
pendencies even further. Similarly, Som et al. [24] construct
PDFs from the time differences of committed events at each
Logical Process (LP). Like in our approach, the synchroniza-
tion scheme calculates the probability for a causal violation
based on these PDFs and selects the next event accordingly.
However, by sampling only time differences without taking
event types into account, this scheme cannot derive detailed
knowledge of event dependencies.

Dynamic Lookahead Extraction. A large body of research
focuses on maximizing the lookahead through manual or au-
tomatic techniques to boost the performance of conservative
synchronization. For instance, Cota et al. [4] represent the
internal behavior of simulation model components by means
of a control flow graph. Nodes in this graph constitute differ-
ent states of the component while the edges hold lookahead
values which eventually allow calculating an extended looka-
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Figure 11: In a probabilistic synchronization scheme
simulation runs consist of three phases.

head on a path through the graph. However, the authors
do not discuss the construction of the graph nor provide
a proof-of-concept implementation. Meyer et al. [13, 14]
extend this work by modeling the data flow between com-
ponents of a simulation model in a dependency graph. In
contrast to our work, the construction of the data flow graph
requires manual specification of paths instead of automatic
learning. Similar efforts focus on deriving larger lookaheads
from domain specific model properties. For instance, Liu et
al. [12] extract extended lookaheads from wireless networks
based on packet air times and multi-hop propagation. Fur-
thermore, Chung et al. [3] simulate the parallel execution
of programs on multi-processor systems. Their approach
performs branch predictions on top of the simulated pro-
gram code to increase the knowledge of future instructions
and hence the lookahead. Although both approaches can
achieve considerable speedups, they are specifically tailored
to a certain domain and hence lack general applicability.

Advanced Synchronization Approaches. Nicol et al. pro-
pose the concept of composite synchronization [15] as an
optimization for conservative synchronization. Based on the
observation that the performance of a particular conserva-
tive synchronization algorithm depends on the properties of
the model, composite synchronization applies either a syn-
chronous (global) or an asynchronous (local) algorithm to
the channels between LPs in order to adapt to the par-
ticular model. In contrast to our approach, this scheme
however does not incorporate optimistic synchronization.
In the domain of optimistic synchronization, reverse com-
putation [2] constitutes an approach to mitigate the com-
plexity of state saving. Instead of saving and reloading
the values of state variables, a rollback consists of an in-
verse computation of the previously and erroneously exe-
cuted events. Hence, as opposed to probabilistic synchro-
nization, reverse computation does not intend to reduce the
number of rollbacks, but merely their overhead. In addi-
tion to those approaches, combined synchronization [10] in-
tegrates the two classic techniques into a unified synchro-
nization scheme. The basic idea is to selectively apply ei-
ther conservative or optimistic synchronization to the LPs
in a simulation model to accommodate different workloads
and timings per LP. Hence, by selecting the best fitting
scheme for each LP, combined synchronization is able to
clearly outperform both classic schemes. As a result, com-
bined synchronization is widely used in general-purpose par-
allel simulation frameworks and languages such as Maisie
[1], the High Level Architecture [8], and µsik [16]. Although
those frameworks support dynamic switching between con-
servative and optimistic schemes, each scheme is applied to
a whole LP or even a group of LPs [22]. In contrast, our
approach dynamically decides for each event individually
whether conservative or optimistic execution is the most fa-



vorable option to maximize performance. It hence allows
exploiting differences in workload and timing on a much
finer scale. Quaglia [20] proposes a scheduling algorithm for
optimistic synchronization that considers the state of neigh-
boring LPs in addition to the local state of each LP. As
opposed to our work, this approach however does not at-
tempt to collect long-term state information, but bases its
scheduling decisions on the recent state of the LPs. Finally,
relaxed synchronization [9] allows out-of-order execution of
events if their timestamps are close to each other. While
this approach mitigates the restrictions of small lookaheads,
it cannot guarantee repeatability across simulation runs and
limits the validity of simulation results.

8. CONCLUSION AND FUTURE WORK
We presented a probabilistic synchronization scheme that

learns the runtime behavior of a simulation to allow for
educated decisions on speculative parallel event execution.
Its core component is a heuristic that continuously collects
event scheduling information at runtime. Based on this in-
formation, it computes the probability for inflicting a causal
violation when speculatively executing events. Since such
a heuristic adds considerable overhead to the simulation
framework, we developed three different heuristics that trade
off prediction accuracy for runtime performance. Our eval-
uation investigates the exact impact of this trade-off and
quantifies the prediction accuracy. Furthermore, by means
of a case study using a wireless mesh network, we illustrate
that all three heuristics outperform conservative and opti-
mistic synchronization.

Future efforts focus primarily on extending our synchro-
nization scheme with an automatic configuration and per-
formance tuning component. Motivated by the large differ-
ences in performance between i) the heuristics themselves
and ii) different parametrizations of the heuristics, this con-
figuration component should automatically adjust configu-
ration parameters, such as the threshold and the checkpoint-
ing interval. Secondary goals include reducing the runtime
overhead by caching of final or intermediate prediction re-
sults. Lastly, idling worker threads can pre-compute predic-
tion operations by convoluting distribution functions ahead
of time.
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