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ABSTRACT

Mobile robots are recognized as being essential for the
exploration of planets in our solar system. In this paper
we introduce a new approach for a self-localization and
navigation unit for mobile robots in extraterrestrial envi-
ronments supported by virtual testbeds. In addition to an
absolute self-localization strategy within a global navi-
gation map a relative localization component is attached
based on a modular sensor framework. This testbed
framework allows for the integration of real and simu-
lated sensors in virtual and real testbeds for a smooth
transition between simulation and real world tests. Intro-
ducing virtual sensors, algorithmic results can be treated
as ordinary sensor information and therefore seamlessly
addressed by the sensor framework.
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simulation; simulation frameworks.

1. INTRODUCTION

Our previous work focused on the development of new
methods for highly accurate self-localization and nav-
igation of work machines in the forest. Fusing vari-
ous sensors and implementing localization algorithms us-
ing Sequential Monte Carlo methods (SMC) led to a ro-
bust localization unit appropriate for unstructured envi-
ronments. Mounted on a forest machine, this system al-
lows for the detection and localization of objects in the
surrounding area, as well as the self-localization of the
vehicle and its well-directed navigation.
We generalized and extended the underlying concepts
from forestry to other e.g. extraterrestrial environments.
The resulting localization unit is able to handle different
classes of landmarks and sensors. In addition to the ter-
restrial approach we extend our laser scanner based lo-
calization unit with stereo cameras and a visual odometry
component. The results of this relative localization ap-
proach are treated as ordinary sensor data to initialize and
enhance the estimation of the absolute positioning algo-
rithms.

Figure 1. Simulated mobile robot with attached laser
scanner and stereo camera in virtual testbed for plan-
etary exploration. The sensor data is visualized using
comprehensive metaphors.

The modular sensor framework is used as a generic sen-
sor interface. Besides the connection of real and simu-
lated sensors and their corresponding error models it is
capable of providing algorithmic results as ordinary sen-
sor data, called virtual sensors.
The integration of the developed components in our
testbed concept allows for evaluating algorithms and sen-
sors in virtual, real and hybrid testbeds. Virtual testbeds
are a cost-efficient alternative e.g. for planetary explo-
ration missions, especially if setting up real mockups
for testing and verifying is too expensive. Our virtual
testbed implements a 3d geometric and functional simu-
lation model incorporating the mobile robot, sensors and
the environment e.g. of the planet (figure 1). In addition
the simulation system allows for testing and verifying the
localization, navigation and control algorithms. Further-
more it provides the possibility to rerun test series with
slightly different parameters to find the best parameter
sets.
The results lead directly into the project ”SELOK” (self-
localization on planetary surfaces - ”Selbstlokalisation
auf planetaren Oberflächen”) funded by the German
Aerospace Agency (DLR).



Figure 2. Virtual and real testbeds; left: Smulated forest machine with laser scanner visualization; right: photo of the
real harvester with mounted laser scanners.

2. LOCALIZATION STRATEGY

Exploration of unknown planetary surfaces with the help
of mobile robots will be essential for the success of fu-
ture space missions, as it is possible at lower cost and less
dangerous. Due to operation in remote areas and gaps in
the communication, these mobile robots need robust self-
localization strategies. Starting with a self-localization
approach optimized and validated for unstructured envi-
ronment on earth, we introduce a new generalized modu-
lar concept applicable in different environments.

2.1. Implemented localization strategy for terres-
trial unstructured environments

Our previous work focused on the development of new
methods for precise self-localization of work machines
in unstructured forestry environments. In this domain the
Global Positioning System (GPS) has been introduced
and is utilized as the standard location service but it suf-
fers from low position accuracy or even signal loss.
Therefore a new approach to determine the position of a
work machine has been implemented. As described in [1]
a forest machine has been equipped with several sensors
to measure aspects of its environment and is able to de-
termine its position with higher accuracy than with a GPS
receiver as its only sensor.
The foundation of this approach is the fusioning of the
sensor data with information of landmarks calculated be-
forehand from aerial survey data. Figure 3 illustrates the
concept of this approach. In a first step, a local land-
mark map is generated using the point cloud data of the
mounted laser scanners. Implemented object extraction
algorithms determine relevant features in this sensor data.
According to the position and orientation of the laser
scanners and the parametrization of the object extraction
algorithms detected features are treated as trees. Using
the collected information a local landmark map of trees
can be generated.
Next the matching algorithm is started. This calculation
is based on a particle filter algorithm as described in [2].

Figure 3. Implemented localization approach for forestry
environments.

Each hypothesis of a possibly true world state is repre-
sented as a single particle with an importance weight.
Generated particles are distributed uniformly on an area
of interest which is assumed to be the target area.
Landmarks are extracted from the global tree map and
are used to recalculate the importance weight of the par-
ticles in each sampling step. In the following step the
evaluation threshold for the particles is increased. Parti-
cles with low importance weight are eliminated and new
ones are generated positioned around the remaining ones.
This leads to an accumulation of particles at the best posi-
tion estimations. The resampling steps are repeated until
the particles accumulate in one point. In [3] the calcula-
tion steps are described in detail as well as information
on parametrization of the algorithm.
Using additional information sources like the mounted
low-cost GPS receiver and an electronic compass an im-
precise position estimation as a starting point as well as
an estimated orientation are given and the algorithm can
be sped up.



2.2. Generalization

The aforementioned system has been tested, evaluated
and optimized in forest stands over the last two and a half
years. The accuracy of the results has been verified by a
surveyor’s office. In chapter 4 the results are presented.
Evaluating and optimizing the system in these iteration
steps and being faced with different problems we came
to the conclusion to re-engineer the approach. At first
glance the system is highly optimized to the needs of the
forestry environment. It is fast and reliable but at the
same time inflexible and non-modular.
Abstracting the components of the localization approach
and generalizing the communication among them led to
the new modular and flexible concept as illustrated in fig-
ure 4. The foundation of this implementation is described

Figure 4. Abstact concept generalizing the introduced
forestry based localization approach.

in detail in chapter 3. The self-localization approach for
forest environments has been broken down into modules
according to the new concept. The modules have been
implemented context-independent, so that they can be
continued to use in different application areas. Further-
more, modules of the same kind, e.g. landmark detectors,
can be substituted without effecting the other modules of
the processing chain.

Figure 5. New modular VisualGPS approach with a con-
figuration for forest environments.

The adaption of the self-localization approach for forest
environments to the new general concept is shown in fig-
ure 5. The general concept can now be used for further lo-
calization tasks, such as extraterrestrial exploration mis-
sions, or localization in urban environments.

2.3. Adaption to extraterrestrial environment

By the abstraction and modular reassembly of the local-
ization unit, attaching new sensors to it is now a straight
forward task. Furthermore the modular landmark detec-
tor unit now allows for many different detection instances
as tree detectors in forest environments or for example
rock detectors in extraterrestrial environments. Each de-
tector instance defines the required sensors. For example,
the tree detector used so far based on 2d laser scanner
data, deliver sufficient data and are rugged enough for
the use on forest machines. An alternative implementa-
tion for tree detection uses stereo cameras, as they are
more cost-saving and lighter compared to laser scanners.
Each of the detectors extracts a set of tree landmarks from
the sensor data and provide the localizer with it.
The localization module itself defines the set of landmark
types it is using, so is the forest environment localizer just
using tree landmarks independently in which detection
instance they were generated. In extraterrestrial environ-
ments many different types of landmarks are usable, for
example rocks, craters, hills and so on. Therefore the lo-
calization module has to evaluate the landmarks semantic
information as well as their position to match them cor-
rectly to the navigation map, wherein the landmarks are
divided in the same semantic classes.
The navigation map for both forest environments and
planetary surfaces are generated from remote sensing
data. In forest scenarios the data comes from aerial sur-
veys made for this purpose and earth observing satellites.
On extraterrestrial exploration missions the data is ac-
quired during the landing process and from observing
satellites as well. The automated surface reconstruc-
tion and mapping issue using landing data from plane-
tary exploration missions is subject of the DLR funded
research project FastMap, intruduced in section 1. Figure
6 demonstrates a configuration of modules which could
be used for a planetary exploration mission.

Figure 6. VisualGPS approach with a module configura-
tion for extraterrestrial exploration missions.

2.4. Landmark detection on stereo image data

The detection of landmarks using stereo cameras has
been subject of publications like [4] and [5]. In most
of them, the object detection is carried out on the input
images directly. In indoor application this is a promis-



Figure 7. Calculation steps for tree detection in disparity images. Left: Input image (left view of stereo image); Middle:
Disparity image (shaded area is not visible in both stereo images); Right: Detected trees as blue overlay on left input
image.

ing approach, as edges and corners can be used to iden-
tify object borders. Tree edges also can be detected by
analyzing the horizontal image gradients, but branches
or consecutive standing trees in a dense forest make the
problem much more challenging. A better approach to
solve the problem of landmark detection is to first com-
pute a dense disparity map using one of the methods ana-
lyzed in [6]. We use an implementation of the semi global
block matching method as introduced in [7]. The result-
ing disparity map is a discrete depth map color coded in
a grayscale image. Object faces pointing directly to the
camera result in single-colored areas in the disparity map
and can easily be extracted from the background.
Figure 7 shows a sequence of three images representing
the three steps image aquisition, disparity map estimation
and tree detection. The tree detection algorithm selects
all single-colored regions in the disparity map and evalu-
ates their minimal bounding boxes. If the aspect ratio of
the bounding box is under a given threshold, the region is
marked as a tree.
A more challenging landmark type are rocks, e.g. on ex-
traterrestrial planetary surfaces. A rock detector has to
consider more aspects than the depth values from laser
scanner or stereo camera as the geometry of rocks is ar-
bitrary. A combination of obstacle detection based on
disparity maps as well as analyses of color and texture
information on raw image data is more promising, than
relying on just one aspect.
In our approach for a rock detecting algorithm, the dis-
parity map of stereo input images is estimated first. Ob-
stacles as rocks or steep slopes can be distinguished from
the surface plane in the disparity map, as on the one hand
the depth gradient of the objects differs from the one of
the plane they are arranged on. On the other hand ob-
stacle edges as they are visible in one of the stereo cam-
eras are partially occluded in the other camera and vice
versa, which results in uncertain regions in the disparity
map around the obstacle boarders. Regions that cannot be
assigned to a disparity class are denoted black in the dis-
parity map. Using the sobel edge detector on the disparity
image finally results in clear identifiable lines along dis-
tance jumps belonging to obstacle boarders, cf. figure 8.
In a last step the dominant edges are extracted and or-
dered according to their depth in the disparity map. If
there is no disparity value known, which will occur quiet
often as the dominant edges develop from gaps in the

Figure 8. Obstacle boarder detection using stereo vision.
Top-left: input image from virtual testbed (left view of
stereo pair); top-right: disparity map from stereo input;
bottom-left: disparity map stretched to RGB-color space
for a better visualization; bottom-right: obstacle board-
ers identifiable after applying the sobel operator on the
colored disparity map.

disparity map, the maximum disparity value in a block
of surrounding pixels will be taken. This is because the
edges separate a foreground object with higher disparity
values from the background, and we assign the edges to
the object. In a last step the objects can be generated by
fitting ellipsoids into the depth-sorted contours. The me-
dian depth of the pixels inside the ellipsoid will be taken
as distance to the landmark object.

2.5. Relative localization approach based on visual
odometry

The localization unit for forest environments uses
compass and GPS data for initializing the localization
algorithm and to reduce the search space. Furthermore,
the additional data can be used to detect incoherent pose
jumps between GPS/compass data and the estimated
pose from Visual GPS. In extraterrestrial environments
compasses and GPS receivers are worthless, thus
an alternative initialization and correcting method is



needed. Stereo cameras are already used to observe the
environment, so the image data can also be used for
visual odometry, as it has been already used to assist in
resolving wheel odometry problems on mars exploration
rover missions [8] and other terrestrial in- and outdoor
localization tasks [9], [10], [11].
Visual Odometry uses optical flow between consecutive
images to calculate object movement relative to the
camera. In our case the camera will move in its environ-
ment, that is why the optical flow specifies the inverse
camera movement in projected image space. By using
rectified stereo images of a calibrated stereo camera
system with known baseline distance of left and right
camera, the estimated optical flow yields a metric three
dimensional camera movement. The accuracy depends
on the horizontal resolution and the focal length of the
stereo cameras used.
With the additional visual odometry technique the
localization unit works in two modes. In the absolute
localization mode, the Visual GPS algorithm tries to
find enough landmarks to estimate an absolute pose
in the localization map. When the number of detected
landmarks is not sufficient, the unit switches into the
relative localization mode. In this mode the localization
algorithm estimates the relative movement of the robot
from the last known absolute position using visual
odometry. During the relative localization the landmark
detector still works in a background process in order to
detect further useful landmark configurations.

3. THE VIRTUAL TESTBED

As mentioned in chapter 2.2 the implemented approach
had to be re-engineered to meet the requirements of new
domains. In addition, connections among the imple-
mented components should be flexible and modular. To
meet all these requirements the underlying concepts to
connect components and to communicate among them
have been revised. The design allows easy setups of
virtual testbeds using a generic communication concept
for the interaction of all components. The newly devel-
oped sensor framework allows the parallel integration of
real and simulated sensors into the system and provides
a smooth transition between simulation and real world
tests. The virtual testbed allows a focused view on ev-
ery component of the system to analyze and optimize its
behavior.

3.1. Communication concept

In a first step the communication has been standardized
to an input-output handler concept which employs an IO-
board metaphor and manages all related inputs and out-
puts. Using an abstract base class for the envisioned types
of data, it is possible to flexibly connect all kinds of com-
ponents to another component in use. The input-output
hander additionally informs affected IOs of changes of

values. Furthermore it is possible to configure a compo-
nent to actively post a modification of a value.
Based on this new standardized communication subor-
dinated components have been implemented. To illus-
trate the new flexible design of the components of the lo-
calization algorithm, the sensor framework is described
in detail. Other components like the landmark detec-
tion module or the localization module are realized in the
same way implementing communication and data ports
as needed.
Figure 9 shows an UML diagram as the conceptual view

Figure 9. UML-diagram of the structure of the sensor
framework

of the sensor framework, emphasizing the three major
levels of inheritance.
The first layer represents the aforementioned communi-
cation components. Abstract implementations of sensors,
error models, data logging components or the visualiza-
tion inherit from the first layer and constitute the second
layer of the sensor framework. Basic inputs and outputs
which are indispensable to all inherited components are
positioned in this layer. The ”switch” to enable a com-
ponent of the sensor framework is located in the abstract
base class layer.
The third layer inherits the abstract realization and ef-
ficiently realizes the real, virtual and simulated sen-
sors. Furthermore, it specifies error models especially
designed to represent an error scenario of a sensor or spe-
cialized sensor data visualization for different use cases.

3.2. Differentiation of sensor types

The third layer of the framework differentiates among
three types of sensors. Sensors are classified as imple-
mentation of real hardware API, simulated sensors and
virtual sensors. This is necessary to consider the charac-
teristics of each type with its unique features.
Implementation of APIs of real sensors are in use to con-
nect to real hardware components. Implementing inter-
faces to real hardware allows to control the components
and to alter parameters at runtime. Using this feature is
indispensible to algorithms or applications e.g. if they
need different resolutions of sensor data to calculte cor-
rect results.



The second class represents the simulated sensors. As
real hardware components are not available at all times,
for instance due to high costs, it is not possible to use
them and for example carry out necessary test series. Us-
ing simulated sensors in an appropriate testbed avoids
this effect. By combining simulated sensors, which yield
ideal data, with error models (cf. 3.3) the behavior of real
components are emulated, providing realistic sensor data
for subsequent algorithms.
Virtual sensors represent the last class of sensors in our
framework. They are used to induct algorithmic results
or recorded data into the network of connected compo-
nents. As the data ports use an abstract base class for
the envisioned types of data as mentioned beforehand
recorded data or algorithmic results are treated as con-
ventional sensor data. Regarding the introduced local-
ization approach in this paper the result of the particle
filter algorithm represents an absolute position estima-
tion. This information is provided by the use of a vir-
tual sensor setting the absolute position information on
the output of this component which we call VisualGPS-
sensor as it provides absolute position information like a
GPS-receiver but its position estimation is based on opti-
cal sensor data.

3.3. Error Modelling

Besides the ability to simulate sensors it is indispensible
to add error models to a virtual testbed. As described
above simulated sensors yield ideal data. In reality the
output of a sensor is based upon several criteria. Focus-
ing on the sensors of the VisualGPS algorithm, e.g. the
implementation of a laser scanner, this means the sen-
sor is able to determine the distance to objects in the vir-
tual testbed without considering maximum scanning dis-
tances, reflection properties of surfaces or typical error
characteristics like random noise. Comparing the output
of this simulated sensor to a real hardware component
shows obvious deviations.
The discrepancy between the output of the real hardware
component and the simulated one is flattened by adapt-
ing characteristics of real hardware components like bi-
ased and statistical error. The simulation system in use
provides an graphical user interface to compose a sensor
network base on input and output data ports. In addi-

Figure 10. Graphical user interface to model sensor net-
works.

tion standard error models for depth noise, dirt, reflection
characteristics context-dependent errors (e.g. based on
detected colors) have been implemented to optimize the
behavior of the simulated laser scanner and to emulate
real hardware components in a realistic way. Addition-
ally filters have been implemented to limit the maximum
as well as minimum depth and to smooth features. Figure
10 shows a network with a simulated laser scanner sensor,
error models for depth limitations, depth noise and stan-
dard image processing filters. Furthermore visualizations
for optimal sensor values as well as sensor values with in-
cluded error models are added to the network. The results
are visualized in figure 11.

Figure 11. Abstracted visualization of laser scanner data.
Red sphere represents the laser scanner; red lines visual-
ize optimal scanner results; green lines represent results
with error models.

3.4. Data logging and playback

Reproducibility is an essential feature to analyze and un-
derstand complex processes and to verify results. Sim-
ulation systems take advantage of their ability to record
and playback tasks and to analyze information in detail
independent from temporal restrictions.
In combination with the aforementioned virtual sensors
the data logging and playback module is used to repro-
duce test series and to analyze test data in detail. Log-
ging sensor data outputs, parameters of error models like
random seeds or results of algorithms allows verification
and optimization of implemented algorithms like the Vi-
sualGPS approach.

3.5. Sensor fusion

Whenever there are different sensors working in one
system, the question of timing is essential, because every
sensor has its own test frequency and algorithms using
more then one sensor at a time need to be informed,
when the relevant sensor data has changed. It would be
inefficient if the sensors would be synchronized to the
slowest data rate on the one hand, as data packages of
faster sensors would be ignored, and on the other hand
it would be a waste of processing time to synchronize



the sensors to the fastest sensor clock, as the algorithms
using slow sensors had to determine whether the data
had changed from one cycle to another.
In our sensor framework all sensors are attached in a
non-polling (pushing) manner, i.e. whenever there is a
new frame of sensor data it is written into a buffer from
which the consuming instances can grab it when in need.
Every connected instance, this can be a preprocessing
mechanism or error model as well as any algorithm
depending on the sensor data, will be informed via its
connection on the IO-Board. Not until the data is actu-
ally needed it will be passed through to the requesting
instance. Thereby unnecessary data transfer can be
avoided.

3.6. Testing

The ability of parallel testing in real and simulated envi-
ronments and the smooth transition between simulation
and real world measurements is the main aspect of the
virtual testbed presented in chapter 3. Modules can be
developed in a pure virtual environment and after an iter-
ative calibration process with real components, they are
validated and can be used in real environments as well.
Therefore the implemented modules have to be developed
and tested context-independent, resulting in all-purpose
modules.
The first implementation of the localization algorithm in-
troduced in detail in chapter 2 has already been developed
and optimized using the virtual testbed approach. In gen-
eral the development process is divided in the following
iterative steps:

1. Using a first conceptual implementation in the
testbed allows estimating the basic plausibility. All
necessary sensor data is provided as ideal simulated
sensor output for the developed algorithms.

2. After promising tests of the first stage, error models
are added to the simulated sensor data to measure the
robustness of the developed algorithms, resulting in
first requirements for the applicable hardware in the
target system.

3. The algorithms can now be optimized with respect
to the constraints defined in the step before. The
input data of the simulated components is contin-
uously transformed from ideal to realistic data by
adding further error models, according to the stated
requirements. The identification of errors in the al-
gorithms is always possible by moving individual
components independently of the rest in the degree
of their realism.

4. Finally, all components of the simulation are re-
placed by their real counterparts for testing the al-
gorithms on the target system.

Similar to the design of high-level modules simulated
sensors are developed in an iterative process as well. In

a first step a basic concept of the sensor according to its
sensor class (optical sensor, absolute or relative position
sensor, etc.) is implemented. In a second step it will
be augmented by specific properties gathered from real
components. Standard error models are available as tem-
plates and can be adjusted corresponding to real hardware
sensor output. Comparing the data of simulated and real
components in parallel differences can be identified and
minimized to a close to reality implementation.

Figure 12. Visualization of PMD-sensor data and forces
at joints and engines of a mobile robot (Scarabaeus robot
design by DFKI1)

4. RESULTS AND FUTURE WORK

The self-localization algorithm discussed in 2 has been
tested, evaluated and optimized in forest stands over the
last two and a half years using real and virtual testbeds.
Generalizing the underlying concept allows for adapting
the approach to new domains as e.g. unstructured en-
vironment on planetary surfaces. A Virtual Testbed for
planetary exploration missions has already been set up
wherein the interaction of exploration robots with their
environment can be simulated as well as relevant internal
processes of the mobile system [12]. All methods in the
field of landmark detection in extra-terrestrial environ-
ment can already be simulated in the virtual testbed. As
the scene model is well known by the system the output
data of the algorithms can be verified using the scene as
ground truth. Currently the landmark detection is being
expanded onto new types. In the future rock-landmarks
are treated as primary landmarks on planetary surfaces as
introduced in chapter 2.4. The validated modules devel-
oped in the forest domain are used to produce planetary
mission data in the virtual testbed, as real planetary mis-
sion data is not available.
Simulated sensors with corresponding error models and
real ones are already integrated into our system. The sen-
sor data can be visualized as comprehensive metaphors
allowing easy understanding of complex correlations dur-
ing development processes. Furthermore the generated
sensor data can be logged and played back using the
mechanisms described in chapter 3.4 allowing to rerun

1Deutsches Forschungsinstitut für Künstliche Intelligenz, Bremen,
Germany



Figure 13. Images from a virtual testbed for mobile robots in space; left: 3d planetary surface visualization based on
HiRISE remote sensing data; middle: simulation of mobile robot with laser scanner interacting with its environment leav-
ing footprints on surface; right: simulation and visualization of internal forces of mobile robot components (Scarabaeus
robot design by DFKI)

test series with slightly different parameters for optimiza-
tion purposes.
Main objective of future work is a virtual mobile
robotics testbed containing relevant sensors used in mo-
bile robotics. The modular concept of the underlying sys-
tem provides the possibility of developing new modules
independently from specific domains or other modules of
the system.
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