
A packing integer program arising in two-layer network design

Christian Raack∗ Arie M.C.A Koster⋆

∗Zuse Institute Berlin
Takustr. 7, D-14195 Berlin

⋆Centre for Discrete Mathematics and its Applications (DIMAP)
Warwick Business School, University of Warwick, Coventry CV4 7AL, UK

Abstract

In this paper we study a certain cardinality constrained packing integer program which is motivated by the
problem of dimensioning a cut in a two-layer network. We proveNP-hardness and consider the facial structure
of the corresponding polytope. We provide a complete description for the smallest nontrivial case and develop
two general classes of facet-defining inequalities. This approach extends the notion of the well known cutset
inequalities to two network layers.

Keywords: packing integer programming, two-layer network design, cutset inequalities

1 Introduction

Let A be a 0-1 matrix withm ≥ 2 rows,n ≥ m columns, and the firstm columns forming an identity matrix.
We denote byM := {1, . . . , m} andN := {1, . . . , n} the row and column indices ofA. Thelengthℓj of column
j ∈ N is defined as the sum of its entries, i. e.,ℓj =

∑m

j=1 aij . We setℓ̄ := maxj∈N (ℓj). Depending on whether
ℓj is odd or even we speak of odd and even columns ofA. The index set for all odd columns is denoted byO ⊆ N .
ObviouslyM ⊆ O. For any vectorv and a subset of its indicesS, let v(S) :=

∑

j∈S vj throughout.
Let d be an-dimensional 0-1 vector withdj = 1 if and only if j ∈ O. Consideringb0 ∈ Z+ and a right hand

side vectorb ∈ Z
m
+ we study the polytope

P := conv{x ∈ Z
n
+ : dx ≥ b0, Ax ≤ b}.

By aggregating variables we may assume that all columns ofA differ. A valid inequality forP is callednontrivial
if it is not a nonnegativity constraint and if it is not thecardinality constraintdx ≥ b0 or one of thepacking
constraintsin the systemAx ≤ b. The columns ofA can be seen as incidence vectors for subsets of the base set
M . Since the identity matrix is contained inA all singleton subsets are part of the problem. An integer point in P
can be seen as a setpackingwhere each elementi ∈ M is covered at mostbi times and the number of subsets with
odd cardinality is at leastb0. The canonic packingx0 (satisfying all packing constraints) is given byx0

j := bj for
all j ∈ M andx0

j := 0 for all j ∈ N\M .
Our study ofP is motivated by design problems for layered telecommunication networks [1, 7, 11]. In such

stacked networks two (or more) layers are coupled in such a way that every upper layer link is represented by paths
(between the corresponding end-nodes) in the underlying lower layer. In the following we provide a mixed integer
programming formulation for a a two-layer network design problem and show that optimizing over the polytope
P corresponds to the design problem for a cut (or a two-node two-layer network).
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Two-layer network design Consider a firstphysical layerrepresented by a graphG = (V, E). and a second
completevirtual layerH = (V, V ×V ) defined by the same set of locationsV and all possiblevirtual links. Every
virtual link can be realised by (different) paths in the physical layer. Both graphs are simple and undirected. In
general one may also consider subsets ofV andV ×V in the virtual graph. In practice, the graphG might represent
a fiber topology of an optical transport network. In this case, avirtual link of H reflects the possibility to connect
the corresponding end-nodes by alight-pathin G usingwavelength division multiplexing(WDM) technology [13].
Here we consider the physical graph to be fixed (not being subject to dimensioning). A realisation of a virtual link
as a path in the physical layer will be called a light-path in the following.

Given a traffic matrix of user demands with respect toV , the task is to select light-paths and to equip them
with capacities such that the user demands can be routed in the virtual layer. A demand can be routed using several
virtual paths (paths inH) consisting of multiple virtual links. Flow can be fractional. Every edge ofG provides
only a fixed number of channels. Every light-path capacity module consumes one channel on every edge along the
path inG.

The model we consider here is close to the formulation proposed by Raghavan and Stanojević [12], also see [1].
It has the advantage of a very compact description of the virtual layer flow. This is achieved by aggregating all
flow variables for light-paths with the same end-nodes to a single variable. For every virtual link{v, w} ∈ V × V
a setP{v,w} of admissible light-paths in the physical graphG is considered. LetP be the union of all these paths.
Each pathp ∈ P can be equipped with multiples of a basechannelcapacityC at a certain cost. Every physical link
e ∈ E supports a total ofBe channels. We consider a set of commoditiesK modeling the given traffic forecast.
With every commodityk ∈ K and every nodev ∈ V , a demand valueDk

v is associated such that
∑

v∈V Dk
v = 0.

We introduce the following variables. For every virtual link {v, w} the variablesfk
vw andfk

wv describe the
flow betweenv andw in both directions w. r. t. commodityk ∈ K. The integer variablexp counts the number
of channel capacities for pathp. The problem of minimizing the cost of a feasible capacity assignment satisfying
the given traffic demands and the capacity restrictions on both layers can now be formulated as the problem of
minimizing a linear function over the following set of constraints:

∑

w∈V \{v}

(fk
vw − fk

wv) = Dk
v ∀v ∈ V, k ∈ K (1)

∑

p∈P{v,w}

Cxp −
∑

k∈K

(fk
vw + fk

wv) ≥ 0 ∀{v, w} ∈ V × V (2)

∑

p∈P : e∈p

xp ≤ Be ∀e ∈ E (3)

fk
vw, fk

wv ∈ R+, xp ∈ Z+ (4)

The flow conservation equations (1) ensure a feasible routing of the traffic. The virtual link capacity constraint
(2) says that the flow betweenv andw must not exceed the total capacity installed on all corresponding paths.
The physical link capacity constraint (3) restricts the number of light-path channels for every physical linke. An
extension of the formulation above considering the design problem of virtual as well as physical links and nodes
is used in [1].

Two-Layer cuts Consider a cut in the physical graph and all crossing light-paths, (i. e., all paths inP using at
least one of the physical cut links, see Figure 1. Only if sucha path uses an odd number of physical cut links,
i. e., its end-nodes are in different shores of the cut, it cancontribute to the transport of traffic across the cut. We
assume that these odd paths have to be equipped with at leastb0 many capacity modules to allow for a feasible
realization of the traffic across the cut. The cardinality constraintdx ≥ b0 reflects this requirement and can be seen
as the (capacity forcing) cutset inequality [2, 3, 8] for thevirtual cut. The valueb0 depends on the cut demandD
and the size of the channel capacityC and can be computed asb0 = ⌈D

C
⌉. The packing constraintsAx ≤ b are

simply the physical channel limitations (3) for all cut links. The rows ofA correspond to all physical cut links and
the columns ofA correspond to all light-paths crossing the cut. Since in practice typically all single-hop channels
(light-paths using exactly one physical link) are part of the problem, the matrixA contains the identity matrix.
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In this context,P is a two-layer network design polytope for two network nodesor a (two-layer) cutset poly-
tope. Every cut inG defines a polytope of typeP . Hence, facets ofP extend the notion of cutset inequalities to
two layers. Single-layer network design polyhedra, cutsetpolyhedra, and cutset inequalities have been studied for
instance in [2, 3, 8].
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Figure 1: Physical cut and crossing light-paths. Physical cut links correspond to rows. Paths correspond to columns
of A. All singleton paths are part of the problem.

Basic observations In this paper, we study the complexity of optimizing overP as well as the polyhedral
structure ofP . For this, we introduce the following additional notation.Given a column indexj ∈ N , the set
M [j] := {i ∈ M : aij = 1} contains all row indices with a nonzero entry in columnj of A. Similarly, for a row
indexi ∈ M , the setN [i] := {j ∈ N : aij = 1} corresponds to all columns with a nonzero entry in rowi of A.
For j ∈ N we writebj := b(M [j]). Note thatbj is well defined since it coincides with the right hand side of the
packing constraint forj ∈ M . We denote byej ∈ {0, 1}n thej-th unit vector forj ∈ N .

By a simple reduction from the decision version ofMAXIMUM SET PACKING [5] it can be seen that already
deciding whetherP is nonempty or not isNP -complete if we allow for arbitrary{0, 1}-matricesA. The situation
however changes ifA contains the identity matrix as claimed above. In this case the dimension ofP only depends
on the size ofb(M) compared to the size ofb0.

Lemma 1.1. P is nonempty if and only ifb(M) ≥ b0.

Proof. Sincedx =
∑

j∈O xj ≤
∑

j∈N ℓjxj and by aggregating all packing constraints
∑

j∈N ℓjxj ≤ b(M). we
conclude thatP is empty ifb(M) < b0. On the other hand, ifb(M) ≥ b0, thenx0 ∈ P .

Lemma 1.2. P is full-dimensional if and only ifbi ≥ 1 for all i ∈ M andb(M) ≥ b0 + max(1, 2
⌊

ℓ̄ / 2
⌋

).

Proof. Let j̄ = argmax{ℓj : j ∈ N}.
Necessity: If bi = 0 for somei ∈ M , thenxi = 0 for all feasible packingsx and thusP is not full-

dimensional. Assume thatb(M) ≤ b0. ThusP is either empty (Lemma 1.1) orb(M) = b0. If the latter is true, the
only feasible vector is given byx0 which gives a dimension of0 and hence a contradiction. We may assume that
b(M) ≥ b0 + 1. SinceP is full-dimensional there exists a feasible assignment with xj̄ ≥ 1. For this assignment it
holds thatdx =

∑

j∈O xj ≥ b0 if column j̄ is even and
∑

j∈O\{j̄} xj ≥ b0 − xj̄ if column j̄ is odd. Summing up

the packing constraints showsb(M) ≥ b0 + 2
⌊

ℓ̄ / 2
⌋

.
Sufficiency:We constructn + 1 affinely independent points inP . The first vector is given byx0 which

is feasible becausedx0 = b(M) ≥ b0 + 1. Since the cardinality constraint is not tight andbi ≥ 1 for all
i ∈ M , every nonzero entry ofx0 can be reduced individually. More precisely, fork ∈ M we consider the vector
xk := x0 − ek. Additionally, for columnsk ∈ N\M , we define the vectorsxk := x0 + ek −

∑

j∈M [k] e
j. It holds

thatdxk = b(M)− ℓk or dxk = b(M)− ℓk + 1 depending on whetherℓk is even or odd. Fromℓk ≤ ℓ̄ we get that
dxk ≥ b0 in both cases. Then + 1 constructed vectors are clearly affinely independent.

Lemma 1.2 implies that ifP is not full dimensional it is either empty, contains a singlepoint or there exists
j ∈ N such thatxj = 0 for all x ∈ P . It follows that by consecutively deleting variables that are fixed to zero
and by excluding the trivial cases we may assume thatP is full dimensional w. l. o. g. throughout the rest of this
article. Due to length restrictions we have to omit most of the proofs.

3



2 Complexity

Given weightsw ∈ Z
n, we consider the problem of optimizing a linear function over P :

min{wx : x ∈ P} (P)

We first observe that if all columns ofA have at most two entries (ℓ̄ ≤ 2) the problem (P) can be solved efficiently.
If ℓ̄ = 1, thenA is the identity matrix and

(

−d
A

)

is totally unimodular. HenceP is already completely described
by the cardinality, packing, and nonnegativity constraints. Now consider the case thatℓ̄ = 2, which implies that
for every column of the constraint matrix

(

−d
A

)

the sum of the absolute values of its entries is 2. By Edmonds
and Johnson [4], the corresponding optimization problem can be seen as a generalizedb-matching problem or
a matching problem on bidirected graphs [14, chapter 36]. A complete description ofP is obtained by adding
all {0, 1/2}-Chvátal-Gomory cuts (allblossominequalities) [4, 6, 14]. Also in this cases the problem (P) can
be solved in strongly polynomial time. Notice that the caseℓ̄ ≤ 2 is of particular practical interest since for a
single-node cut in a two-layer network it holds that a light-path visits the cut at most twice.

In the following we show that optimizing overP is stronglyNP -hard in general. For the maximization
version of (P) there is a straightforward reduction fromMAXIMUM SET PACKING [5].

Proposition 2.1. The optimization problem(P) is stronglyNP -hard.

The corresponding reduction uses nonpositive weights only. But it turns out that also the minimization version
(nonnegative weights) of (P) isNP -hard (in contrast to the minimization version of standardSET PACKING).
Notice that network design typically means minimizing the cost of certain resources. Here we prove an even
stronger result for 0-1 weights by reduction fromMAXIMUM INDEPENDENCE SET [5].

Theorem 2.2. The optimization problem(P)with wj ∈ {0, 1} for all j ∈ N is stronglyNP -hard.

Proof. The problem (P) is clearly inNP . We reduceMAXIMUM INDEPENDENT SET to (P). LetG = (V, E) be
a connected graph with|E| ≥ |V | (MAXIMUM INDEPENDENT SET is in P for trees, see [10]) and letK ∈ Z+.
We have to decide whether there is a subsetS ⊂ V with |S| ≥ K which is independent, that is, for every edge
{v, w} ∈ E it holds that|S ∩ {v, w}| ≤ 1. The set of incident edges tov ∈ V is denoted byδ(v). Let U ⊆ V be
the set of nodes inG with even node degree. We define the matrixA as follows. Setm := |E| + |U | and identify
the first|E| rows ofA with edges ofG and all other rows with nodes inU . The number of columns is defined by
n := m + |V |. The firstm columns form an identity matrix again. Every columnj > m represents a nodej ∈ V
with M [j] := δ(j) ∪ {j} if j ∈ U andM [j] := δ(j) if j ∈ V \U . This way all columns ofA have odd length.
Setbi := 1 for all i ∈ E ∪ U andb0 := K. The weights are defined such thatwj := 1 for j ≤ m andwj := 0
otherwise.

In the following we show that using this reduction there exists an independent set inG of size at leastK if
and only if there exists an integer solutionx ∈ P with weightwx ≤ 0. Let firstx ∈ Z+ be a vector inP . Such
a solution exists sinceb(M) ≥ |E| ≥ |V | ≥ K = b0, see Lemma 1.2. We defineS := {j ∈ N : xj = 1}.
It follows thatS ⊆ V if wx ≤ 0. From the cardinality constraint we get that|S| = dx ≥ b0 = K because all
columns ofA are odd. FromAx ≤ b it follows that |S ∩ {v, w}| =

∑

j∈S xj ≤ 1 for all edges{v, w} ∈ E.
HenceS is an independent set of size at leastK. Now letS be an independent set of size at leastK. We construct
an integer solution inP by settingxj := 1 for all j ∈ S andxj := 0 otherwise. It holds thatx ∈ P because
dx ≥ K = b0 and

∑

j∈S xj = |S ∩ {v, w}| ≤ 1.

3 Polyhedral Studies

In this section we study the facial structure ofP . We start by considering trivial facets and properties of nontrivial
facets. Next, we provide a complete description ofP for the casem = 3. Based on this description, we develop
two classes of general facet-defining inequalities forP . Recall that we assumeP to be full-dimensional.

Lemma 3.1. Rowi ∈ M of the systemAx ≤ b defines a facet ofP .
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Lemma 3.2. The cardinality constraintdx ≥ b0 defines a facet ofP if and only ifb0 > 0.

Lemma 3.3. Let j ∈ N . The nonnegativity constraintxj ≥ 0 defines a facet ofP if either j ∈ N\M or
b(M) − bj ≥ b0 + max(1, 2

⌊

ℓ̄ / 2
⌋

).

Lemma 3.4. Letαx ≤ α0 be a nontrivial facet-defining inequality forP and letj ∈ N . If j ∈ M thenαj ≤ 0. If
j ∈ N\O, thenαj ≥ 0. Moreoverαi ≤ αj for all i ∈ M [j] and

∑

i∈M [j] αi ≤ αj .

Proof. First assume thatj ∈ M . Sinceαx ≤ α0 is not one of the packing constraints there is a feasible point x
on the facet that is not tight in rowj. Hencexj can be increased without leavingP which givesαj ≤ 0. Now
let j ∈ N\M . Sinceαx ≤ α0 is not a nonnegativity constraint there is a pointx on the facet withxj ≥ 1. If ℓj

is even entryxj can be reduced maintaining feasibility. Henceαj ≥ 0. Moreover, we can construct new feasible
packings fromx by reducingxj and increasingxi for (some or all)i ∈ M [j]. This showsαi ≤ αj for all i ∈ M [j]
and

∑

i∈M [j] αi ≤ αj .

Corollary 3.5. If αx ≤ α0 is a facet-defining inequality forP with αj ≥ 0 for all j ∈ N , then it is either one of
the packing constraints orαj = 0 for all j ∈ M .

Proof. If αx ≤ α0 is nontrivial thenαj ≤ 0 for all j ∈ M by Lemma 3.4.

Lemma 3.6. If αx ≤ α0 is a facet-defining inequality forP with αj ≤ 0 for all j ∈ N , then it is either a
nonnegativity constraint or the cardinality constraint.

Proof. Fromαx ≤ α0 being a facet followsα0 ≤ 0. If it is not the cardinality constraint, then there is a point x∗

on the facet with
∑

j∈O x∗
j > b0. Let j ∈ N with x∗

j > 0. We may reducex∗
j . The resulting vector is feasible and

has to satisfyαx ≤ α0, henceαj = 0. It follows that for allj ∈ N eitherx∗
j = 0 or αj = 0. Henceαx∗ = 0

which impliesα0 = 0 and thusαx ≤ α0 is a nonnegativity constraint.

Complete description for m = 3. In the context of two-layer network design,m small is of particular interest
since physical networks are sparse in practice, i. e., cuts typically have a small number of physical links. Ifm = 2,
thenℓ̄ ≤ 2 for which a complete description (by blossom inequalities)is known as mentioned in Section 2. Here
we aim to study the casem = 3 with equal right hand sides, reading as follows:

x1+x2+x3 + x4 ≥ b0 (5)

x1 + x4 + x5 +x7 ≤ β (6)

x2 + x4 + x5 + x6 ≤ β (7)

x3 + x4 + x6+x7 ≤ β (8)

Notice that the columns in (6)-(8) correspond to all nonempty subsets ofM = {1, 2, 3}. We consider the polytope
P3 := conv{x ∈ Z

7
+ : x satisfies (5) - (8)}. We assume thatβ, b0 ∈ Z+\{0} and thatP3 is full dimensional,

hence by Lemma 1.2 it holds that3β ≥ b0 + 2. It suffices to studyP3 since all other instances havingm = 3
can be obtained by fixing subsets ofx4, x5, x6 or x7 to zero which gives nonempty faces ofP3. Consequently,
a complete description forP3 means a complete description form = 3. Settingp := ⌊(3β − b0) / 2⌋ andq :=
⌊(2β − b0) / 2⌋, the following inequalities are obviously valid forP3:

x4 + x5 + x6 + x7 ≤ p (9)

− x1 + x6 ≤ q (10)

− x3 + x5 ≤ q (11)

− x2 + x7 ≤ q (12)

These inequalities are obtained by aggregating subsets of (5)-(8) and applying a{0, 1
2}-Chvátal-Gomory step. The

subsets are{(5)-(8)}, {(5), (7), (8)}, {(5), (6), (7)}, and{(5), (6), (8)}, respectively. In the following we will make
use of the following integral points several times:

x1 = (s, s, s, p, 0, 0, 0), x2 = (0, t, t, 0, 0, q, 0), x3 = (0, 0, 0, β, 0, 0, 0), x4 = (0, 0, 0, b0 + 1,−s,−s,−s)

5



wheres := ⌈(b0 − β) / 2⌉ andt := ⌈b0 / 2⌉. Notice thatx1 ∈ P3 wheneverβ ≤ b0, thatx2 is in P3 if 2β ≥ b0,
and thatx3, x4 are valid ifβ > b0.

Lemma 3.7. Inequality(9) defines a facet ofP3 if and only ifb0 − β is odd.

Proof. Necessity:If b0 − β is even or equivalently3β − b0 is even, then (9) is the sum of (5)-(8).
Sufficiency:Settingy := x1 if β < b0 andy := x4 if β ≥ b0 the following seven affinely independent points

are on the face defined by (9):

y, y − e4 + e5, y − e4 + e6, y − e4 + e7, y − e4 + e3 + e5, y − e4 + e1 + e6, y − e4 + e2 + e7

Notice that from the fact thatb0 − β is odd follows thatp + s = β, p + 3s = b0 + 1, andb0 + 1 − 2s = β.

Lemma 3.8. The inequalities(10) - (12)define facets ofP3 if and only ifb0 is odd and2β − b0 ≥ 1.

Proof. By symmetry, it suffices to prove the result for (10).Necessity:If b0 is even or equivalently2β − b0 is
even, then (10) is the sum of (5), (7) and (8). If2β − b0 ≤ −1, then the sum of (5), (7) and (8) dominates (10).
Sufficiency:The following affinely independent points are on the face defined by (10):

x2, x2 − e2, x2 − e3, x2 − e2 − e3 + e4, x2 − e2 + e5, x2 − e3 + e7, x2 − e2 − e3 + e1 + e6

Notice that ifb0 is odd then2t = b0 + 1 andq + t = β.

Theorem 3.9. The polytopeP3 is completely described by the the inequalities(5) – (12).

General facets. It has been shown above that the Chvátal rank ofP is 1 also in the casem = ℓ̄ = 3. All
facet-defining inequalities are{0, 1/2}-cuts. But not every combination of rows of the initial formulation gives
rise to a facet-defining inequality. Only those{0, 1/2}-cuts that combine the rows ofAx ≤ b with the cardinality
constraint are strong. This observation motivates the following two general classes of facet-defining inequalities.
The first class of facets generalizes inequalities (10)–(12) and the second class is similar to (9). Both inequalities
are rank 1 mixed integer rounding (MIR) inequalities [9].

Let i1, i2 ∈ M be two arbitrary rows ofA. We assume w. l. o. g. thati1 = 1 andi2 = 2. Fork ∈ {0, 1, 2} we
setNk := {j ∈ N : |M [j] ∩ {1, 2}| = k}. HenceNk corresponds to all columns that havek entries in the first
two rows ofA. We setq := ⌊(b1 + b2 − b0) / 2⌋ . Aggregating rowsi1, i2 and the cardinality constraint, dividing
by 2 and rounding down left and right hand sides gives

∑

j∈N2\O

xj −
∑

j∈N0∩O

xj ≤ q (13)

Theorem 3.10. Inequality(13) is valid and defines a facet ofP if the following conditions hold:

1. b1 + b2 − b0 > 0 is positive and odd,N2\O 6= ∅, and|b1 − b2| ≤ b0 − 1

2. bi ≥ q + 2 for all i ∈ M [j], j ∈ N2\O

Condition 1 is necessary for(13) to define a facet. A further necessary condition isbi ≥ q+1 for all i ∈ M [j], j ∈
N2\O.

Another nontrivial facet-defining inequality is derived asfollows. Let us assume there is a columnk ∈ N\M
with the property thatk has at most one entry in common with any other column inA, i. e., it holds that|M [k] ∩
M [j]| ≤ 1 for everyj ∈ N, j 6= k. Let N0

k , N1
k ⊆ N denote the columns ofA that have no entry in common with

columnk and that have exactly one entry in common with columnk, respectively. We denote byℓ0
k the length

of the longest odd column inN0
k , thusℓ0

k = max{ℓj : j ∈ N0
k ∩ O} and byr the remainder of the division of

bk − b0 by s := 2 ⌊ℓk / 2⌋. Setp := ⌊(bk − b0) / s⌋. Now we aggregate all rows corresponding toM [k] and the
cardinality constraint, and consider the1/s-MIR inequality

(s − r)xk −
∑

j∈N0

k
∩O

xj ≤ (s − r) p (14)
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Theorem 3.11. Inequality(14) is valid and defines a facet ofP if the following conditions hold:

1. r ≥ 1, bk > b0, andbi > p for all i ∈ M [k]

2. EitherM\M [k] = ∅ or b(M) − bk ≥ s − r + ℓ0
k.

Condition 1 is necessary for(14) to define a facet.

4 Concluding remarks

In this paper we have discussed the complexity and the polyhedral properties of a combinatorial structure appear-
ing in the context of dimensioning cuts in two-layer networks. The corresponding problem has been described as a
cardinality constrained packing integer program and has been proven to be stronglyNP -hard. Based on the com-
plete description of the smallest nontrivial instance two classes of facet defining inequalities have been identified.
These inequalities generalize the well known cutset inequalities to two network layers. Future work involves the
separation of these inequalities and evaluation of the practical value of these inequalities.
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