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Abstract

In this paper we study a certain cardinality constrainedipacinteger program which is motivated by the
problem of dimensioning a cut in a two-layer network. We jgra¥/P-hardness and consider the facial structure
of the corresponding polytope. We provide a complete deteri for the smallest nontrivial case and develop
two general classes of facet-defining inequalities. Thizr@gch extends the notion of the well known cutset
inequalities to two network layers.
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1 Introduction

Let A be a 0-1 matrix withn > 2 rows,n > m columns, and the first: columns forming an identity matrix.
We denote by\/ := {1,...,m}andN := {1,...,n} the row and column indices of. Thelength/; of column
j € N is defined as the sum of its entries, i.6.= >_7" | a;;. We set/ := max;cy(¢;). Depending on whether
¢; is odd or even we speak of odd and even columns.ofFhe index set for all odd columns is denoted®y_ N .
ObviouslyM C O. For any vectop and a subset of its indices letv(S) := . 5 v; throughout.

Let d be an-dimensional 0-1 vector with; = 1 if and only if j € O. Considering, € Z, and a right hand
side vectob < Z7' we study the polytope

P = conv{x € ZT : dx > by, Ax < b}.

By aggregating variables we may assume that all columusdiffer. A valid inequality forP is callednontrivial

if it is not a nonnegativity constraint and if it is not tlvardinality constraintdz > by or one of thepacking
constraintsin the systemdz < b. The columns ofd can be seen as incidence vectors for subsets of the base set
M. Since the identity matrix is contained ihall singleton subsets are part of the problem. An integemtgoiP

can be seen as a sEickingwhere each elemeitc M is covered at modt; times and the number of subsets with
odd cardinality is at leagt,. The canonic packing® (satisfying all packing constraints) is given bf/ = b, for

all j € M andz9 := 0 forall j € N\M.

Our study of P is motivated by design problems for layered telecommuitnatetworks [1, 7, 11]. In such
stacked networks two (or more) layers are coupled in suchyahed every upper layer link is represented by paths
(between the corresponding end-nodes) in the underlyimgritayer. In the following we provide a mixed integer
programming formulation for a a two-layer network desigolgem and show that optimizing over the polytope
P corresponds to the design problem for a cut (or a two-noddayser network).
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Two-layer network design Consider a firsphysical layerrepresented by a grapgh = (V, E). and a second
completevirtual layer H = (V, V x V') defined by the same set of locatiorisand all possibleirtual links. Every
virtual link can be realised by (different) paths in the phgtlayer. Both graphs are simple and undirected. In
general one may also consider subsets ahdV x V' in the virtual graph. In practice, the graphmight represent

a fiber topology of an optical transport network. In this ¢asértual link of H reflects the possibility to connect
the corresponding end-nodes blyght-pathin G usingwavelength division multiplexingvDM) technology [13].
Here we consider the physical graph to be fixed (not beingestibp dimensioning). A realisation of a virtual link
as a path in the physical layer will be called a light-patHia tollowing.

Given a traffic matrix of user demands with respecitpothe task is to select light-paths and to equip them
with capacities such that the user demands can be routed irirthal layer. A demand can be routed using several
virtual paths (paths i) consisting of multiple virtual links. Flow can be fract@n Every edge of7 provides
only a fixed number of channels. Every light-path capacitglole consumes one channel on every edge along the
path inG.

The model we consider here is close to the formulation pregpby Raghavan and Stanojevi€ [12], also see [1].
It has the advantage of a very compact description of thealitayer flow. This is achieved by aggregating all
flow variables for light-paths with the same end-nodes tmglsivariable. For every virtual linkv, w} € V- x V
a setP, ., of admissible light-paths in the physical gragtis considered. LeP be the union of all these paths.
Each pathp € P can be equipped with multiples of a basennekapacityC at a certain cost. Every physical link
e € I supports a total oB. channels. We consider a set of commoditi&ésnodeling the given traffic forecast.
With every commodity: € K and every node € V, a demand valu®? is associated such that, .\ DF = 0.

We introduce the following variables. For every virtualkifiv, w} the variablesf®, and f* describe the
flow betweenv andw in both directions w.r.t. commodity € K. The integer variable, counts the number
of channel capacities for path The problem of minimizing the cost of a feasible capacisigrement satisfying
the given traffic demands and the capacity restrictions dh layers can now be formulated as the problem of
minimizing a linear function over the following set of corants:
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The flow conservation equations (1) ensure a feasible rgutirthe traffic. The virtual link capacity constraint
(2) says that the flow betweenandw must not exceed the total capacity installed on all corredpm paths.
The physical link capacity constraint (3) restricts the @mof light-path channels for every physical liakAn
extension of the formulation above considering the desigiblpm of virtual as well as physical links and nodes
is used in [1].

Two-Layer cuts Consider a cut in the physical graph and all crossing ligithg, (i. ., all paths i using at
least one of the physical cut links, see Figure 1. Only if sagiath uses an odd number of physical cut links,
i. e., its end-nodes are in different shores of the cut, it@amtribute to the transport of traffic across the cut. We
assume that these odd paths have to be equipped with abjemstny capacity modules to allow for a feasible
realization of the traffic across the cut. The cardinalitysteaintdx > by reflects this requirement and can be seen
as the (capacity forcing) cutset inequality [2, 3, 8] for titual cut. The valué, depends on the cut demand
and the size of the channel capadityand can be computed as = [%1. The packing constraintdz < b are
simply the physical channel limitations (3) for all cut IsKThe rows ofd correspond to all physical cut links and
the columns ofA correspond to all light-paths crossing the cut. Since irica typically all single-hop channels
(light-paths using exactly one physical link) are part @& giroblem, the matrixl contains the identity matrix.



In this context,P is a two-layer network design polytope for two network nodea (two-layer) cutset poly-
tope. Every cut inG defines a polytope of typ®. Hence, facets of extend the notion of cutset inequalities to
two layers. Single-layer network design polyhedra, cyteéthedra, and cutset inequalities have been studied for
instance in [2, 3, 8].
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Figure 1: Physical cut and crossing light-paths. Physigtlicks correspond to rows. Paths correspond to columns
of A. All singleton paths are part of the problem.

Basic observations In this paper, we study the complexity of optimizing ov@ras well as the polyhedral
structure of P. For this, we introduce the following additional notatioBiven a column indey € N, the set
MJj]:=={i € M : a;; = 1} contains all row indices with a nonzero entry in colugnof A. Similarly, for a row
indexi € M, the setN[i] := {j € N : a;; = 1} corresponds to all columns with a nonzero entry in iaf A.
Forj € N we writeb; := b(M[j]). Note thath; is well defined since it coincides with the right hand sidehef t
packing constraint foj € M. We denote by’ € {0, 1} thej-th unit vector forj € N.

By a simple reduction from the decision versionniXIMUM SET PACKING [5] it can be seen that already
deciding whetheP is nonempty or not i&v"P -complete if we allow for arbitrary0, 1}-matrices4. The situation
however changes il contains the identity matrix as claimed above. In this chealtmension of’ only depends
on the size ob(M) compared to the size of.

Lemma1.1. P is nonempty if and only #(M) > by.

Proof. Sincedz = .., x; < >, ¢jz; and by aggregating all packing constraibts, , £;z; < b(M). we
conclude thaf is empty ifb(M) < by. On the other hand, (M) > by, thenz? € P. O

Lemma1.2. Pis full-dimensional if and only if; > 1 for all i € M andb(M) > by + max(1, 2 |¢/2]).

Proof. Letj = argmax{¢; : j € N}.

Necessity:If b, = 0 for somei € M, thenz, = 0 for all feasible packings: and thusP is not full-
dimensional. Assume thatA/) < by. ThusP is either empty (Lemma 1.1) &(\) = by. If the latter is true, the
only feasible vector is given by" which gives a dimension d@f and hence a contradiction. We may assume that
b(M) > bo + 1. SinceP is full-dimensional there exists a feasible assignmerftwjt> 1. For this assignment it
holds thatdz = 3, z; > bo if column jis evenand ;.\ (5, z; = bo — z; if columnj is odd. Summing up
the packing constraints show&\ ) > by + 2 | £/ 2].

Sufficiency:We constructz + 1 affinely independent points . The first vector is given by which
is feasible becauséz® = b(M) > by + 1. Since the cardinality constraint is not tight abd > 1 for all
i € M, every nonzero entry af’ can be reduced individually. More precisely, fo= M we consider the vector
a* = 2% — ¢*. Additionally, for columnst € N\ M, we define the vectors® := 2° +e* — 37/, ¢/. It holds
thatdz* = b(M) — £}, or dz* = b(M) — £}, + 1 depending on whethéj, is even or odd. Fromy, < ¢ we get that
dz* > by in both cases. The + 1 constructed vectors are clearly affinely independent. O

Lemma 1.2 implies that i is not full dimensional it is either empty, contains a singtent or there exists
j € N suchthatz; = 0 forall z € P. It follows that by consecutively deleting variables thet &ixed to zero
and by excluding the trivial cases we may assume thet full dimensional w. l. 0. g. throughout the rest of this
article. Due to length restrictions we have to omit most efpinoofs.



2 Complexity
Given weightaw € Z", we consider the problem of optimizing a linear functionroke
min{wz : z € P} (P)

We first observe that if all columns of have at most two entrieg € 2) the problem (P) can be solved efficiently.
If £ = 1, thenA is the identity matrix anc(_Ad) is totally unimodular. Hence’ is already completely described
by the cardinality, packing, and nonnegativity constimiitow consider the case that= 2, which implies that
for every column of the constraint matr(@d) the sum of the absolute values of its entries is 2. By Edmonds
and Johnson [4], the corresponding optimization problemtwa seen as a generalizedanatching problem or
a matching problem on bidirected graphs [14, chapter 36].0fmete description oP is obtained by adding
all {0, 1/2}-Chvatal-Gomory cuts (ablossominequalities) [4, 6, 14]. Also in this cases the problem (&) c
be solved in strongly polynomial time. Notice that the cése 2 is of particular practical interest since for a
single-node cut in a two-layer network it holds that a liglth visits the cut at most twice.

In the following we show that optimizing ove? is strongly AP -hard in general. For the maximization
version of (P) there is a straightforward reduction fremxIMUM SET PACKING [5].

Proposition 2.1. The optimization probler{P)is strongly NP -hard.

The corresponding reduction uses nonpositive weights &uyit turns out that also the minimization version
(nonnegative weights) of (P) i& P -hard (in contrast to the minimization version of standaet PACKING).
Notice that network design typically means minimizing thastcof certain resources. Here we prove an even
stronger result for 0-1 weights by reduction fremXIMUM INDEPENDENCE SET[5].

Theorem 2.2. The optimization problertP)with w; € {0,1} forall j € N is strongly NP -hard.

Proof. The problem (P) is clearly i?nP. We reduceMAXIMUM INDEPENDENT SET to (P). LetG = (V, E) be
a connected graph witt| > |V| (MAXIMUM INDEPENDENT SET is in P for trees, see [10]) and Iet € Z, .
We have to decide whether there is a suliset V with |S| > K which is independent, that is, for every edge
{v,w} € EitholdsthatS N {v,w}| < 1. The set of incident edges toc V is denoted by (v). LetU C V be
the set of nodes ifY with even node degree. We define the mattias follows. Setn := |E| + |U| and identify
the first| E| rows of A with edges of7 and all other rows with nodes iti. The number of columns is defined by
n := m + |V|. The firstm columns form an identity matrix again. Every colump- m represents a nodec V
with M[j] := §(j) U {j} if j € UandM]j] := 6(j) if j € V\U. This way all columns ofd have odd length.
Setb; := 1foralli € EUU andby := K. The weights are defined such that := 1 for j < m andw; := 0
otherwise.

In the following we show that using this reduction there &x&n independent set @ of size at leasts if
and only if there exists an integer solutione P with weightwz < 0. Let firstx € Z, be a vector inP. Such
a solution exists sincg(M) > |E| > |V| > K = by, see Lemma 1.2. We defirfe:= {j € N : z; = 1}.
It follows that.S C V if wa < 0. From the cardinality constraint we get tHa} = dx > by = K because all
columns ofA are odd. Fromdz < b it follows that[S N {v, w}| = > . g2; < 1 for all edges{v,w} € E.
HenceS is an independent set of size at leAStNow let.S be an independent set of size at le&st\We construct
an integer solution i by settingz; := 1 for all j € S andz; := 0 otherwise. It holds that € P because
dr > K =boand}_ ;g z; = [SN{v,w} < 1. O

3 Polyhedral Studies

In this section we study the facial structurefof We start by considering trivial facets and properties aftrivial
facets. Next, we provide a complete descriptionfofor the casen = 3. Based on this description, we develop
two classes of general facet-defining inequalitiesifoRecall that we assunie to be full-dimensional.

Lemma 3.1. Rowi € M of the systemiz < b defines a facet aP.



Lemma 3.2. The cardinality constraintz > b, defines a facet aP if and only ifbg > 0.

Lemma 3.3. Letj € N. The nonnegativity constraint; > 0 defines a facet oP if either j € N\M or
b(M) —b; > by +max(1, 2[0/2)).

Lemma3.4. Letax < o be a nontrivial facet-defining inequality fd? and letj € N. If j € M thena; < 0. If
Jj € N\O, thena;; > 0. Moreovera; < o foralli € M[jland} ;) i < oy

Proof. First assume that € M. Sinceaxz < «ag is not one of the packing constraints there is a feasibletpoin
on the facet that is not tight in royx Hencex; can be increased without leavidgwhich givesa; < 0. Now
letj € N\M. Sinceax < ap is not a nonnegativity constraint there is a pairin the facet withe; > 1. If ¢,

is even entry:; can be reduced maintaining feasibility. Herice> 0. Moreover, we can construct new feasible
packings frome by reducinge; and increasing; for (some or ally € M [j]. This showsy; < «; foralli € M|j]
andZieM[ﬂ a; < Q. O

Coroallary 3.5. If ax < ay is a facet-defining inequality faP with a; > 0 for all j € N, then it is either one of
the packing constraints a; = 0 for all j € M.

Proof. If ax < «ay is nontrivial thena; < 0 forall j € M by Lemma 3.4. O

Lemma 3.6. If ax < ag is a facet-defining inequality foP with «; < 0 for all j € N, then it is either a
nonnegativity constraint or the cardinality constraint.

Proof. Fromaz < o being a facet followsy, < 0. If it is not the cardinality constraint, then there is a gaif
on the facet Withzjeo x> bo. Letj € N with z7 > 0. We may reduce. The resulting vector is feasible and
has to satisfyvz < «g, hencer; = 0. It follows that for allj € N eitherz} = 0 or o; = 0. Henceaz™ = 0
which impliesag = 0 and thusvz < ag is a nonnegativity constraint. O

Complete description for m = 3. In the context of two-layer network desigm, small is of particular interest
since physical networks are sparse in practice, i. e., gptsally have a small number of physical links.nf = 2,
then? < 2 for which a complete description (by blossom inequalitis®nown as mentioned in Section 2. Here
we aim to study the case = 3 with equal right hand sides, reading as follows:

T1+T2+x3 + T4 > bo (5)
z1 + x4+ a5 +x7 < 8 (6)
T2 + x4+ x5 + 26 <pg 7

T3 + T4 + zetar < [ (8)

Notice that the columns in (6)-(8) correspond to all nongnspbsets ofi/ = {1, 2, 3}. We consider the polytope
P3 = conv{z € ZT : z satisfies (5) - (8). We assume that, by, € Z;\{0} and thatP? is full dimensional,
hence by Lemma 1.2 it holds thaB > by + 2. It suffices to studyP? since all other instances havimg = 3
can be obtained by fixing subsets:of, x5, zs or z7 to zero which gives nonempty faces Bf. Consequently,
a complete description fdP* means a complete description fer = 3. Settingp := [(33 — bo) /2] andq :=

[ (28 — bo) / 2], the following inequalities are obviously valid fét:

Tyt x5+ 26 +27 <P 9)

— a1 + 26 <gq (10)
—x3 +5 <gq (11)

— T +x7 <q (12)

These inequalities are obtained by aggregating subse®$-@) and applying 40, %}-ChvétaI—Gomory step. The
subsets ar¢(5)-(8)}, {(5), (7), (8}, {(5), (6), (7)}, and{(5), (6), (8)}, respectively. In the following we will make
use of the following integral points several times:

wl = (818181p705070)5$2 = (Oat7t50705q70)5$3 = (050705ﬁ107050)7x4 = (0705071)0 + 17 —S, =5, _S)



wheres := [(bg — ) / 2] andt := [by / 2]. Notice thatz! € P3 whenever < by, thatz? is in P2 if 23 > by,
and that:3, z* are valid if 3 > by.

Lemma 3.7. Inequality(9) defines a facet gP? if and only ifby — /3 is odd.

Proof. Necessitytf by — 3 is even or equivalentl$3 — b, is even, then (9) is the sum of (5)-(8).
Sufficiency:Settingy := x! if 3 < by andy := 2* if 3 > by the following seven affinely independent points
are on the face defined by (9):

v, y*€4+€5, y— e+ b, yfe4+e7, y*€4+63+65, y—e* + el + e, y*€4+€2+67
Notice that from the fact thd — (5 is odd follows thap + s = 3, p + 3s = by + 1, andbg + 1 — 2s = 3. O
Lemma 3.8. The inequalitie$10)- (12) define facets gP? if and only ifb, is odd and23 — by > 1.

Proof. By symmetry, it suffices to prove the result for (10ecessity:If by is even or equivalentl3 — by is
even, then (10) is the sum of (5), (7) and (8)2H — by < —1, then the sum of (5), (7) and (8) dominates (10).
SufficiencyThe following affinely independent points are on the facergsfiby (10):

ac2, $2—62, $2—e3, $2—€2—€3+€4, x2—62+e5, $2—e3+e7, 2 —e?—ed+et 6

Notice that ifbg is odd ther2t = by + 1 andg + ¢t = 3. O

Theorem 3.9. The polytopeP? is completely described by the the inequali(i@s— (12).

General facets. It has been shown above that the Chvatal rani’d 1 also in the caser = ¢ = 3. All
facet-defining inequalities arfd, 1/2}-cuts. But not every combination of rows of the initial forlation gives
rise to a facet-defining inequality. Only tho§g, 1/2}-cuts that combine the rows afx < b with the cardinality
constraint are strong. This observation motivates theoiig two general classes of facet-defining inequalities.
The first class of facets generalizes inequalities (10)-&b#& the second class is similar to (9). Both inequalities
are rank 1 mixed integer rounding (MIR) inequalities [9].

Letiq,io € M be two arbitrary rows off. We assume w.l.0.g. that = 1 andi, = 2. Fork € {0,1,2} we
setN* := {j € N : |M[j]n{1,2}| = k}. HenceN* corresponds to all columns that haventries in the first
two rows of A. We setg := | (b1 + b2 — bo) / 2] . Aggregating rows,, i» and the cardinality constraint, dividing
by 2 and rounding down left and right hand sides gives

Yoowi— Y w<g (13)
JEN2\O JEN°NO
Theorem 3.10. Inequality(13)is valid and defines a facet &f if the following conditions hold:
1. by + by — by > 0 is positive and oddN?\O # 0, and|b; — ba| < by — 1
2. b; >q+2foralli € M[j],5 € NA\O
Cgr\1dition lis necessary f@L3)to define a facet. A further necessary conditiolyis ¢+ 1forall i € M[j],j €
N=\0.

Another nontrivial facet-defining inequality is derivedfalows. Let us assume there is a columE N\ M
with the property thak has at most one entry in common with any other columd,im e., it holds thatM[k] N
M[j]| < 1foreveryj € N,j # k. Let N, N} C N denote the columns of that have no entry in common with
columnk and that have exactly one entry in common with colulmespectively. We denote b4 the length
of the longest odd column iV, thus¢) = max{¢; : j € Ny N O} and byr the remainder of the division of
b, —bo by s := 2|4 /2]. Setp := | (br — bo) / s]. Now we aggregate all rows corresponding\tjk] and the
cardinality constraint, and consider thés-MIR inequality

(s—mar— > a;<(s—7)p (14)

(e NO
JEN,NO



Theorem 3.11. Inequality(14)is valid and defines a facet &f if the following conditions hold:
1. r >1,b, > by, andb; > pforall i € M[K]
2. EitherM\M[k] =0orb(M) — b, > s —1r+ ).

Condition 1 is necessary f@fl4)to define a facet.

4 Concluding remarks

In this paper we have discussed the complexity and the pdighproperties of a combinatorial structure appear-
ing in the context of dimensioning cuts in two-layer netwsrkhe corresponding problem has been described as a
cardinality constrained packing integer program and has Ipeoven to be stronglyP -hard. Based on the com-
plete description of the smallest nontrivial instance thasses of facet defining inequalities have been identified.
These inequalities generalize the well known cutset inktipgto two network layers. Future work involves the
separation of these inequalities and evaluation of thetipedwalue of these inequalities.
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