
A Theoretical Framework for Capacity-Achieving
Multi-User Waterfilling in OFDMA
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Abstract—This paper introduces a theoretical framework for
subcarrier and power allocation algorithms in rate-adaptive
OFDMA systems. The focal point is locating “capacity-achieving”
waterlevels for a given allocation in order to minimize the
distance to the boundary of the capacity region. We prove that
it is possible to restrict the choice of waterlevels to an optimality
polyhedron. This paper introduces weighted subcarrier alloca-
tions which have a natural correspondence to this polyhedron,
and are therefore promising candidates for the above problem.
Based on the introduced theory, a low-complexity algorithm
is designed and shown to reliably locate capacity-achieving
waterlevels.

I. INTRODUCTION

In a single-user OFDM system, performing power allocation
across subcarriers in the well-known waterfilling fashion pro-
vides the optimal solution [1]. In a multiple-access OFDMA
environment, however, the situation is more complicated on
different levels. First of all, there is the problem of assigning
the available subcarriers to the different users. In addition, the
available power has to be distributed in a way that ensures
fairness and efficiency. Similar to the single-user case, power
should be allocated across subcarriers in a waterfilling fashion,
however, with different waterlevels for each user [2]. To be
able to simultaneously solve these two resource allocation
problems in a near-optimal way while maintaining low com-
putational complexity is of great importance to any OFDMA
system.

We focus on the class of users with non-real-time applica-
tions, like downloads, leading to the so-called rate-adaptive
approach for a given power budget. Here an increase in data
rate always has an immediate positive impact, for example by
decreasing the duration of the download.

The structure of this paper is as follows: Section II cov-
ers the system model and problem formulation. In Sec-
tions III and IV, the theoretical framework regarding capacity-
achieving waterlevels is developed and presented. Section V
introduces weighted allocations, which are shown to be nat-
urally linked to the theoretical results of Section IV. In
Section VI all results are combined to design a low-complexity
algorithm for OFDMA resource allocation with capacity-
achieving waterlevels. Simulation results are presented in
Section VII, and Section VIII provides concluding remarks.

This work was supported by the UMIC Research Centre at RWTH Aachen
University in Germany.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We assume a basic OFDMA downlink model with K
users, N subcarriers equally dividing the bandwidth, a total
power constraint pmax and full channel state information at
the transmitter. The channel is completely characterized by
the channel gain to noise ratio (CNR) matrix (ck,n) ∈ RK×N>0 .

Let pk,n denote the power of user k on subcarrier n. Then,
based on the Shannon capacity formula, the achievable rate
for user k computes to

rk =

N∑

n=1

log(1 + pk,nck,n). (1)

It is required that each subcarrier n is allocated to at most
one user k and the powers pk,n are assigned in a way that the
total power constraint is met. Therefore,

K∑

k=1

N∑

n=1

pk,n ≤ pmax (2)

pk,npl,n = 0 ∀ k 6= l, n = 1, . . . , N (3)
pk,n ≥ 0 ∀ k = 1, . . . ,K. (4)

In the rate-adaptive setting, one aims at maximizing the
users’ data rates for a given power budget. One approach is
sum rate maximization, where the objective is the total data
rate obtained. However, due to the nature of wireless commu-
nication, some users have a much higher channel quality than
others and benefit greatly from sum rate maximization while
users with poor channels might not get any data rate at all.

Therefore, we need a problem formulation which promotes
fairness in multi-user rate-adaptive optimization. We introduce
a weight vector w ∈ RK≥0 and obtain the weighted objective

maximize
{pk,n}

wT r =

K∑

k=1

wkrk, (5)

which, subject to constraints (2)-(4), is the weighted sum rate
optimization problem. Denote by WSRmax(w) the optimal
value of wT r in (5). This value can be obtained by convex
optimization techniques as shown in [3]. However, achieving
the desired amount of fairness between users depends heavily
on the choice of w and is influenced by other factors like
users’ channel qualities and available power. For a given
subcarrier allocation, the optimal power distribution is multi-
user waterfilling with individual waterlevels proportional to w
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(see Section III). Therefore, we will use the terms waterlevels
and weight vectors synonymously. For simplicity, we assume
all weight vectors in this paper to be normalized in the sense
that w1 + . . .+ wK = 1.

Based on the above model, define the capacity region C as
the set of achievable rate vectors:

C = {r = (r1, . . . , rK) | s.t. (2), (3), (4)} ⊆ RK≥0.

From a geometric point of view, a rate vector ropt maximiz-
ing (5) implies that there is no point in C lying above the
hyperplane with normal w that contains ropt. In particular, for
every weight vector w, the optimal solution is located on the
boundary of C, while suboptimal solutions rsub, by definition,
satisfy wT rsub < wT ropt.

Based on the above, we introduce an intuitive performance
measure for suboptimal solutions to the weighted sum rate
problem. The ratio

q(w, r) =
wT r

wT ropt
=

wT r

WSRmax(w)
(6)

measures the relative distance between the parallel hyperplanes
that run through r and ropt, respectively. Independent of the
problem, the closer q(w, r) is to 1, the better the solution.
We call a suboptimal solution r with q(w, r) ≈ 1 capacity-
achieving to stress its quasi-optimality.

Clearly, q(w, r) is an appropriate quality measure for so-
lutions that aim at maximizing wT r. For practical purposes,
however, low-complexity algorithms have to be designed to
work without a predetermined weight vector w, instead relying
on good subcarrier allocations to provide fair and power-
efficient results. The most common power distribution scheme
for suboptimal algorithms is single-level waterfilling, which
maximizes the total sum rate and therefore corresponds to a
weight vector m = ( 1

K , . . . ,
1
K ). Recall that this is a weight

vector for which (5) greatly favors the users with the best
channel quality.

This has multiple consequences, which are the main mo-
tivation of this paper. The subcarrier allocation, which is
performed in the first step, is solely responsible for the fairness
of the solution. Conducting next a waterfilling which naturally
favors strong users is questionable if not contradictory. Finally,
for lack of a better measure, suboptimal algorithms are often
evaluated and compared based on the total sum rate achieved,
which further supports the idea that high sum rates imply an
efficient utilization of available power.

This paper analyzes the relationship between subcarrier
allocations and waterfilling. We prove that any subcarrier
allocation has a so-called optimality polyhedron, a natural set
of waterlevels and thus, weight vectors, which includes the
weights w for which the obtained rate vectors are closest to
the boundary of the capacity region (as indicated by q(w, r)).
Based on a special class of allocations we show that it
is possible to obtain capacity-achieving waterlevels for an
allocation without reverting to convex optimization. In fact,
the algorithms of Section VI not only offer satisfying results,

but at the same time a low complexity even when compared
to algorithms utilizing much simpler schemes.

III. A NECESSARY CONDITION FOR OPTIMALITY

In the following, problem (5) is analyzed for a fixed weight
vector w. As two users i and j with wi = wj can be
regarded as a single user for the purpose of multi-user resource
allocation, we assume wi 6= wj for all i 6= j without loss of
generality.

Definition 1. A function a : {1, . . . , N} → {1, . . . ,K}, to-
gether with the condition

pk,n = 0 ∀ k 6= a(n), n = 1, . . . , N

is called an allocation.

Given an allocation a, the optimal solution is obtained by
multi-user waterfilling:

pa(n),n =

(
wa(n)ν −

1

ca(n),n

)+

(7)

with ν s.t.
N∑

n=1

pa(n),n = pmax,

where x+ = max(x, 0). The value wkν is the individual
waterlevel of user k and the waterlevels are proportional
to w. Given power distribution (7), rate vector r is computed
from (1). Denote the obtained weighted sum rate wT r by
WF(w, a). This allows us to reformulate (6) for suboptimal
solutions obtained by waterfilling over allocation a:

q(w, a) =
WF(w, a)

WSRmax(w)
. (8)

Finding the maximum value of WF(w, a) over all alloca-
tions a ∈ KN yields the optimal solution to the weighted
sum rate maximization problem through an exhaustive search,
which is computationally prohibitive. In Theorem 1 we take a
first step to reduce the problem size.

Theorem 1 (Optimality Condition). Let weight vector w,
allocation a, subcarrier n with pa(n),n > 0 and two users i
and j with

wi > wj and wici,n ≥ wjcj,n (9)

be given. Then, a(n) 6= j is a necessary condition for
optimality.

Proof: Assume a(n) = j with pj,n > 0. We show that the
allocation

a∗(x) =

{
a(x), x 6= n,

i, x = n

satisfies
WF(w, a) <WF(w, a∗). (10)

It holds that

WF(w, a) =
N∑

n=1

wa(n) log(1 + pa(n),nca(n),n)
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but any power allocation provides a lower bound
for WF(w, a∗) as well:

WF(w, a∗) ≥
N∑

n=1

wa∗(n) log(1 + pa(n),nca∗(n),n).

Therefore,

WF(w, a∗)−WF(w, a)

≥
N∑

n=1

wa∗(n) log(1 + pa(n),nca(n),n)

−
N∑

n=1

wa(n) log(1 + pa(n),nca∗(n),n)

= wi log(1 + pj,nci,n)− wj log(1 + pj,ncj,n). (11)

Evidently, (11) is zero for pj,n = 0. We omit index n and show
that (11) is strictly increasing in pj , which proves (10).

∂

∂pj
(wi log(1 + pjci)− wj log(1 + pjcj))

=
wici

1 + pjci
− wjcj

1 + pjcj

=
wici(1 + pjcj)− wjcj(1 + pjci)

(1 + pjci)(1 + pjcj)

=

≥0︷ ︸︸ ︷
wici − wjcj +pjcicj(

>0︷ ︸︸ ︷
wi − wj)

(1 + pjci)(1 + pjcj)
> 0.

Lemma 1. Theorem 1 implies that only the Pareto optimal el-
ements of the set {(wi, wici,n) | i = 1, . . . ,K} are potentially
optimal. Accordingly, we call a user-subcarrier-pair (j, n)
Pareto optimal when there is no user i such that (9) holds.

Lemma 2. Theorem 1 reduces the size of the solution space
of the exhaustive search from KN to

N∏

n=1

|{j | (j, n) is Pareto optimal}| .

IV. THE LOCATION OF CAPACITY-ACHIEVING
WATERLEVELS

Most suboptimal algorithms are focused on finding good
subcarrier allocations. Once one of these is found, the problem
of power distribution remains. It is well-known that multi-
user waterfilling provides the optimum solution. However, it
is evident from the waterfilling formula (7) that the weight
vector w has to be known to obtain the optimal individual
waterlevels wkν. Therefore, as long as one is not solving an
explicit weighted sum rate problem, allocating subcarriers is
only the first step.

To solve this dilemma, there are two approaches. The first
approach simply assigns power in a single-user-waterfilling-
fashion with a uniform waterlevel. Recall from Section II
that this power assignment is the optimizer of the sum rate
maximization problem, which heavily favors users with good
channel quality.

The second approach is to compute the individual water-
levels based on the problem formulation or the choice of
allocation. It is much more complicated and very problem-
specific. See [4] for an example of waterlevel computation
to achieve proportional fairness between users’ data rates.
However, to the best of our knowledge, there is no general
theory about how to find capacity-achieving waterlevels and
how to evaluate the results.

For notational simplicity only, we assume the weight vec-
tor w to be ordered, that is, w1 > w2 > . . . > wK .
Additionally, we make the reasonable assumption that w has
to be chosen anti-proportional to the average channel gains
of the users to promote fairness. Hence, we assume user 1 to
have the worst average channel-to-noise-ratio, while user K
has the best.

Recall that Theorem 1 reduces the number of potentially
optimal allocations for a given weight vector. In practice,
however, the task is to find a good weight vector for a given
allocation. This is made possible by Theorem 2.

Theorem 2 (Optimality Polyhedron). Given an allocation a,
define the polyhedron P (a) by linear inequalities

wj − wj−1 ≤ 0 (12)
wi − φj,iwj ≤ 0 (13)

for i, j ∈ {1, . . . ,K}, i < j, where

φj,i = min
n

a(n)=j

cj,n
ci,n

. (14)

Then, for any weight vector w not in the interior of P (a),
there exists an allocation a∗ with

WF(w, a) <WF(w, a∗). (15)

Proof: Assume w is not in the interior of P (a). Inequal-
ities (12) are fulfilled by the ordering assumption, therefore at
least one of the inequalities (13) is violated. Pick subcarrier n
with a(n) = j, φj,i =

cj,n
ci,n

and

wi −
cj,n
ci,n

wj ≥ 0.

Clearly, this is equivalent to

wici,n ≥ wjcj,n
and therefore (9) is satisfied. Apply Theorem 1 to conclude
that

a∗(x) =

{
a(x), x 6= n,

i, x = n.

satisfies (15).

Lemma 3. We make two observations:
i) An allocation a with P (a) = ∅ is always suboptimal.

ii) If P (a) 6= ∅, then m = ( 1
K , . . . ,

1
K ) is a corner point

of P (a).

Refer to Figure 1 for a typical example of an optimality
polyhedron. The relevance of weight vector v is explained in
Section V.
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Fig. 1. Optimality Polyhedron for K = 3 with w3 = 1− w1 − w2.

V. WEIGHTED ALLOCATIONS

In this section we introduce a class of subcarrier alloca-
tions a for which P (a) 6= ∅ always holds. These allocations
have a geometric property which proves useful in Section VI,
where an algorithm for computing capacity-achieving wa-
terlevels is designed. In addition, the computation of these
allocations neither requires sorting nor an iterated assignment
of subcarriers, leading to very low computational complexity.

Definition 2. Given a weight vector v ∈ RK≥0, define the
weighted allocation av by

av(n) = argmax
k

vkck,n, n = 1, . . . , N.

Theorem 3 (Optimality of weighted allocations). For any v
with v1 ≥ . . . ≥ vK , the subcarrier allocation av satisfies v ∈
P (av). In particular, P (av) 6= ∅.

Proof: We show v ∈ P (av). By assumption, linear
inequality (12) holds for v. Inequality (13) is equivalent to

vi
vj
≤ min

n
av(n)=j

cj,n
ci,n

⇔ vi
vav(n)

≤ cav(n),n

ci,n
∀n

⇔ vici,n ≤ vav(n)cav(n),n ∀n
which holds because

vav(n)cav(n),n = max
k

vkck,n ∀n

by definition of av.

Next, we analyze the relevance of the distinct polyhedron
points m and v provided by Theorem 3. The point m is clearly
a corner point of P (av), as it fulfills all inequalities (12) with

equality. However, v has a similar property with respect to
inequalities (13). To see this, for i < j, define

γ = min
n

av(n)=j

(vjcj,n − vici,n) .

Clearly, the constant γ depends on the number of subcarriers
involved. Assuming a random CNR matrix, the more subcar-
riers are allocated to user j, the closer γ is to zero. In fact,
applying (14) yields

lim
γ→0

φj,i =
vi
vj
,

which shows that v fulfills inequalities (13) approximately
with equality. Therefore, v is a good approximation of another
corner point of P (av). An example of the distinct location of v
in P (av) can be seen in Figure 1.

Summarizing, this means that we have not only located two
points m and v in P (av), but these two points can, in a
way, be considered “opposing” corner points. The relationship
between m and v supports the approach to search for an
optimal solution only on the line connecting these points.

Lemma 4. For any weighted subcarrier allocation av, the
points m and v lie in P (av), which is a polyhedron and
therefore convex. It follows that the line L connecting m and v
also runs through P (av):

L(λ) = (1− λ)m+ λv ∈ P (av) ∀λ ∈ [0, 1] .

VI. ALGORITHM DESIGN

The algorithm we present in this section is a two-step algo-
rithm that first assigns the subcarriers to the users and deals
with the optimal waterlevels afterwards. However, Theorem 2
and Theorem 3 imply a natural correspondence between the
choice of allocation av and the choice of waterlevels w. First,
we deal with the problem of locating a capacity-achieving
waterlevel for a given weighted allocation av on the line of
waterlevels between m and v. In the spirit of (8), we formulate
the objective as

maximize
λ∈[0,1],w=L(λ)

q(w, av) =
WF(w, av)

WSRmax(w)
(16)

Of course, no resource allocation algorithm can compute
the denominator WSRmax(w) without resorting to high-
complexity convex optimization techniques. Therefore, we
have arrived at a particularly challenging hurdle in optimiza-
tion: The problem of optimizing over an unknown objective
function.

We introduce a way out of this dilemma with Algorithm 1,
the core algorithm for capacity-achieving waterlevels (CAWL).
Given av, the goal is to find a weight vector w = L(λ) such
that q(w, av) in (16) is maximized. For notational simplicity,
we define

q(λ, ψ) = q(L(λ), aL(ψ)),

such that the weights w = L(λ) and weighted alloca-
tions aL(ψ) are identified with their parameters λ and ψ,
respectively.
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Algorithm 1 CAWL
Require: v ≥ 0, v1 + . . .+ vK = 1.

Compute1 ε1, ε2 > 0 based on (ck,n) and v.
for i = 1, 2 do
ψi ← 1 + (−1)iεi
L(ψi)← (1− ψi)m+ ψiv
aL(ψi)(n)← argmaxk L(ψi)kck,n, n = 1, . . . , N

end for
δ0 ←WF(m, aL(ψ1))−WF(m, aL(ψ2))
δ1 ←WF(v, aL(ψ1))−WF(v, aL(ψ2))
λ∗ ← δ0/(δ0 − δ1)
w← L(λ∗)
return w

In the following, the workings of Algorithm 1 are explained
in detail. To simplify notation, define the function

f(ψ) = arg max
λ∈[0,1]

q(λ, ψ), ψ ≥ 0. (17)

Based on the convexity of C and the interpretation of q(λ, ψ)
as a measure of distance, we assume q(λ, ψ) to be unimodal
(quasiconcave) for fixed ψ. Furthermore, we assume f(ψ)
to be monotonically increasing. Figure 2 shows how f(ψ)
maximizes each q(λ, ψ), resulting in a monotonic function.
Clearly, f(1) is the optimal solution to our optimization
problem as av = aL(1).

We pick two allocations aL(ψ1) and aL(ψ2) surrounding av.
Given ε1, ε2 > 0, define ψ1 = 1 − ε1 and ψ2 = 1 + ε2. In
the following, we show that it is possible to obtain a very
good approximation of the optimal solution with the help of
these neighboring allocations. Starting with the monotonicity
of f(ψ),

f(ψ1) ≤ f(1) ≤ f(ψ2)

with
q(f(ψ1), ψ1) ≈ q(f(1), 1) ≈ q(f(ψ2), ψ2)

for small values of ε1 and ε2. Thus,

q(f(ψ1), ψ1)− q(f(ψ1), ψ2)

≈ q(f(ψ2), ψ2)− q(f(ψ1), ψ2) ≥ 0

and

q(f(ψ2), ψ1)− q(f(ψ2), ψ2)

≈ q(f(ψ2), ψ1)− q(f(ψ1), ψ1) ≤ 0

by (17). As q(λ, ψ) is continuous for every ψ, the differ-
ence q(λ, ψ1) − q(λ, ψ2) is also continuous. By the interme-
diate value theorem there exists λ∗ ∈ [f(ψ1), f(ψ2)] with

q(λ∗, ψ1)− q(λ∗, ψ2) = 0.

1The computation of ε1 and ε2 is not complex, however, aL(ψ1) 6= av 6=
aL(ψ2) has to be ensured while maintaining small values for ε1 and ε2. We
omit the details due to lack of space.

0.3 0.32 0.34 0.36 0.38 0.4
0.965

0.97

0.975

0.98

λ

q
(λ

)

 

 

q(λ,ψ
1
)

q(λ,1)
q(λ,ψ

2
)

f(ψ
1
)

f(1)
f(ψ

2
)

λ
*

optimal value approximated value

Fig. 2. Approximating f(1) with the point of intersection λ∗.

Finally,

q(λ∗, ψ1) = q(λ∗, ψ2)
(8)⇔ WF(L(λ∗), aL(ψ1)) = WF(L(λ∗), aL(ψ2)),

which means that the root of the unknown function q(λ, ψ1)−
q(λ, ψ2) coincides with the root of the readily computed
function

δ(λ) = WF(L(λ), aL(ψ1))−WF(L(λ), aL(ψ2)),

which denotes the difference in weighted sum rate between
allocations aL(ψ1) and aL(ψ2) for waterlevel L(λ). By the
optimality condition from Theorem 1 it holds that

δ(0) > 0 and δ(λ) < 0 ∀λ ≥ ψ2. (18)

Algorithm 1 is based on the additional assumption that δ is
monotonically decreasing. The monotonicity of δ is not only
supported by (18), but also from a geometrical point of view:
The allocation aL(ψ1) is closer to m than aL(ψ2) and therefore
provides better results for waterlevel m = L(0). Once we
increase λ, the advantage of allocation aL(ψ1) decreases and
at some (unknown) point λ∗ both allocations achieve the same
weighted sum rate, i.e., δ(λ∗) = 0. From this point on,
allocation aL(ψ2) provides better weighted sum rates.

Lemma 5. For the monotonically decreasing function δ de-
fined above and λ∗ with δ(λ∗) = 0, it follows that

λ∗ ∈ [f(ψ1), f(ψ2)],

which means that up to a small approximation error of

|λ∗ − f(1)| ≤ f(ψ2)− f(ψ1),

λ∗ is equal to f(1), the optimizer of (16).

Refer to Figure 2 for an example of the approximation of
the optimizer f(1) by the point of intersection λ∗. Keep in
mind that not the plotted functions themselves, but only their
points of intersection are computable by the algorithm.

Instead of exactly computing the root of δ, a linear approx-
imation technique with values λ = 0 and λ = 1 is applied.
With the help of four waterfillings, δ0 = δ(0) and δ1 = δ(1)
are computed. We approximate the root of δ by

λ∗ = δ0/(δ0 − δ1).
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It is possible to iterate this root-finding-process at the cost of
computing two waterfilling solutions per iteration. However,
this only marginally improves simulation results which we take
as evidence for the approximate linearity of δ.

The computed waterlevel w = L(λ∗) is an accurate
low-complexity approximation of the waterlevel that max-
imizes (16), which is the waterlevel that intrinsically and
optimally corresponds to allocation av based on the ideas of
Section II.

We conclude this section with Algorithm 2, the most natural
way to apply the CAWL-algorithm. The weight vector v is
chosen anti-proportional to the average CNRs. This quasi-
normalization averages the amount of subcarriers per user in
the case of identically distributed normalized channel gains.

Algorithm 2 NORM-CAWL

Require: (ck,n) ∈ RK×N>0

vk ← (
∑N
n=1 ck,n)

−1, k = 1, . . . ,K

v← (v1, . . . , vK)/(
∑K
k=1 vk)

av(n)← argmaxk vkck,n, n = 1, . . . , N
w← CAWL(v)
return WF(w, av)

Every call to WF(w, a) in Algorithm 1 can be solved by
elementary arithmetics with a worst-case complexity of O(N)
regardless of K as shown in [5] for single-level single-
constraint waterfilling problems. This reduces the impact of K
to the computation of weighted allocations, which is a series
of low-level comparisons of constant complexity O(KN).
Algorithm 2, calling WF(w, a) five times and computing a
total of three weighted allocations, therefore has a worst-case
complexity of O(KN), with the (relatively small) value of K
having a much lower impact on the average runtime, which
is exceptionally low because no sorting operations are being
invoked.

VII. SIMULATION RESULTS

In this section we present simulation results for Algorithm 2.
We assume K users to be uniformly positioned in a circular
cell. The minimal distance to the base station is d = 50m,
while the maximum distance is d = 1000m. With a path
loss exponent of α = 2, this leads to a maximum differ-
ence of 26 dB between the channel gains of best and worst
users. For simplicity, we set the average channel gain on
the boundary of the cell to 0 dB and the total power is set
to pmax = 10N , such that an average signal-to-noise-ratio
of 10 dB per subcarrier is guaranteed even on the boundary of
the cell.

The channel gains (in decimal notation) of each user are
assumed to be Exp( 1µ )-distributed, where µ = 106d−2 denotes
the average CNR based on the path loss model. Note that
this model does not take correlation between subcarriers into
account.

Figure 3 shows the simulation results for Algorithm 2. To
compute the denominator in (8) we employ the WSRmax-
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Fig. 3. Averaged Results of NORM-CAWL.

algorithm of [3]. The fact that the performance slowly de-
grades with the number of users is quite natural: The more
users are positioned in the cell, the larger the solution space
becomes and large channel gain differences between users
become more likely and further complicate the subcarrier allo-
cation. Nonetheless, note that the worst average performance
is still above 97.5% of the optimum value.

VIII. CONCLUSION

Evaluating resource allocation algorithms based on the
achieved sum rate is not always adequate, as the only solu-
tions where spent power is fully utilized are the ones that
are capacity-achieving in the sense that they approach the
boundary of the capacity region. However, no suboptimal
algorithm can verify if this is the case. We prove that weighted
allocations have a natural geometric correspondence to their
optimality polyhedron. Thus, they are the perfect candidates
to search for a capacity-achieving waterlevel on a straight line
in (K−1)-dimensional space. This leads to a one-dimensional
optimization problem with an unknown objective function.
Despite this obstacle, we show that it is possible to achieve re-
sults that are close to optimal and therefore capacity-achieving
with the design of a low-complexity algorithm. This paper
focuses on the theoretical foundation of capacity-achieving
waterlevels. The most practical results are the incorporation
of weighted allocations and their algorithmic uses, and it will
be interesting to see how well the concepts of this paper
carry over to a more realistic system, where fairness, power
efficiency and algorithm speed are just some of many crucial
parameters. As a next step, we plan a direct comparison with
other suboptimal resource allocation algorithms.
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