
On Symbolic Jacobian Accumulation

EBADOLLAH VARNIK and UWE NAUMANN
RWTH Aachen University, Department of Computer Science

Seffenter Weg 23, D-52056 Aachen, Germany
[varnik|naumann]@stce.rwth-aachen.de

Abstract: Derivatives are essential ingredients of a wide range of numerical algorithms. We focus on the
accumulation of Jacobian matrices by Gaussian elimination on a sparse implementation of the extended
Jacobian. A symbolic algorithm is proposed to determine the fill-in. Its runtime undercuts that of the
original accumulation algorithm by a factor of ten. On the given computer architecture we are able to handle
problems with roughly four times the original size.

Key–Words: Jacobian Accumulation, Extended Jacobian, Symbolic Elimination.

1 Introduction
The context of this paper is automatic differentiation
[1, 3, 2] of numerical programs. We consider vector
functions

F : IRn ⊇ D → IRm, y = F (x) , (1)

that map a vector x ≡ (xi)i=1,...,n of independent
variables onto a vector y ≡ (yj)j=1,...,m of depen-
dent variables. We assume that F has been imple-
mented as a computer program. Hence, it can be de-
composed into a sequence of p single assignments of
the value of scalar elemental functions ϕi to unique
intermediate variables vj . This code list of F is given
as

(IR 3) vj = ϕj(vi)i≺j , (2)

where j = n + 1, . . . , q and q = n + p + m. The
binary relation i ≺ j denotes a direct dependence of
vj on vi. So, Pj = {i : i ≺ j} is the index set of
the arguments of ϕj . Similarly, Sj = {i : j ≺ i}
is the index set of the elemental functions that have
vj as an argument. The variables v = (vi)i=1,...,q

are partitioned into the sets X containing the inde-
pendent variables (vi)i=1,...,n, Y containing the de-

pendent variables (vi)i=n+p+1,...,q, and Z contain-
ing the intermediate variables (vi)i=n+1,...,n+p. The
code list of F can be represented as a directed acyclic
computational graph G = G(F) = (V,E) with
integer vertices V = {i : i ∈ {1, . . . , q}} and
edges (i, j) ∈ E if and only if i ≺ j. More-
over, V = X ∪ Z ∪ Y, where X = {1, . . . , n},
Z = {n+1, . . . , n+p}, and Y = {n+p+1, . . . , q}.
Hence, X , Y, and Z are mutually disjoint. We dis-
tinguish between independent (i ∈ X), intermediate
(i ∈ Z), and dependent (i ∈ Y) vertices. Under the
assumption that all elemental functions are continu-
ously differentiable in some neighborhood of their
arguments all edges (i, j) can be labeled with the
partial derivatives cj,i ≡

∂vj

∂vi
of vj w.r.t. vi. This

labeling yields the linearized computational graph G
of F . From now on we use the notation G to refer to
the linearized computational graph.

Equation (2) can be written as a system of nonlin-
ear equation C(v) [4] as follows:

ϕj(vi)i≺j − vj = 0 for j = n + 1, . . . , q . (3)

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp536-541)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publikationsserver der RWTH Aachen University

https://core.ac.uk/display/36481899?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Differentiation with respect to v leads to

C ′ = C ′(v) ≡ (c′j,i)i,j=1,...,q =











cj,i if i ≺ j

−1 if i = j

0 otherwise .
(4)

The extended Jacobian C ′ is lower triangular. Its
rows and columns are enumerated as j, i = 1, . . . , q.
Row j of C ′ corresponds to vertex j of G and con-
tains the partial derivatives cj,k of vertex j w.r.t. all
of its predecessors k ∈ Pj . In the following we refer
to a row i as independent for i ∈ {1, . . . , n}, as inter-
mediate for i ∈ {n+1, . . . , n+p}, and as dependent
if i ∈ {n + p + 1, . . . , q}.

The focus of this paper is on finding fill-in gener-
ated during the Jacobian accumulation by Gaussian
elimination on C ′. The structure of the paper is as
follows: In Section 2 we introduce a symbolic algo-
rithm that uses a sparse bit pattern to detect fill-in.
Section 3 presents runtime and memory analysis.

1.1 Elimination Techniques

The Jacobian matrix (or simply Jacobian) of F as
defined in Equation (1) at point x0 is defined as fol-
lows:

(IRm×n 3) F ′ = F ′(x0) ≡

(

∂yi

∂xj
(x0)

)i=1,...,m

j=1,...,n

.

F ′ can be obtained by eliminating all intermediate
vertices j ∈ Z from G as introduced in [5]. Each
predecessor i ∈ Pj of j is connected with all succes-
sors k ∈ Sj . If (i, k) /∈ E, then it has to be generated
and labeled with ck,i := ck,j · cj,i. Otherwise the
value of ck,i is updated as ck,i := ck,i + ck,j · cj,i.
In the former case we say that fill-in is generated
whereas absorption takes place in the latter. The
elimination of vertex j can be understood as some
sort of Gaussian elimination of all non-zero entries
in row/column j of C ′. Therefore one has to find all
those rows k with j ≺ k. In order to eliminate row/-
column j we perform the following transformation
on C ′.

Definition 1 (Row/Column Elimination in C ′)

ck,i := ck,i + ck,j · cj,i ∀i ≺ j ∧ ∀k : j ≺ k (5)
cj,i := 0 ∀i ≺ j (6)
ck,j := 0 ∀k : j ≺ k (7)
cj,j := 0 . (8)

Note that ck,i = 0 if i 6≺ k. The new partial deriva-
tives of vk, j ≺ k, with respect to vi, i ≺ j, are
computed by applying the chain rule in Equation (5).
Hence, any sensitivities of the vk on vj as well as
of vj on any of the vi are removed in Equation (6)
and Equation (7), respectively. Fill-out is generated.
Setting the diagonal entry cj,j to zero in Equation (8)
leads to the removal of the j-th row and column in
C ′. If ck,i = 0 then Equation (5) leads to fill-in, oth-
erwise it yields absorption.

1.2 Example

Consider the vector function F : R3 → R3 whose
code list is given in Figure 1(a). The correspond-
ing G and C ′ are shown in Figure 1 (b) and (c), re-
spectively. The symbols 4 represent independent,
5 dependent, and © intermediate vertices. Consider
row 5 in Figure 1 (c) containing c5,1 and c5,2. These
are labels of incoming edges (1, 5) and (2, 5) of ver-
tex 5 in Figure 1 (b). Column 5 contains the partial
derivatives c8,5 and c9,5 that are the labels of outgo-
ing edges (5, 8) and (5, 9) of vertex 5. In the context
of symbolic elimination we are merely interested in
the sparsity structure of C ′. Hence, × represents fill-
in, © represents fill-out, and blanks represent zeros
in C ′.

Eliminating c5,1 is equivalent to front-elimination
[6] of (1, 5) as shown in Figure 2 (a). Fill-in is gener-
ated as c8,1 [(1, 8)] and c9,1 [(1, 9)] since rows [ver-
tices] 8 and 9 have non-zeros [incoming edges] in
[from] column [vertex] 5.

The elimination of the row/column [vertex] 5 in C ′

[G] can be done by elimination [front-elimination]
of all non-zeros [incoming edges] in [to] row/col-
umn [vertex] 5. The resulting fill-in, namely c8,1 ,

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp536-541)

v1 = x1

v2 = x2

v3 = x3

v4 = v1 ∗ v3

v5 = v1 ∗ v2

v6 = v2 ∗ v3

v7 = v4 ∗ v6

v8 = v4 ∗ v5

v9 = v5 ∗ v6

PSfrag replacements

1 2 3

4 5 6

7 8 9

c4,1

c4,3
c5,1

c5,2

c6,2c6,3

c7,4

c7,6

c8,4

c8,5
c9,5

c9,6





























-1 0 0 0 0 0 0 0 0
0 -1 0 0 0 0 0 0 0
0 0 -1 0 0 0 0 0 0

c4,1 0 c4,3 -1 0 0 0 0 0
c5,1 c5,2 0 0 -1 0 0 0 0
0 c6,2 c6,3 0 0 -1 0 0 0
0 0 0 c7,4 0 c7,6 -1 0 0
0 0 0 c8,4 c8,5 0 0 -1 0
0 0 0 0 c9,5 c9,6 0 0 -1





























(a) (b) (c)

Figure 1: Code list (a); linearized computational graph G (b); C ′ (c) of F .

PSfrag replacements

1 2 3

4 5 6

7 8 9

c4,1

c4,3

c5,2

c6,2
c6,3

c7,4

c7,6

c8,1
c8,4

c8,5

c9,1

c9,5

c9,6





























−1
−1

−1
c4,1 c4,3 −1
© c5,2 −1

c6,2 c6,3 −1
c7,4 c7,6 −1

× c8,4 c8,5 −1
× c9,5 c9,6 −1





























(a) (b)

Figure 2: G [C ′] after front-elimination [elimination] of (1, 5) [c5,1] (a) [(b)].

c8,2 , c9,1, and c9,2 [(1, 8) , (2, 8) , (1, 9), and (2, 9)]
in C ′ [G] is shown in Figure 3 (b) [(a)]. A total of
p! different row [vertex] elimination orderings in C ′

[G′] are possible. In this paper we focus on reverse
elimination (n + p, · · · , n + 1). Hence, the Jacobian
F ′ [the bipartite graph G′] is derived from C ′ [G]
by elimination of all intermediate rows [vertices] in
order (6, 5, 4). The result is shown in Figure 4 (b)
[(a)].

2 Symbolic Elimination Algorithm

Our symbolic fill-in detection algorithm uses a bit
pattern B = B(F) to hold the sparsity structure of
C ′. Figure 5 (a) shows the corresponding integer ma-
trix for the extended Jacobian C ′ in Figure 1 (c). The
binary representation is shown in Figure 5 (b). The
symbolic algorithm is implemented in C++. There-
fore we start counting with zero. Whenever we refer
to the j-th row in B we mean the row with index
j − 1.
Algorithm 1 (Symbolic Algorithm)
IN : B — bit pattern of C ′

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp536-541)

PSfrag replacements

1 2 3

4 6

7 8 9

c4,1

c4,3

c6,2
c6,3

c7,4

c7,6

c8,1

c8,2

c8,4

c9,1

c9,2

c9,6





























−1
−1

−1
c4,1 c4,3 −1
© © 0

c6,2 c6,3 −1
c7,4 c7,6 −1

× × c8,4 © −1
× × © c9,6 −1





























(a) (b)

Figure 3: G [C ′] after elimination of vertex [row/column] 5 (a) [(b)].





























0
0
0

40960
49152

24576
5120
6144
3072

























































0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0 0





























(a) (b)

Figure 5: Bit pattern B as an integer matrix (a) and
binary representation of C ′ (b).

OUT: B — filled bit pattern after reverse elimination

[1] FOR i = n + p − 1, . . . , n
[2] FOR j = q − 1, . . . , i
[3] k := i � 4;
[4] IF (B[j][k] ∧ 1 � (15 − i%16))
[5] FOR m = 0, . . . , k
[6] B[j][m] := B[j][m] ∨ B[i][m];

Consider the symbolic elimination of row 6 in Fig-
ure 5 (a) using Algorithm 1 with i = 5 and j = 8

in line [1] and [2], respectively. The integer values
corresponding to rows 6 and 9 are stored in column
k = 0 (line [3]) with B[5][0] = 24576 and B[8][0] =
3072. 6 ≺ 9 as in line [4] 24576 ∧ 215−5 = true.
Hence, B[8][0] = 27648 = 24576 ∨ 3072. Line
[5] in Algorithm 1 performs the bitwise OR for all
affected columns of B.

In the following we apply Algorithm 1 to the bit
pattern of F shown in Figure 5 (a). The result is
shown in Figure 6 (b). Symbolic elimination pro-
ceeds as follows:





























0
0
0

40960
49152
24576
5120
6144
3072





























elim(6)
→





























0
0
0

40960
49152
24576
29696

6144
27648





























Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp536-541)

PSfrag replacements

1 2 3

4
6

7 8 9

c7,1

c7,2

c7,3

c8,1

c8,2

c8,3

c9,1

c9,2

c9,3





























−1
−1

−1
© © 0
© © 0

© © 0
× × × © © −1
× × × © © −1
× × × © © −1





























(a) (b)

Figure 4: Bipartite graph G′ (a) and the corresponding structure of C ′ (b) after reverse elimination; The
Jacobian is the 3 × 3 matrix in the lower left corner of C ′ after the elimination procedure.

elim(5)
→





























0
0
0

40960
49152
24576
29696
55296

60416





























elim(4)
→





























0
0
0

40960
49152
24576
62464

63488

60416





























where

29696 = 214 + 213 + 5120;

27648 = 214 + 213 + 3072;

55296 = 215 + 214 + 6144;

60416 = 215 + 27648;

62464 = 215 + 29696;

63488 = 213 + 55296 .

3 Numerical Results

We compare runtime and memory consumption of
our new symbolic algorithm (SymAlgOnB) on bit





























0
0
0

40960
49152
24576
62464

63488
60416

























































0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0
1 1 1 1 0 1 0 0 0
1 1 1 1 1 0 0 0 0
1 1 1 0 1 1 0 0 0





























(a) (b)

Figure 6: B (a) and the corresponding binary repre-
sentation (b) after symbolic elimination.

pattern B with reverse elimination of all intermediate
rows of C ′ (REOnEJ). Both methods are applied to
the following function:

Listing 1: f.cpp
vo id f (doub le ∗ x , i n t n , i n t l) {

doub le ∗ h = new doub le [n] ;
f o r (i = 0 ; i<l ; i ++){

i f (i %2==0) {
h [0] = x [n−1]∗x [0] ;

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp536-541)

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100 120 140 160

R
un

tim
e

 t
[s

]

Problem Size l [n=100]

SymAlgOnB
REOnEJ

Figure 7: Runtime of SymAlgOnB vs. REOnEJ.

f o r (j = 1 ; j<n ; j ++)
h [j] = x [j −1]∗x [j] ; }

e l s e {
x [0] = h [n−1]∗h [0] ;
f o r (j = 1 ; j<n ; j ++)

x [j]= h [j −1]∗h [j] ;
}

}
}

We set n = 100 and l ∈ {10, · · · , 150}. Obviously,
C ′ ∈ IRq×q where q = (l + 1) · n. All results have
been obtained on an Intel Pentium 4 CPU running
at 3.00GHz with 1GB of memory. We observe that
the symbolic reverse elimination on B is about ten
times faster than the corresponding procedure on C ′

as illustrated in Figure 7. On the given computer ar-
chitecture we are able to handle problems of sizes
l = 250 and l = 1000 (for n = 100) using REOnEJ
and SymAlgOnB, respectively.

4 Conclusion

Jacobian accumulation on the extended Jacobian can
be improved significantly – both in terms of mem-
ory requirement and overall runtime – by using static
sparse storage allocated based on the result of a sym-

bolic elimination algorithm to determin the gener-
ated fill. The use of bit pattern implementation as
integer array has proved suitable for performing the
symbolic elimination at a computational cost that un-
dercuts that of the original algorithm significantly.
We intent to use the symbolic algorithm in the con-
text of a novel Jacobian accumulation method that
uses elimination techniques on a sparse represena-
tion of the extended Jacobian.

References:

[1] M. Berz, C. Bischof, G. Corliss, and
A. Griewank, editors. Computational Dif-
ferentiation: Techniques, Applications, and
Tools, Proceedings Series, Philadelphia, 1996.
SIAM.

[2] G. Corliss, C. Faure, A. Griewank, L. Hascoet,
and U. Naumann, editors. Automatic Differenti-
ation of Algorithms – From Simulation to Opti-
mization, New York, 2002. Springer.

[3] G. Corliss and A. Griewank, editors. Auto-
matic Differentiation: Theory, Implementation,
and Application, Proceedings Series, Philadel-
phia, 1991. SIAM.

[4] A. Griewank. Evaluating Derivatives. Principles
and Techniques of Algorithmic Differentiation.
Number 19 in Frontiers in Applied Mathemat-
ics. SIAM, Philadelphia, 2000.

[5] A. Griewank and S. Reese. On the calculation of
Jacobian matrices by the Markovitz rule. In [3],
pages 126–135, 1991.

[6] U. Naumann. Efficient Calculation of Jaco-
bian Matrices by Optimized Application of the
Chain Rule to Computational Graphs. PhD the-
sis, Technical University of Dresden, December
1999.

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp536-541)

