-
brought to you by .{ CORE

View metadata, citation and similar papers at core.ac.uk

provided by Publikationsserver der RWTH Aachen University

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp536-541)

On Symbolic Jacobian Accumulation

EBADOLLAH VARNIK and UWE NAUMANN
RWTH Aachen University, Department of Computer Science
Seffenter Weg 23, D-52056 Aachen, Germany

Abstract: Derivatives are essential ingredients of a wide range of numerical algorithms. We focus on the
accumulation of Jacobian matrices by Gaussian elimination on a sparse implementation of the extended
Jacobian. A symbolic algorithm is proposed to determine the fill-in. Its runtime undercuts that of the
original accumulation algorithm by a factor of ten. On the given computer architecture we are able to handle

problems with roughly four times the original size.

Key—Words: Jacobian Accumulation, Extended Jacobian, Symbolic Elimination.

1 Introduction

The context of this paper is automatic differentiation
[1, 3, 2] of numerical programs. We consider vector
functions

F:R"O>OD—R", y=Fkx , (1
that map a vector x = (z;);=1,.., of independent
variables onto a vector y = (y;);=1,...m of depen-
dent variables. We assume that F' has been imple-
mented as a computer program. Hence, it can be de-
composed into a sequence of p single assignments of
the value of scalar elemental functions ¢; to unique
intermediate variables v;. This code list of F'is given
as

(R 2)vj = pj(vi)izj 2

where j =n+1,...,qand ¢ = n + p + m. The
binary relation 7 < j denotes a direct dependence of
vjonv;. So, Pj = {i : i < j} is the index set of
the arguments of ;. Similarly, S; = {i : j < i}
is the index set of the elemental functions that have
vj as an argument. The variables v = (v;)i=1,.. 4
are partitioned into the sets X containing the inde-
pendent variables (v;)i=1,...n, Y containing the de-

pendent variables (v;)i=ntp+1,..q> and Z contain-
ing the intermediate variables (v;)i—n+1,.. n+p- The
code list of F’ can be represented as a directed acyclic
computational graph G = G(F') = (V,E) with
integer vertices V. = {i : i € {1,...,q}} and
edges (i,j) € F if and only if ¢ < j. More-
over, V.= X UZUY, where X = {1,...,n},
Z ={n+1,....,n+plandY = {n+p+1,...,q¢}.
Hence, X, Y, and Z are mutually disjoint. We dis-
tinguish between independent (i € X), intermediate
(i € Z), and dependent (¢ € Y') vertices. Under the
assumption that all elemental functions are continu-
ously differentiable in some neighborhood of their
arguments all edges (i,j) can be labeled with the
partial derivatives c;; = 8%31_' of v; wrt. v;. This
labeling yields the linearized computational graph G
of F. From now on we use the notation G to refer to
the linearized computational graph.

Equation (2) can be written as a system of nonlin-
ear equation C'(v) [4] as follows:

gpj(vi)Hj—vj:O forj=n+1,...,q . 3


https://core.ac.uk/display/36481899?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Differentiation with respect to v leads to

cji if1<j
C'=C'"(v) = (¢fi)ij=1,..q= § —1 ifi=
0 otherwise

“4)

The extended Jacobian C' is lower triangular. Its
rows and columns are enumerated as 7,2 = 1,...,q.
Row j of C’ corresponds to vertex j of G and con-
tains the partial derivatives c; ;. of vertex j w.r.t. all
of its predecessors k£ € P;. In the following we refer
to arow 7 as independent fori € {1,...,n}, as inter-
mediate fori € {n+1,...,n+p}, and as dependent
ifie{n+p+1,...,q}.

The focus of this paper is on finding fill-in gener-
ated during the Jacobian accumulation by Gaussian
elimination on C’. The structure of the paper is as
follows: In Section 2 we introduce a symbolic algo-
rithm that uses a sparse bit pattern to detect fill-in.
Section 3 presents runtime and memory analysis.

1.1 Elimination Techniques

The Jacobian matrix (or simply Jacobian) of F' as
defined in Equation (1) at point xg is defined as fol-
lows:

O i=1,....,m
(R™™ 3) o= F/(Xo) — < Yi (XO)>

awj 7j=1,...,n
F’ can be obtained by eliminating all intermediate
vertices j € Z from G as introduced in [5]. Each
predecessor ¢ € P; of j is connected with all succes-
sors k € S;. If (i, k) ¢ E, then it has to be generated
and labeled with ¢ ; := ¢ ; - ¢j;. Otherwise the
value of ¢y ; is updated as cg; = cp; + Cpj - Cj;-
In the former case we say that fill-in is generated
whereas absorption takes place in the latter. The
elimination of vertex j can be understood as some
sort of Gaussian elimination of all non-zero entries
in row/column j of C’. Therefore one has to find all
those rows k with j < k. In order to eliminate row/-

column j we perform the following transformation
on C’.

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp536-541)

Definition 1 (Row/Column Elimination in C”)

Cky = Ck,i + Ckj " Cji Vi<jAVk:j<k (5

Cji = 0 Vi<j (6)
ckj =0 Vk:j<k @)
CjJ' =0 (8)

Note that ¢ ; = 0if ¢ A k. The new partial deriva-
tives of vg, j < k, with respect to v;, i < j, are
computed by applying the chain rule in Equation (5).
Hence, any sensitivities of the v on v; as well as
of v; on any of the v; are removed in Equation (6)
and Equation (7), respectively. Fill-out is generated.
Setting the diagonal entry c; ; to zero in Equation (8)
leads to the removal of the j-th row and column in
C'". If ¢x,; = 0 then Equation (5) leads to fill-in, oth-
erwise it yields absorption.

1.2 Example

Consider the vector function F' : R? — R3 whose
code list is given in Figure 1(a). The correspond-
ing G and C’ are shown in Figure 1 (b) and (c), re-
spectively. The symbols A represent independent,
7 dependent, and ) intermediate vertices. Consider
row 5 in Figure 1 (c) containing c5 1 and c5 2. These
are labels of incoming edges (1,5) and (2, 5) of ver-
tex 5 in Figure 1 (b). Column 5 contains the partial
derivatives cg 5 and cg 5 that are the labels of outgo-
ing edges (5, 8) and (5,9) of vertex 5. In the context
of symbolic elimination we are merely interested in
the sparsity structure of C”. Hence, x represents fill-
in, O represents fill-out, and blanks represent zeros
inC".

Eliminating cs ; is equivalent to front-elimination
[6] of (1,5) as shown in Figure 2 (a). Fill-in is gener-
ated as cg 1 [(1,8)] and cg 1 [(1,9)] since rows [ver-
tices] 8 and 9 have non-zeros [incoming edges] in
[from] column [vertex] 5.

The elimination of the row/column [vertex] 5 in C’
[G] can be done by elimination [front-elimination]
of all non-zeros [incoming edges] in [to] row/col-
umn [vertex] 5. The resulting fill-in, namely cg 1 ,



Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp536-541)

v =71 -1 0 0 0 O 0 0007
Vg = X2 0 -1 0 0 0 00O0O
V3 = I3 0O 0 -1 0 0 0 00O
Vg4 = V1 * V3 C4,1 0 C4,3 -1 0 0 00O
U5 = U1 * U2 C5,1 C5,2 0O 0 -1 0 00O
Vg = VU2 * U3 0 C6,2 C6,3 0O 0 -1 000
vr = U4 * Vg 0 0 0 cra 0 cr6-100
Vg = V4 * Us 0O 0 O €84 C8,5 0 0-10
Vg9 = Us * Vg | 0 0 0 O 69,50960 0 -1]

(a)

(b)

)

(©)

Figure 1: Code list (a); linearized computational graph G (b); C’ (c) of F.

C4,1

C473 -1

O C5,2

C6,2

C6,3
Cr4

—1

-1
C7.6 -1

8,4 C8,5 -1
9,5 €9.6 —1]

(b)

Figure 2: G [C'] after front-elimination [elimination] of (1,5) [¢5.1] (a) [(b)].

8,2, C9,1, and €9,2 [(1, 8) . (2,8) , (1,9), and (2,9)]
in C’ [G] is shown in Figure 3 (b) [(a)]. A total of
p! different row [vertex] elimination orderings in C’
[G'] are possible. In this paper we focus on reverse
elimination (n + p, - -- ,n + 1). Hence, the Jacobian
F' [the bipartite graph G’] is derived from C’ [G]
by elimination of all intermediate rows [vertices] in
order (6,5,4). The result is shown in Figure 4 (b)

[(@)].

2 Symbolic Elimination Algorithm

Our symbolic fill-in detection algorithm uses a bit
pattern B = B(F) to hold the sparsity structure of
C'’. Figure 5 (a) shows the corresponding integer ma-
trix for the extended Jacobian C” in Figure 1 (c). The
binary representation is shown in Figure 5 (b). The
symbolic algorithm is implemented in C++. There-
fore we start counting with zero. Whenever we refer
to the j-th row in B we mean the row with index
j—1.

Algorithm 1 (Symbolic Algorithm)
IN : B — bit pattern of C’



C4,1

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp536-541)

C43 -1

O O 0

C6,2 €63

C7.4

csa O
O C9.6

(b)

—1

C7,6 -1

—1
_1_

X
X

X

Figure 3: G [C'] after elimination of vertex [row/column] 5 (a) [(b)].

40960

49152
24576
5120
6144
3072

(a)

Figure 5: Bit pattern B as an integer matrix (a) and
binary representation of C’ (b).

—_ 0 00000 0oo
_— O, OO0 0o oo

O O OO MF~F,O OO
O OO HMEOOOO
SO o, O, O OO
O, OO0 OO oo
S OO OO0 oo oo
S OO OO0 oo oo
OO O OO0 O o oo

~
o
N

OUT: B —filled bit pattern after reverse elimination

] FORi=n+p—1,...,n

(2] FORj=q—1,...,1

[3] k:=1i> 4,

(4] IF ( B[j][k] N 1< (15—-1i%16))
[5] FORm =0,...,k

5 Bljlim] := Bljl[m] v Bli][ml;

Consider the symbolic elimination of row 6 in Fig-
ure 5 (a) using Algorithm 1 with¢ = 5and j = 8

in line [1] and [2], respectively. The integer values
corresponding to rows 6 and 9 are stored in column
k = 0 (line [3]) with B[5][0] = 24576 and B[8][0] =
3072. 6 < 9 as in line [4] 24576 A 2157° = true.
Hence, B[8][0] = 27648 = 24576 Vv 3072. Line
[5] in Algorithm 1 performs the bitwise OR for all
affected columns of B.

In the following we apply Algorithm 1 to the bit
pattern of F' shown in Figure 5 (a). The result is
shown in Figure 6 (b). Symbolic elimination pro-
ceeds as follows:

0 0

0 0

0 0
40960 | 40960
19152 | O | 49152
24576 24576
5120 29696
6144 6144
3072 27648



Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp536-541)

- -
-1
-1
O 060
O O 0
O O 0
x x x0O 0O-1
x x x OO0 -1
| X X X OO —1 ]
(a) (b)

Figure 4: Bipartite graph G’ (a) and the corresponding structure of C’ (b) after reverse elimination; The
Jacobian is the 3 x 3 matrix in the lower left corner of C” after the elimination procedure.

0 0
0 0 0 00 0 O0O0O0OO0OO0OTP O
0 0 0 00 0 0O0O0O0OO0OTP O
L 40960 — 40960 0 000 0O 0OO0O0OO0OTG O
A 49152 | Y | 49152 40960 101000000
24576 24576 49152 1 1.0 0 0 0 00O
29696 62464 24576 01 1 000 O0O0TO
55296 63488 62464 111101000
60416 60416 63488 11111 0000
where 60416 11101 1000
(@) (b)
29696 = 2! + 213 + 5120;
97648 — 214 1 913 1 3079. Figure 6: B (a) and the corresponding binary repre-
’ sentation (b) after symbolic elimination.
55206 = 215 4 214 4 6144;
60416 = 2'° + 27648;
5 * pattern B with reverse elimination of all intermediate
62464 = 27" + 29696; rows of C' (REONEJ). Both methods are applied to
63488 = 213 1+ 55296 . the following function:
Listing 1: f.cpp
. void f(doublex x, int n, int 1) {
3 Numerlca‘l ReSJItS double * h = new double [n];
for(i=0; i<l; i++){
We compare runtime and memory consumption of if (i%2==0) {

our new symbolic algorithm (SymAIlgOnB) on bit h[0] = x[n—1]*x[0];



120

SymAIgOnB  +
REONEJ  x

100

80

60

Runtime t[s]

40

20

+

" +
0 20 40 60 80 100 120 140 160
Problem Size | [n=100]

Figure 7: Runtime of SymAIlgOnB vs. REOnEJ.

for(j=1; j<n; j++)
hjl = x[j—1lsx[j1: }
else {
x[0] = h[n—1]xh[0];
for(j=1; j<n; j++)
x[jl=h[j—1]«h[j];
}

}
}

We set n = 100 and [ € {10,---,150}. Obviously,
C’ € R™? where ¢ = (I + 1) - n. All results have
been obtained on an Intel Pentium 4 CPU running
at 3.00GHz with 1GB of memory. We observe that
the symbolic reverse elimination on B is about ten
times faster than the corresponding procedure on C’
as illustrated in Figure 7. On the given computer ar-
chitecture we are able to handle problems of sizes
[ =250 and [ = 1000 (for n = 100) using REOnEJ
and SymAIlgOnB, respectively.

4 Conclusion

Jacobian accumulation on the extended Jacobian can
be improved significantly — both in terms of mem-
ory requirement and overall runtime — by using static
sparse storage allocated based on the result of a sym-

Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 27-29, 2006 (pp536-541)

bolic elimination algorithm to determin the gener-
ated fill. The use of bit pattern implementation as
integer array has proved suitable for performing the
symbolic elimination at a computational cost that un-
dercuts that of the original algorithm significantly.
We intent to use the symbolic algorithm in the con-
text of a novel Jacobian accumulation method that
uses elimination techniques on a sparse represena-
tion of the extended Jacobian.

References:

[1] M. Berz, C. Bischof,
A. Griewank, editors.  Computational Dif-
ferentiation:  Techniques, Applications, and
Tools, Proceedings Series, Philadelphia, 1996.
SIAM.

G. Corliss, and

[2] G. Corliss, C. Faure, A. Griewank, L. Hascoet,
and U. Naumann, editors. Automatic Differenti-
ation of Algorithms — From Simulation to Opti-

mization, New York, 2002. Springer.

[3] G. Corliss and A. Griewank, editors. Auto-
matic Differentiation: Theory, Implementation,
and Application, Proceedings Series, Philadel-
phia, 1991. SIAM.

[4] A.Griewank. Evaluating Derivatives. Principles
and Techniques of Algorithmic Differentiation.
Number 19 in Frontiers in Applied Mathemat-
ics. SIAM, Philadelphia, 2000.

[5] A. Griewank and S. Reese. On the calculation of
Jacobian matrices by the Markovitz rule. In [3],
pages 126-135, 1991.

[6] U. Naumann. Efficient Calculation of Jaco-
bian Matrices by Optimized Application of the
Chain Rule to Computational Graphs. PhD the-
sis, Technical University of Dresden, December
1999.



