

This work has been submitted to ChesterRep – the University of Chester’s
online research repository

http://chesterrep.openrepository.com

Author(s): Daniel Tock

Title: Tensor decomposition and its applications

Date: September 2010

Originally published as: University of Chester MSc dissertation

Example citation: Tock, D. (2010). Tensor decomposition and its applications.
(Unpublished master’s thesis). University of Chester, United Kingdom.

Version of item: Submitted version

Available at: http://hdl.handle.net/10034/123074

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ChesterRep

https://core.ac.uk/display/364812?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Tensor Decomposition and its
Applications

Thesis submitted in accordance with requirements of the

University of Chester for the degree Master of Science

by Daniel Tock

September 2010

Acknowledgments

I would like to thank my Programme Leader Dr Jason Roberts whose
encouragement, guidance and support throughout my thesis helped me to
develop a wide understanding of the subject.

I also would like to thank my family and friends for their morale support
and encouragement throughout the past year.

Abstract

In this Thesis I review classical vector - tensor analysis, building
up to the necessary techniques required to decompose a tensor into a
tensor train and to reconstruct it back into the original tensor with
minimal error. The tensor train decomposition decomposes a tensor of
dimensionality d into a train of d third order tensors, whose sizes are
dependent upon the rank and chosen error bound. I will be reviewing
the required operations of matricization, tensor - matrix, vector and
tensor multiplication to be able to compute this decomposition.

I then move onto analysing the tensor train decomposition by ap-
plying it to different types of tensor, of differing dimensionality with
a variety of accuracy bounds to investigate their influence on the time
taken to complete the decomposition and the final absolute error.

Finally I explore a method to compute a d-dimensional integration
from the tensor train, which will allow larger tensors to be integrated
with the memory required dramatically reduced after the tensor is
decomposed. I will be applying this technique to two tensors with
different ranks and compare the efficiency and accuracy of integrating
directly from the tensor to that of the tensor train decomposition.

Contents

1 Introduction 3

2 Review of classical Tensor Analysis 4
2.1 Vectors and Scalars . 4

2.1.1 Vector Algebra . 5
2.1.2 Laws of Vector Algebra 6
2.1.3 Cartesian Coordinate system 7
2.1.4 Contravariant and Covariant Vectors 7

2.2 Tensor Analysis . 8
2.2.1 The Einstein Summation Convention 8
2.2.2 The Kronecker Delta Symbol 8
2.2.3 The Levi-Civita Symbol 9
2.2.4 Contravariant, Covariant and Mixed Tensors 9
2.2.5 Raising and Lowering Indices 10
2.2.6 Matricization . 10

2.3 Tensor Multiplication . 12
2.3.1 Tensor-Matrix Multiplication 13
2.3.2 Tensor-Vector Multiplication 14
2.3.3 Tensor-Tensor Multiplication 15

2.4 Multilinear Algebra . 20
2.4.1 The Algebra of Matrices 20
2.4.2 Fundamental Operations with Tensors 24

2.5 Tensor Rank and Decomposition 28
2.5.1 The CP (CANDECOMP/PARAFAC) decomposition . 30
2.5.2 The TT-decomposition 30
2.5.3 Computing the TT-decomposition 32
2.5.4 Numerical Experiments 36
2.5.5 Results . 40
2.5.6 Applications of the TT-decomposition 40

3 High-dimensional integration using the TT-decomposition 40
3.1 Computation of high-dimensional integration 42

3.1.1 Example 1 . 42
3.1.2 Example 2 . 49

4 Conclusions and Further Work 60

1

5 Appendix 61
5.1 M-files . 61

5.1.1 tensor matrix multiplication 61
5.1.2 tensor vector multiplication 61
5.1.3 truncated SVD . 62
5.1.4 tensor inner product 62
5.1.5 tensor outer product 63
5.1.6 Sparse tensor generator 63
5.1.7 tensor contracted product 64
5.1.8 tensor train decomposition 65
5.1.9 Multiplying out a tensor train 67
5.1.10 TT Contraction (Integration) 67

2

1 Introduction

In today’s society vector analysis, or more precisely, tensor analysis is one of
the most important mathematical techniques used in the physical sciences
and the modelling of real life situations. The concept of vectors were first
introduced by the Egyptians and Babylons, but the first 2-dimensional and
3-dimensional vectoral systems weren’t published until 1799 by Wessel [6];
hence the idea of a tensor (or a multidimensional array), is a fairly new math-
ematical concept.

Tensors or Multidimensional arrays are encountered in many real life appli-
cations, although due to the unmanageable amount of memory required we
are unable to perform anything but basic operations upon them, with which
the number of operations required to perform grow exponentially with the
dimensionality d [12]. In order to reduce the required number of operations
it is possible to express a tensor as the product of smaller tensors, hence
reducing the memory required.

There are many forms of decomposition, the most popular of which is
the canonical decomposition or parallel factors model, CANDECOMPPA-
RAFAC decomposition [5]. The problem with this model is that it often
suffers degeneracy (diverging components), and only has efficient algorithms
for 3-dimensional data. For higher dimensional arrays the Tucker decompo-
sition [5] is used which is effectively an extension of the CANDECOMPPA-
RAFAC decomposition. This involves decomposing a d-dimensional tensor
into a tensor of dimensionality d− 1 and d 2-dimensional tensors (matrices).
Again the issue of memory arises as for decomposing a tensor of large d, we
still acquire a tensor of d− 1 dimensions, which still requires a large amount
of memory.

In an attempt to remove the issue of exponential memory requirements,
I will be looking at the recently suggested Tensor-Train decomposition by
E. Tyrtyshnikov and I. Oseledets [11], [12]. It can be computed via stan-
dard decompositions such as the singular value decomposition (SVD) and
the QR decomposition and only produces 3-dimensional tensors, which are
easily manageable to perform operations on.

The Tensor train decomposition algorithm can be considered as an adap-

3

tive interpolation algorithm for a multivariate function given on a tensor
grid [12], and so we are able to apply it to high-dimensional integration. I
will be comparing the accuracy and efficiency of using the original tensor to
compute the integration against the tensor train.

2 Review of classical Tensor Analysis

A tensor is a multidimensional array. More formally, an N -way or Nth-order
tensor is an element of the tensor product of N vector spaces, each of which
has its own coordinate system. This notion of tensors is not to be confused
with tensors in physics and engineering (such as stress tensors), which are
generally referred to as tensor fields in mathematics [9].

2.1 Vectors and Scalars

Definition 2.1. A vector is a quantity having both magnitude and direction
[13].

Displacement, Velocity, Acceleration and Force are all examples of vectors.

Graphically a vector is represented by a line OP , which defines the direc-
tion. The Magnitude of the vector is the length of the line. The starting
point of the line, O, is called the origin, or initial point of the vector. The
head of the line, P , is called the terminal point or terminus.

Analytically a vector can be described as A or ~A, with magnitudes | A |,
A or | ~A |. I will be using The bold faced notation throughout this paper,
Hence the vector OP will be denoted as OP with magnitude | OP |.

Definition 2.2. A scalar is a quantity having only magnitude and no direc-
tion [13].

Mass, Volume, Speed, energy, length, time and temperature are all exam-
ples of scalars. Scalars are defined by letters, and their operations follow the
same rules as in elementary algebra.

4

2.1.1 Vector Algebra

With the following Definitions, we are able to extend the operations of ad-
dition, subtraction and multiplication to vector algebra.

Definition 2.3. Two Vectors A and B are equal if they have the same mag-
nitude and direction, regardless of the position of their initial points. As seen
in figure 1.

�
��

�
��

�
��*

��
�
��

�
��
�*

B

A

Figure 1: Equal vectors

Definition 2.4. A vector having direction opposite to A but having the same
magnitude is denoted by −A. As seen in figure 2.

�
��

�
��

��*

���
���

���
A

-A

Figure 2: Opposite vectors

Definition 2.5. The sum of two vectors A and B results in the vector C,
which is formed by placing the terminal point of A on the initial point of B,
and then joining the initial point of A and the terminal point of B. As seen
in figure 3.

5

��
�
��

�
��
�*H

HHH
HHH

HHj-

A B

C

Figure 3: Sum of two vectors

Definition 2.6. The difference of the two vectors A and B, A-B is equiva-
lent to A+(-B).

If A = B, then A-B yields 0, the null or zero vector. 0 has zero magnitude
and no specific direction. A vector which is not null is defined as a proper
vector. All vectors are assumed to be proper unless otherwise stated [13].

Definition 2.7. The product of a vector A by a scalar m is a vector mA
with magnitude | m | × | A |, and direction the same as or opposite to that
of A, according to m being positive or negative respectively. If m = 0, mA
is the null vector.

2.1.2 Laws of Vector Algebra

If A, B and C are vectors and m and n are scalars then:

1. A + B = B + A Addition is Commutative,

2. A + (B + C) = (A + B) + C Addition is Associative,

3. mA = Am Multiplication is Commutative,

4. m(nA) = (mn)A Multiplication is Associative,

5. (m+ n)A = mA + nA Distributive Law,

6. m(A + B) = mA +mB Distributive Law.

Definition 2.8. A Unit Vector has unit magnitude, i.e. a magnitude of
1. Let A be a proper vector, then A

|A| is a unit vector with the same direction
as A.

6

2.1.3 Cartesian Coordinate system

Any Vector in a 3-dimensional space can be described in terms of the i, j and
k unit vectors, which relate to the x, y and z axes respectively.

-

6

�
�

�
�
�	

i

j

k

x

y

z

Figure 4: Cartesian Coordinate system

2.1.4 Contravariant and Covariant Vectors

If N quantities A1, A2, ..., AN in a coordinate system (x1, x2, ..., xN) are re-
lated toN other quantities Ā1, Ā2, ..., ĀN in another coordinate system (x̄1, x̄2, ..., x̄N)
by the transformation equations:

Āp =
N∑
q=1

∂x̄p
∂xq

Aq p = 1, 2, ..., N (1)

Then they are called components of a contravariant vector.

Similarly, ifN quantitiesA1, A2, ..., AN in a coordinate system (x1, x2, ..., xN)
are related to N other quantities Ā1, Ā2, ..., ĀN in another coordinate system
(x̄1, x̄2, ..., x̄N) by the transformation equations:

7

Āp =
N∑
q=1

∂xq
∂x̄p

Aq p = 1, 2, ..., N (2)

then they are called components of a covariant vector.

2.2 Tensor Analysis

Tensors are a further extension of ideas we already use when defining quan-
tities such as scalars and vectors.

The order of a tensor is the dimensionality of the array that is required to
represent it. A scalar, is a 0-dimensional array, therefore, can be represented
by a tensor of order 0. A vector, is 1-dimensional array, and therefore can
be represented by a 1st order tensor. A square matrix, is a 2 dimensional
array, which represents a 2nd order tensor. In general a n-dimensional array
is required to represent a nth order tensor.

2.2.1 The Einstein Summation Convention

This is a compact method of notation which omits the summation sign corre-
sponding to any index which occurs twice in a single term. A repeated index
in any term therefore implies a summation over that index [7]. We reserve
the lowercase letters i, j, k, for indices ranging over the values 1, 2, 3 and
shall not indicate their range explicitly.

For example, the equation a1x
1 + a2x

2 + ... + aNx
N can be written as∑N

j=1 ajx
j. The Einstein summation convention shortens this yet further to

ajx
j, where j = 1, 2, ..., N .

2.2.2 The Kronecker Delta Symbol

The 2-dimensional Kronecker Delta Symbol, written as δjk, is defined by:

δjk =

{
0 if k 6= j
1 if k = j

Properties of the Kronecker Delta Symbol from [2]:

8

• δij = δji

• δij = δji = δji = δji

• δii = 3

• δjiAj = Ai

• δijAiBj = AiBi = A ·B

2.2.3 The Levi-Civita Symbol

The 3-dimensional Levi-Civita symbol εijk is defined as follows:

εijk =

+1 when i, j, k is an even permutation of 1, 2, 3
−1 when i, j, k is an odd permutation of 1, 2, 3
0 when any two indices are identical

The order i, j, k is an even/odd permutation of 1, 2, 3 if an even/odd
number of transpositions is required to bring i, j, k into the order 1, 2, 3.

2.2.4 Contravariant, Covariant and Mixed Tensors

If N2 quantities Aqs in a coordinate system (x1, x2, ..., xN) are related to
N2 other quantities Āpr in another coordinate system (x̄1, x̄2, ..., x̄N) by the
transformation equations:

Āpr =
∂x̄p
∂xq

∂x̄r
∂xs

Aqs (3)

Then by the Einstein summation convention, they are called contravariant
components of a tensor of rank 2.

Similarly, TheN2 quantitiesAqs are called covariant components of a tensor
of rank 2 if:

Āpr =
∂xq
∂x̄p

∂xs
∂x̄r

Aqs (4)

We can also extend this idea to mixed tensors of higher ranks. For example,
Aqstkl are the components of a mixed tensor of rank 5. Contravariant of order
3 and covariant of order 2 if they transform to the relations:

9

Āprmij =
∂x̄p
∂xq

∂x̄r
∂xs

∂x̄m
∂xt

∂xk
∂x̄i

∂xl
∂x̄j

Aqstkl (5)

In any tensor equation an index can only appear once for a single index,
or twice for a repeated index. i.e. Aiii is impossible. If an index is repeated,
it may only be repeated once, i.e. Aiiii is impossible. A single index can be
either be covariant or contravariant in the whole equation. It cannot be co-
variant in one term and contravariant in another [2].

2.2.5 Raising and Lowering Indices

The metric tensor can be used to raise and lower indices of a tensor.

Definition 2.9. Metric Tensor. In Cartesian coordinates the square of
the distance between two arbitrarily close points in space, one with coordinates
xi and the other xi + dxi, is:

(ds)2 = (dx)2 + (dy)2 + (dz)2 = (dxi)2 (6)

which can be written as:
(ds)2 = δijdx

idxj (7)

Hence the distance between these two point determines a tensor of rank 2,
known as the metric tensor δij. Thus, the covariant components of the metric
tensor in Cartesian coordinates are given by Kronecker delta symbol [13].

For example, if Ai are contravariant components of a vector then its co-
variant components are Ai = δijA

j. Likewise Ai = δijAj. This operation,
called raising and lowering indices can be applied to any tensor.

2.2.6 Matricization

Matricization, also known as unfolding or flattening, is the process of reorder-
ing the elements of an N -dimensional array into a matrix [9]. For instance a
4× 3× 2 matrix can be written as a 4× 6 matrix, or a 8× 3 matrix, and so
on. For example consider the tensor A ∈ <4×3×2 seen in figure 5.

10

4 8 12

3 7 11

2 6 10

1 5 9

16 20 24

15 19 23

14 18 22

13 17 21
��

��
�

��
��
�

��
��
�

A =

Figure 5: 3rd order, 4× 3× 2 tensor,

For ease, I will display 3rd order tensors, as matrices, where the divisions
represent the layers from the front face of the matrix to the back. Hence, A
becomes:

A =

1 5 9 13 17 21
2 6 10 14 18 22
3 7 11 15 19 23
4 8 12 16 20 24

There are three mode-n unfoldings of a 3rd order tensor, using A above as

an example, we get:

A(1) =

1 5 9 13 17 21
2 6 10 14 18 22
3 7 11 15 19 23
4 8 12 16 20 24

A(2) =

 1 2 3 4 13 14 15 16
5 6 7 8 17 18 19 20
9 10 11 12 21 22 23 24

A(3) =

(
1 2 3 4 ... 9 10 11 12
13 14 15 16 ... 21 22 23 24

)
Different papers sometimes use different ordering of the columns for the

mode-n unfolding. In general, the specific permutation of columns is not

11

important so long as it is consistent across related calculations.

It is also possible to vectorize a tensor. Once again, ordering the elements
is not important as long as it is consistent.

V ec(A) =

1
2
.
.
.

24

Another way to imagine matricization is lining up the tensor fibres from a

particular dimension as done by Kolda and Bader [8, 9].

(a) A(1) (b) A(2) (c) A(3)

Figure 6: Fibres of a 3rd order tensor

Where the column fibres of a 3rd order tensor comprise the columns of
A(1), as shown in figure 6a. The row fibres comprise the columns of A(2) ,
as shown in figure 6b. And the tube fibres comprise the columns of A(3), as
shown in figure 6c,

2.3 Tensor Multiplication

Tensors can be multiplied together, though obviously the notation and sym-
bols for this are much more complex than for matrices.

12

2.3.1 Tensor-Matrix Multiplication

The n-mode product of a tensor A ∈ <x1×x2×...×xN with a matrix U ∈ <J×xn
is denoted by A×n U and is of size x1× x2× ...× xn−1× J × xn+1× ...× xN .

Element wise we have:

(A×n U)i1,...,in−1,j,in+1,...,iN =
xn∑
in=1

ai1,i2,...,iNujin (8)

It is important to note that:

B = A×n U (9)

relates to tensors, therefore after matricization, we use the following:

B(n) = UA(n). (10)

As an example, consider the tensor A defined above in figure 5 and let

U =

(
1 3 5
2 4 6

)
.

Then the product of A ∈ <4×3×2 with U ∈ <2×3 gives B = A×2U ∈ <4×2×2:

B(2) =

(
61 70 79 88 169 178 187 196
76 88 100 112 220 232 244 256

)
.

This is clearly not a 4× 2× 2 tensor; to obtain the tensor we must reverse
matricize B. It is of the form mode-2, due to the mode-2 multiplication that
took place. Therefore we know that the columns of B comprise the row fibres
of the tensor. Hence

B =

61 76 169 220
70 88 178 232
79 100 187 244
88 112 196 256

 .
13

There are a few important identities to note about n-mode multiplication:

• Identity 1: A×n (UV) = A×n U ×n V ,

• Identity 2: A×m U ×n V = A×n V ×m U for m 6= n,

• Identity 3: Let U be a p × q matrix with full column rank. If
B = A×n U then A = B ×n Z where Z is the q × p left inverse of U .

For Example if U has orthonormal columns, then B = A ×n U ⇒ A =
B ×n UT .

2.3.2 Tensor-Vector Multiplication

The n-mode product of a tensor A ∈ <x1×x2×...×xN with a vector P ∈ <xn
is again denoted by A ×n P , or sometimes as A×̄nP . The result is of order
N − 1 and is of size x1 × x2 × ...× xn−1 × xn+1 × ...× xN .

Element wise we have:

(A×n P)i1,...,in−1,in+1,...,iN =
xn∑
in=1

ai1,i2,...,iNPin (11)

The general idea is to compute the inner product of each mode-n fibre with
the vector. Hence the equation:

C = A×n P (12)

Which relates to the tensors, requires altering after Matricization. as we
are computing the inner product we use the following equation:

C(n) = P TA(n) (13)

As an example, again consider the tensor A defined above in figure 5 and let

P =

1
2
3
4

 .
Then the product of A ∈ <4×3×2 with P ∈ <4 gives C = A×1 P ∈ <3×2:

14

C(1) =
(

30 70 110 150 190 230
)

Again we must reverse matricize C to achieve the correct solution. It is
of the form mode-1, therefore we know that the columns of C comprise the
column fibres of the tensor. Hence

C =
(

30 70 110 150 190 230
)
,

which is equivalent to

C =

[
30 70 110
150 190 230

]
.

When it comes to mode-n vector multiplication, the following rule applies,
where A is a tensor, and b and c are vectors:

A×n b×m c = (A×n b)×m−1 c = (A×m c)×n b for m > n. (14)

2.3.3 Tensor-Tensor Multiplication

The last category of tensor multiplication to consider is the product of two
tensors. There are three general types of multiplication to consider for tensor-
tensor multiplication: outer product, contracted product and inner product.

Tensor × Tensor Outer Product The outer product of two tensors is
often just referred to as the tensor product. If we first consider it in terms
of vectors, the outer product of two vectors b ∈ <3 and c ∈ <5 is defined by
d = b⊗ c ∈ <3×5.

b⊗ c = bcT

Element wise we get:

(b⊗ c)ij = bicj

For example, if we let

15

b =

 1
2
3

 and c =

4
5
6
7
8

then their outer product is

b⊗ c = bcT =

 1
2
3

 [4 5 6 7 8
]

=

 4 5 6 7 8
8 10 12 14 16
12 15 18 21 24

 .
Similarly, the outer product of two tensors U ∈ <u1×...×uN and V ∈
<v1×...×vM gives A = U ⊗ V ∈ <u1×...×uN×v1×...×vM .

Element wise we get:

(U ⊗ U)u1...uNv1...vM = Uu1...uNVv1...vM .

For example, if we let

U =

[
1 2 5 6
3 4 7 8

]
and V =

[
9 10 13 14
11 12 15 16

]
,

which are two 2×2×2 3rd order tensors, then their outer product is going
to be a 2× 2× 2× 2× 2× 2 6th order tensor. This I will display as a set of
3 dimensional matrices with their corresponding 4th, 5th and 6th dimensions:

C =

[
9 18 45 54
27 36 63 72

]
(1,1,1)

[
11 22 55 66
33 44 77 88

]
(2,1,1)[

10 20 50 60
30 40 70 80

]
(1,2,1)

[
12 24 60 72
36 48 84 96

]
(2,2,1)

[
13 26 65 78
39 52 91 104

]
(1,1,2)[

15 30 75 90
45 60 105 120

]
(2,1,2)

[
14 28 70 84
42 56 98 112

]
(1,2,2)

[
16 32 80 96
48 64 112 128

]
(2,2,2)

.

16

Tensor × Tensor Inner Product The inner product is effectively the
opposite of the outer product, although requires the tensors to have equal
dimensions [3]. For two tensors ∈ <x1×x2×...×xN , the inner product is defined
by

〈A,B〉 = Aa1a2...aNBb1b2...bN .

For vectors, the inner product is defined by

〈b, c〉 = bTc.

Element wise we obtain

〈b, c〉 = bjci.

For example, if we let

b =

 1
2
3

 and c =

 4
5
6

then their inner product is

〈b, c〉 = bTc =
[

4 5 6
] 1

2
3

 = 32.

For Tensors, the inner product is the sum of the products of corresponding
elements. Hence if

A =

[
1 2 5 6
3 4 7 8

]
, B =

[
9 10 13 14
11 12 15 16

]
then their inner product is

〈A,B〉 = (1× 9) + (2× 10) + ...+ (7× 15) + (8× 16) = 492.

17

Tensor × Tensor Contracted Product The contracted product of two
tensors is a generalization of the tensor × vector and tensor × matrix mul-
tiplications. The key distinction is that the modes to be multiplied and
the ordering of the resulting modes is handled specially in the matrix and
vector cases. In this general case, let A ∈ <x1×...×xN×j1×...×jP and B ∈
<x1×...×xN×k1×...×kM . We can multiply both tensors along the first M modes
and the result is a tensor of size j1 × ...× jP × k1 × ...× kM .

Element wise we have

〈A,B〉(1,...,N ;1,...,N) j1,...,jP ,k1,...,kM
= Ax1,...,xN ,j1,...,jPBx1,...,xN ,k1,...,kM .

With this notation, the modes to be multiplied are specified in the sub-
scripts that follow the angle brackets. The remaining modes are ordered such
that those from A come before B, which is different from the tensor-matrix
product case considered previously, where the leftover matrix dimension of
B replaces xn, rather than being moved to the end [3].

If we first consider two second order tensors A ∈ <2×4 and B ∈ <3×2 , i.e.
matrices. Let

A =

[
1 2 3 4
5 6 7 8

]
, B =

 9 10
11 12
13 14

 .
Then their contracted product 〈A,B〉(1;2) ∈ <4×3 is given by

〈A,B〉(1;2) ij =
2∑

k=1

AkiBjk

which gives
59 71 83
78 94 110
97 117 137
116 140 164

 .
This is clearly different from that of a normal matrix multiplication en-

countered before, although if this method were applied to two matrices that

18

satisfied the normal matrix multiplication rules, the outputs would be iden-
tical.

If we now consider two 3rd order tensors A ∈ <2×3×2 and B ∈ <2×3×3,
where

A =

[
1 2 3 7 8 9
4 5 6 10 11 12

]
and

B =

[
13 14 15 19 20 21 25 26 27
16 17 18 22 23 24 28 29 30

]
then there are three possible contracted products that we can calculate:
〈A,B〉(1;1) , 〈A,B〉(2;2) and 〈A,B〉(1,2;1,2); two single contractions and one dou-
ble contraction. If we first consider 〈A,B〉(1;1), then we will get a 4th order
tensor of size 3× 2× 3× 3, whose elements are defined by

〈A,B〉(1;1) ijlm =
2∑

k=1

AkijBklm

giving the output, where the corresponding 4th dimension is displayed next
to each matrix: 77 251 82 268 87 285

106 280 113 299 120 318
135 309 144 330 153 351

(1)

,

 107 353 112 370 117 387
148 394 155 413 162 432
189 435 198 456 207 477

(2)

,

 137 455 142 472 147 489
190 508 197 527 204 546
243 561 252 582 261 603

(3)

.

If we now consider the double contraction 〈A,B〉(1,2;1,2) ∈ <2×3, we calcu-
late the elements as follows:

〈A,B〉(1,2;1,2) ij =
2∑

k=1

3∑
m=1

AkmiBkmj

19

The output is the following 2× 3 matrix:[
343 469 595
901 1243 1585

]
It should be noted that the inner product of two tensors is the same as the

contracted product, where the answer is a scalar.

2.4 Multilinear Algebra

Multilinear algebra is a generalization of linear algebra, since a linear func-
tion is also multilinear in one variable. Multilinear algebra implies that we
are dealing with functions of several variables that are linear in each variable
separately. I will therefore firstly consider the algebra of matrices and extend
the algebra, where possible, to tensors for multilinear algebra.

2.4.1 The Algebra of Matrices

In general I will be considering an m× n matrix:
x11 x12 x13 ... x1n
x21 x22 x23 ... x2n
x31 x32 x33 ... x3n
...

...
...

. . .
...

xm1 xm2 xm3 ... xmn

Addition of Matrices

Definition 2.10. Given two m × n matrices A and B, we define the sum
C = A+B to be the m× n matrix whose elements are Cij = Aij +Bij [4].

It is important to note that the sum of two matrices is defined only when
they are of equal size. The sum is simply obtained by adding corresponding
elements, therefore resulting in an equal sized output matrix.

Theorem 2.1. (Addition of matrices is commutative) For two matrices A
and B, both of equal size, we have A+B = B + A.

20

Proof. From [4]. If A and B are each of size m × n then A + B and B + A
are also of size m× n and by the above definition, element wise we have:

A+B = [aij + bij], B + A = [bij + aij].

Since the addition of numbers is commutative, we have aij + bij = bij + aij
for all i, j and so, we conclude that A+B = B + A.

Theorem 2.2. (Addition of matrices is associative) For the matrices A, B
and C, all of equal size, we have A+ (B + C) = (A+B) + C.

Proof. From [4]. If A, B and C are each of size m×n then A+ (B+C) and
(A+B) + C are also of size m× n. Element wise we have:

A+ (B + C) = [aij + (bij + cij)], (A+B) + C = [(aij + bij) + cij].

Since the addition of numbers is commutative, we have aij+(bij+cij) = (aij+
bij) + cij for all i, j and so, we conclude that A+ (B+C) = (A+B) +C.

Zero and inverse matrices

Theorem 2.3. (Zero matrix) There is a unique m× n matrix M such that,
for every m× n matrix A, A+M = A.

Proof. From [4]. Consider the matrix M whose entries are all zeros, i.e.
mij = 0 ∀ i, j. Hence element wise we have:

A+M = aij +mij = aij + 0 = aij = A

To establish the uniqueness of this matrix, assume we have another matrix
B such that A + B = A for every m × n matrix A. Then in particular we
have M + B = M . But, taking B instead of A in the property for M we
have B +M = B. It now follows by Theorem 2.1 that B = M .

Definition 2.11. The unique matrix arising in Theorem 2.3 is called the
m × n zero matrix and will be denoted simply as 0, or if confusion is
caused 0ij.

Theorem 2.4. (Additive inverse) For every m×n matrix A there is a unique
matrix B such that A+B = 0.

21

Proof. From [4]. Given A = aij, consider the matrix B whose elements are
the additive inverse of A. Hence element wise we have:

A+B = aij + bij = aij + (−aij) = 0

To establish the uniqueness of such a matrix B, suppose there exists a matrix
C such that A+C = 0. Then for all i, j we have aij+cij = 0 and consequently
cij = −aij, which means that C = B.

Definition 2.12. The unique matrix B arising in Theorem 2.4 is called the
additive inverse of A and will be denoted by −A. Thus −A is the matrix
whose elements are the additive inverse of the corresponding elements of A.

Given two scalars a and b, their difference a− b is defined to be a+ (−b).
The same principle applies for matrices. A and B both of equal size. A−B
is written as A+(−B), where A and B are of the same size. The ’-’ operation
is also defined as matrix subtraction.

Matrix - scalar multiplication

Definition 2.13. Given a matrix A and a scalar λ, we define their product to
be the matrix λA. Whose elements are obtained by multiplying each element
of A by λ, defined by λA = λaij.

The principal properties of multiplying a matrix by a scalar are as follows.

Theorem 2.5. (Properties of multiplying a matrix by a scalar)

(1) λ(A+B) = λA+ λB,

(2) (λ+ µ)A = λA+ µA,

(3) λ(µA) = (λµ)A,

(4) (−1)A = −A,

(5) 0A = 0ij.

22

Matrix - matrix multiplication Matrix multiplication has the following
key properties.

Theorem 2.6. (Matrix multiplication is associative) Given three matrices
A, B and C, who have compatible sizes for multiplication, then A(BC) =
(AB)C.

Proof. From [4]. For A(BC) to be defined we require their respective sizes
to be m× n, n× p, p× q, in which case (AB)C is also defined. Computing
the elements of these products we obtain:

[A(BC)]ij = aik[BC]kj = aik(bktctj) = aikbktctj

[(AB)C]ij = [AB]itctj = (aikbkt)ctj = aikbktctj

Clearly, we can see that A(BC) = (AB)C.

Theorem 2.7. (Matrix multiplication distributive law) Given three matrices
A, B and C, who have compatible sizes for multiplication, then:

A(B + C) = AB + AC, (B + C)A = BA+ CA

Proof. From [4]. For the first equality we require A to be of size m× n and
B,C to be of size n× p, in which case:

[A(B+C)]ij = aik(bkj+ckj) = aikbkj+aikckj = [AB]ij+[AC]ij = [AB+AC]ij

it follows that A(B + C) = AB + AC.

Theorem 2.8. (Matrix multiplication with scalars) If AB is defined then
for all scalars λ we have:

λ(AB) = (λA)B = A(λB)

Definition 2.14. A matrix is said to be square if it is of size n× n.

Theorem 2.9. (Identity matrix) There is a unique n×n matrix M with the
property that for every n× n matrix A, AM = A = MA.

M is defined as the matrix whose elements are all zero for i 6= j and 1 for
i = j. i.e:

23

M =

1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

This is also defined as the Kronecker delta symbol δij which we have already

encountered.

2.4.2 Fundamental Operations with Tensors

1. Addition The sum of two or more tensors of the same rank and type
yields a tensor of the same rank and type. i.e. Ampq + Bmp

q = Cmp
q .

Addition is commutative and associative.

2. Subtraction The difference of two vectors of the same rank and type
is also a tensor of the same rank and type. i.e. Ampq −Bmp

q = Dmp
q .

3. Contraction If one contravariant and one covariant index of a tensor
are set equal, the result indicates that a summation over the equal
indices is to be taken according to the summation convention. This
resulting sum is a tensor of rank two less than the original tensor. This
process is called contraction. i.e. The tensor of rank 5, Emps

qr , set r = s
to obtain Emps

qs = Bmp
q , a tensor of rank 3.

4. Outer Product The product of two tensors is a tensor whose rank is
the sum of the ranks of the given tensors. This product which involves
ordinary multiplication of the components of the tensor is called the
outer product. Ampq Bs

r = Emps
qr .

5. Contracted Product By the process of outer multiplication, followed
by a contraction, we obtain a new tensor called a contracted product of
the given tensors. i.e. Given Ampq and Br

st, the outer product is Ampq Br
st.

Letting q = r, we obtain the contracted product Ampr Br
st.

6. Inner Product The inner product of two tensors is obtained when
the contracted product of two equally sized tensors is calculated, and
the product is contracted to a scalar. i.e. Given Ampq and Br

st, hence
letting s = m, t = p and q = r we get a scalar. This process is called
inner multiplication.

24

7. Quotient Law Suppose it is not known if a quantity X is a tensor or
not. If an inner product of X with an arbitrary tensor is itself a tensor,
then X is also a tensor. This is known as the quotient law.

Addition of Tensors

Definition 2.15. Given two x1 × x2 × ...× xN tensors A and B, we define
the sum C = A + B to be the x1 × x2 × ... × xN tensor whose elements are
Cx1x2...xN = Ax1x2...xN +Bx1x2...xN [4].

Similarly to matrices, it is important to note that the sum of two tensors
is defined only when they are of equal size. The sum is simply obtained by
adding corresponding elements, therefore resulting in an equal sized output.

Theorem 2.10. (Addition of tensors is commutative) For two tensors A
and B, both of equal size, we have A+B = B + A.

Proof. If A and B are each of size x1 × x2 × ...× xN then A+B and B +A
are also of size x1 × x2 × ...× xN and by the above definition, element wise
we have:

[A+B]x1x2...xN = [ax1x2...xN + bx1x2...xN],

[B + A]x1x2...xN = [bx1x2...xN + ax1x2...xN]

Since the addition of numbers is commutative, we have ax1x2...xN +bx1x2...xN =
bx1x2...xN + ax1x2...xN for all x1, x2, ..., xN and so we conclude that A + B =
B + A.

Theorem 2.11. (Addition of tensors is associative) For the tensors A, B
and C, all of equal size, we have A+ (B + C) = (A+B) + C.

Proof. If A, B and C are each of size x1 × x2 × ... × xN then A + (B + C)
and (A+B) + C are also of size x1 × x2 × ...× xN . Element wise we have:

A+ (B + C) = [ax1x2...xN + (bx1x2...xN + cx1x2...xN)],

(A+B) + C = [(ax1x2...xN + bx1x2...xN) + cx1x2...xN].

Since the addition of numbers is commutative, we have ax1x2...xN +(bx1x2...xN +
cx1x2...xN) = (ax1x2...xN + bx1x2...xN) + cx1x2...xN for all x1, x2, ..., xN and so we
conclude that A+ (B + C) = (A+B) + C.

25

Zero and inverse tensors

Theorem 2.12. (Zero tensor) There is a unique x1× x2× ...× xN tensor T
such that, for every x1 × x2 × ...× xN tensor A, A+ T = A.

Proof. Consider the tensor T whose entries are all zeros, i.e. tx1x2...xN =
0 ∀ x1, x2, ..., xN , hence element wise we have

A+ T = ax1x2...xN + tx1x2...xN = ax1x2...xN + 0 = ax1x2...xN = A

To establish the uniqueness of this tensor, assume we have another tensor S
such that A+S = A for every x1×x2× ...×xN tensor A. Then in particular
we have T +S = T . But, taking S instead of A in the property for T we have
S + T = S. It now follows by Theorem 2.10 that S = T . Hence unique.

Definition 2.16. The unique tensor arising in Theorem 2.12 is called the
x1×x2×...×xN zero tensor and will be denoted simply as 0, or if confusion
is caused 0x1x2...xN .

Theorem 2.13. (Additive inverse of a tensor) For every x1 × x2 × ...× xN
tensor A there is a unique tensor B such that A+B = 0.

Proof. Given A = ax1x2...xN , consider the tensor B whose elements are the
additive inverse of A. Hence element wise we have:

A+B = ax1x2...xN + bx1x2...xN = ax1x2...xN + (−ax1x2...xN) = 0

To establish the uniqueness of such a tensorB, suppose there exists a tensor C
such that A+C = 0. Then for all x1, x2, ..., xN we have ax1x2...xN +cx1x2...xN =
0 and consequently cx1x2...xN = −ax1x2...xN , which means that C = B. Hence
unique.

Definition 2.17. The unique tensor B arising in Theorem 2.13 is called the
additive inverse of A and will be denoted by −A. Thus −A is the tensor
whose elements are the additive inverse of the corresponding elements of A.

As with matrices, we defined their difference as A+(−B). This is the same
for tensors.

26

Tensor - scalar multiplication

Definition 2.18. Given a tensor A and a scalar λ, we define their product to
be the tensor λA. Whose elements are obtained by multiplying each element
of A by λ, defined by λA = λax1x2...xN .

The principal properties of multiplying a tensor by a scalar are the same
as that of multiplying a matrix by a scalar, as seen in Theorem 2.5.

Tensor multiplication

Theorem 2.14. (Tensor inner product commutative) Given two equally sized
tensors A and B then there inner product is defined by 〈A,B〉 = 〈B,A〉.

Proof. Given A = ax1x2...xN and bx1x2...xN , and using the fact that multiplica-
tion of scalars is commutative:

〈A,B〉 = ax1x2...xN bx1x2...xN = bx1x2...xNax1x2...xN = 〈B,A〉

The outer product of tensors isn’t commutative but is associative.

Theorem 2.15. (Tensor Outer product associative) Given three tensors A,
B and C of sizes x1 × ... × xN , y1 × ... × yM and v1 × ... × vK respectively
then:

(A⊗B)⊗ C = A⊗ (B ⊗ C)

Proof.

[(A⊗B)⊗ C]x1,...,xN ,y1,...,yM ,v1,...,vK = [A⊗B]x1,...,xN ,y1,...,yM cv1,...,vK

= ax1,...,xN by1,...,yM cv1,...,vK

[A⊗ (B ⊗ C)]x1,...,xN ,y1,...,yM ,v1,...,vK = ax1,...,xN [B ⊗ C]y1,...,yM ,v1,...,vK

= ax1,...,xN by1,...,yM cv1,...,vK

27

The contracted product, which is effectively a generalised version of matrix
multiplication, also holds for associativity.

Theorem 2.16. (Tensor contracted product associative) Given three tensors
A, B and C with sizes x1×x2×...×xi×...xN , x1×x2×...×xi×...×xj×...xN
and x1 × x2 × ...× xj × ...xN respectively then:〈

〈A,B〉(xi;xi) , C
〉
(xj ;xj)

=
〈
A, 〈B,C〉(xj ;xj)

〉
(xi;xi)

Proof. 〈
〈A,B〉(xi;xi) , C

〉
(xj ;xj)

=
〈
Ax1x2...k...xNBx1x2...k...xj ...xN , C

〉
(xj ;xj)

= Ax1x2...k...xNBx1x2...k...p...xNCx1x2...p...xN〈
A, 〈B,C〉(xj ;xj)

〉
(xi;xi)

= 〈A,Bx1x2...xi...p...xNCx1x2...p...xN 〉(xi;xi)

= Ax1x2...k...xNBx1x2...k...p...xNCx1x2...p...xN

2.5 Tensor Rank and Decomposition

Definition 2.19. Rank-one tensors. An N-way tensor X ∈ <x1×x2×...×xN

is a rank one tensor if it can be written as the outer product of N vectors,
i.e:

X = a(1) ⊗ a(2) ⊗ ...⊗ a(N)

This means that each element of the tensor is the product of the correspond-
ing vector elements [9].

For example:

 28 35 42 32 40 48 36 45 54
56 70 84 64 80 96 72 90 108
84 105 126 96 120 144 108 135 162

 =

 1
2
3

⊗[4 5 6
]
⊗
[

7 8 9
]

28

Definition 2.20. Tensor Rank The rank of a tensor X, denoted rank(X),
is defined as the smallest number of rank-one tensors that generate X as their
sum [9]. Hence the rank of X is R for:

X =
R∑
i=1

a
(1)
i ⊗ a

(2)
i ⊗ ...⊗ a

(N)
i

If you consider the above example of a rank one tensor, but alter the (1,1,1)
element from 28 to 30, then the tensor is no longer of rank 1. It is now of
rank 2: 30 35 42 32 40 48 36 45 54

56 70 84 64 80 96 72 90 108
84 105 126 96 120 144 108 135 162

=

 28 35 42 32 40 48 36 45 54
56 70 84 64 80 96 72 90 108
84 105 126 96 120 144 108 135 162

+

 2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

=

 1
2
3

⊗ [4 5 6
]
⊗
[

7 8 9
]

+

 2
0
0

⊗ [1 0 0
]
⊗
[

1 0 0
]

Unfortunately there is no straight forward algorithm to determine the rank
of a specific given tensor. In practice, the rank of a tensor is determined nu-
merically by fitting various rank-R CANDECOMP/PARAFAC models [12].

Kruskal [10] discusses the case of 2×2×2 tensors which have typical ranks
of two and three over <. In fact, Monte Carlo experiments (which randomly
draw each entry of the tensor from a normal distribution with mean zero
and standard deviation one) reveal that the set of 2× 2× 2 tensors of rank
two fills about 79% of the space while those of rank three fill 21%. Rank-one
tensors are possible but occur with almost zero probability [9].

29

2.5.1 The CP (CANDECOMP/PARAFAC) decomposition

As mentioned previously, there is no finite algorithm to determine the rank
of a tensor, the most popular model used in determining a tensors decompo-
sition is the CP decomposition, from [9] defined as:

Ax1x2...xd =
R∑
r=1

a1(x1r)a2(x2r)...ad(xdr)

The first issue that arises in computing the CP decomposition is how to
choose the number R, of rank one components. One technique is to fit
multiple CP decompositions with differing numbers of rank one components
until one is ”good”. We could also calculate the CP decomposition for 1,2,3,...
rank one components until we get the correct solution, however, there are
many problems with this procedure. As ”real life” data is often very large,
chaotic and noisy. We may have approximations of a lower rank that are
arbitrarily close in terms of fit, but cause problems in practice compared to
the approximations at a higher rank.

2.5.2 The TT-decomposition

Recently a new decomposition, named the tensor train, or TT-decomposition,
was proposed for compact representation and approximation of high-dimensional
tensors. It can be computed via standard decompositions (such as the SVD
and QR) but does not suffer from the curse of dimensionality. By the curse
of dimensionality we mean that the memory required to store an array with
d indices and the amount of operations required to perform basic operations
with such an array grows exponentially in the dimensionality d. Therefore,
direct manipulation of general d-dimensional arrays seems to be impossible.
The TT-decomposition is written as a tensor train of the form:

A(i1, i2, ..., id) ≈
∑

α1,...,αd

G1(i1, α1)G2(α1, i2, α2)...Gd−1(αd−2, id−1, αd−1)Gd(αd−1, id)

With tensor carriages G1, ..., Gd, where any two neighbours have a common
summation index. The summation indices αk run from 1 to rk (rk is the
compression rank) and are referred to as auxiliary indices, in contrast to the
initial indices ik that are called spacial indices. The tensor carriages Gk have
sizes rk − 1× nk × rk + 1 except for k = 1 and k = d where they have sizes

30

n1 × r1 and rd − 1 × nd, respectively. It is sometimes convenient to assume
that G1 and Gd are not two dimensional but in fact three-dimensional with
sizes 1× n1 × r1 and rd − 1× nd × 1 [12].

Theorem 2.17. (TT-decomposition [12])
For any tensor A = [A(i1, ..., id)] there exists a TT approximation T =

[T (i1, ..., id)] with compression ranks rk such that:

‖ A− T ‖F≤

√√√√d−1∑
k=1

ε2k

where εk is the distance (in the Frobenious norm) from Ak to its best rank-rk
approximation:

εk = min
rankB≤rk

‖ Ak −B ‖F

The proof of which can be found in [12], which gives us the following algo-
rithm.

TT-decomposition algorithm. Given a tensor A ∈ <n1×n2×...×nd , and an
accuracy bound ε.

1. Compute the Frobenious norm nrm = A,

2. Compute the size of the first unfolded matrix A1:

Nl = n1, Nr = Πd
k=2nk

3. Create a temporary tensor M = A,

4. Unfold the tensor into the calculated dimensions M = M ∈ <Nl×Nr ,

5. Compute the truncated SVD of M ≈ USV so that the rank r satisfies:√√√√min(Nl,Nr)∑
k=r+1

σ2
k ≤

ε · nrm√
d− 1

6. Set the first carriage G1 = U , recalculate M = SV T = (V S)T and let
r1 = r,

31

7. Process the remaining modes from k = 2 to d− 1,

8. Calculate the dimensions of the next carriage:

Nl = nk, Nr =
Nr

nk

9. Unfold to the correct size M = M ∈ <rNl×Nr ,

10. Compute the truncated SVD of M ≈ USV so that the rank r satisfies:√√√√min(Nl,Nr)∑
k=r+1

σ2
k ≤

ε · nrm√
d− 1

11. Reshape U into the kth carriage:

Gk = U ∈ <rk−1 × nk × rk

12. Recalculate M = SV ,

13. Once the first d− 1 carriage’s have been calculated, Gd = MT .

2.5.3 Computing the TT-decomposition

To demonstrate the TT-decomposition algorithm consider the tensor A ∈
<2×2×2 and error 0.1: [

1 2 5 6
3 4 7 8

]

The Frobenious norm of A, ‖ A ‖F= 14.2829,

The error bound we acquire with d = 3 is 1.01,

The first unfolding M is of size 2× (2× 2) = 2× 4:

M =

[
1 2 5 6
3 4 7 8

]

32

Computing the SVD of M gives

U =

[
−0.5667 −0.8239
−0.8239 0.5667

]

S =

[
14.2358 0 0 0

0 1.1585 0 0

]

V =

−0.2134 0.7564 −0.4314 −0.4430
−0.3111 0.5344 0.3905 0.6820
−0.6042 −0.1316 0.5952 −0.5133
−0.7019 −0.3536 −0.5542 0.2742

Hence, from S we can see that the rank of M , r1 = 2.

Due to r1 = 2 we must adjust the U, S, V matrices to contain orthonormal
columns of U , 2 orthonormal rows of V T and 2 orthonormal columns and
rows of S:

U =

[
−0.5667 −0.8239
−0.8239 0.5667

]

S =

[
14.2358 0

0 1.1585

]

V =

−0.2134 0.7564
−0.3111 0.5344
−0.6042 −0.1316
−0.7019 −0.3536

We now set G1 = U and recalculate M = (V S)T :

G1 =

[
−0.5667 −0.8239
−0.8239 0.5667

]

33

M =

[
−3.0384 −4.4291 −8.6010 −9.9916
0.8763 0.6191 −0.1525 −0.4097

]

Reshape to size M ∈ <rNl×Nr ≡ (2× 2)× 2 = 4× 2:

M =

−3.0384 −8.6010
0.8763 −0.1525
−4.4291 −9.9916
0.6191 −0.4097

We now compute the SVD of M to get

U =

−0.6405 −0.3341 −0.6835 −0.1046
0.0132 −0.6914 0.4160 −0.5906
−0.7678 0.2746 0.5750 0.0664
−0.0103 −0.5788 0.1705 0.7974

S =

14.2274 0

0 1.2573
0 0
0 0

V =

[
0.3762 −0.9266
0.9266 0.3762

]

Here M is of rank 2, and we again adjust the U, S, V matrices as such:

U =

−0.6405 −0.3341
0.0132 −0.6914
−0.7678 0.2746
−0.0103 −0.5788

S =

[
14.2274 0

0 1.2573

]
34

V =

[
0.3762 −0.9266
0.9266 0.3762

]

We now set G2 = U ∈ <r1×n2×r2 ≡ 2× 2× 2 and recalculate M = SV :

G2 =

[
−0.6405 −0.7678 −0.3341 0.2746
0.0132 −0.0103 −0.6914 −0.5788

]

M =

[
5.3519 13.1824
−1.1650 0.4730

]

Now we must finally calculate G3 = MT :

G3 =

[
5.3519 −1.1650
13.1824 0.4730

]

Hence

A ≈ G1G2G3[
1 2 5 6
3 4 7 8

]
≈
[
−0.5667 −0.8239
−0.8239 0.5667

] [
−0.6405 −0.7678 −0.3341 0.2746
0.0132 −0.0103 −0.6914 −0.5788

] [
5.3519 −1.1650
13.1824 0.4730

]

=

[
1.0002 1.9998 5.0005 5.9996
3.0001 4.0000 6.9999 8.0000

]

35

Definition 2.21. A Hilbert tensor is a d dimensional tensor of size
i1 × i2 × ...× d and contains the elements

Ai1i2...id =
1

i1 + i2 + ...+ id

Hence the 2-dimensional Hilbert tensor of size 2× 2 is[
1/2 1/3
1/3 1/4

]
The 3-dimensional Hilbert tensor of size 3× 3× 3 is 1/3 1/4 1/5 1/4 1/5 1/6 1/5 1/6 1/7

1/4 1/5 1/6 1/5 1/6 1/7 1/6 1/7 1/8
1/5 1/6 1/7 1/6 1/7 1/8 1/7 1/8 1/9

The 3-dimensional Hilbert tensor of size 5× 2× 2 is

1/3 1/4 1/4 1/5
1/4 1/5 1/5 1/6
1/5 1/6 1/6 1/7
1/6 1/7 1/7 1/8
1/7 1/8 1/7 1/9

etc.

2.5.4 Numerical Experiments

I will now run the TT-decomposition algorithm on random dense tensors,
random sparse tensors and Hilbert tensors of increasing dimensions to com-
pare accuracy and time taken (in seconds) to complete. In all of these tensors
each dimension will be of size 3, and so a d-dimensional tensor will have 3d

elements.

As the algorithm requires the use of the singular value decomposition, I
will only be able to compute up to, and including 9 dimensions. This is due
to an unfolded 10 dimensional tensor requires more memory to compute than
MATLAB has.

36

To calculate the absolute error, we recompute the tensor from the tensor
train to get the approximate solution and then sum the absolute differences
of all the corresponding elements.

Dimensions Time(s) Absolute Error

3 0.000599 5.481726184086710e-015
4 0.000950 3.160249839595508e-013
5 0.001400 3.229430611817463e-013
6 0.003586 1.219748260727904e-012
7 0.012798 6.101206345698884e-012
8 0.190649 3.496403297095774e-011
9 1.868366 4.497736081146564e-011

Table 1: Dense Tensor with accuracy 0.00001.

Dimensions Time(s) Absolute Error

3 0.000595 5.481726184086710e-015
4 0.000949 3.160249839595508e-013
5 0.001390 3.229430611817463e-013
6 0.003524 1.219748260727904e-012
7 0.012970 6.101206345698884e-012
8 0.191436 3.496403297095774e-011
9 1.868051 4.497736081146564e-011

Table 2: Dense Tensor with accuracy 0.001.

Tables 1,2,3 show the time taken and accuracy of the TT-decomposition
algorithm upon randomly generated tensors. Although the different levels of
accuracy were applied to the same tensor, as to help comparing results.

You can see that with errors 0.00001 and 0.001 in tables 1 and 2 identical
results are obtained. As expected, the times taken grow exponentially as
the dimensions increase, due to a d dimensional tensor having 3d elements.
Although it only requires 1.87 seconds to compute a 9-dimensional tensor
which contains 19683 elements, and the absolute error is 4.4977e-011.

37

Dimensions Time(s) Absolute Error

3 0.000462 0.548172618408671
4 0.000922 1.222504139360485
5 0.001388 3.229430611817463
6 0.003230 11.97544192366226
7 0.010927 36.17063990114404
8 0.189168 103.0903731752137
9 1.783017 409.5933577147941

Table 3: Dense Tensor with accuracy 0.1.

When the accuracy was lowered to 0.1, table 3, the times taken to complete
the algorithm improve, although not greatly. The cost of this improved time
is a vastly increased absolute error, where the 9-dimensional tensor now has
an error of 409.59, which is only an average element error of 0.0208, but is
far worse than with accuracy levels 0.001 and 0.00001.

Dimensions Time(s) Absolute Error

3 0.000608 2.664535259100376e-015
4 0.000856 8.658229781327576e-007
5 0.001238 3.633284856321972e-006
6 0.002217 9.628497013636217e-006
7 0.009952 2.162607546331297e-005
8 0.169623 1.059060077813001e-003
9 1.765740 3.356218074425516e-003

Table 4: Hilbert Tensor with accuracy 0.00001.

Tables 4,5 show the time taken and accuracy of the TT-decomposition al-
gorithm upon Hilbert tensors.

If we compare the results of the Hilbert tensors, which have an ordered
structure, too that of the random tensors, the random tensors gave much
more accurate results. In fact, to achieve a similar error with the 9-dimensional
Hilbert tensor to that of the random tensor we must increase the accuracy
level to 0.0000000000001, which takes the same amount of time to compute.
This is most likely down to the random tensors having a much higher rank

38

Dimensions Time(s) Absolute Error

3 0.000586 0.003892207201136
4 0.000798 0.005054637681228
5 0.001130 0.012985484130547
6 0.002040 0.023844744642908
7 0.009184 0.046796732618198
8 0.160419 0.094324369187404
9 1.648268 0.201164134157645

Table 5: Hilbert Tensor with accuracy 0.001.

to that of the Hilbert tensors.

Table 5 has the most efficient times to compute, which of course leads to
an increased error. Although a much smaller one than observed with the
random tensors and a accuracy level of 0.1.

Dimensions Time(s) Absolute Error

3 0.000581 4.506840310874860e-015
4 0.000956 3.698752148568742e-014
5 0.001253 5.314365469582339e-013
6 0.003487 3.219748260727904e-012
7 0.013145 2.1684692243965474-012
8 0.200458 7.1625748959623314-011
9 1.752219 3.563275864215860e-011

Table 6: Sparse Tensor with accuracy 0.00001.

The decomposition of sparse tensors as seen in tables 6 and 7 , which I
generated using my sparse tensor MATLAB program.

Similarly to the random tensors, errors of 0.00001 and 0.001 give almost
identical results. Again the times taken grow exponentially as the dimensions
increase, due to a d dimensional tensor having 3d elements.

When the accuracy was lowered from 0.00001 to 0.001, the times taken to
complete the algorithm change very little. Although the absolute error is

39

Dimensions Time(s) Absolute Error

3 0.000582 4.7582758063489e-015
4 0.000954 3.1688198340326e-013
5 0.001218 2.6846912027582e-013
6 0.003389 1.7586692758790e-012
7 0.013102 6.1684695698884e-011
8 0.189921 5.4964032427583e-011
9 1.698478 3.27586120634325-011

Table 7: Sparse Tensor with accuracy 0.001.

almost identical and so it would be of interest to use a smaller error level.

2.5.5 Results

Increasing the accuracy level decreases the absolute error, with only a small
effect on the time taken to compute the decomposition.

2.5.6 Applications of the TT-decomposition

The TT-decomposition has many potential applications including high-dimensional
integration and multivariate function approximation. I will be focusing on
the high-dimensional integration in the next section. Multivariate function
approximation has a wide scope of applications in such areas as telecommu-
nications, as it provides the ability to compress a large amount of data to
a portion of the size. This will improve the efficiency of moving the data
around, and then the data can be reconstructed easily.

3 High-dimensional integration using the TT-

decomposition

The TT-decomposition algorithm can be applied to high-dimensional inte-
gration [12], suppose we have a function f of d variables and are required to
calculate a d-dimensional integral of the form:

40

I(f) =

∫
[0,1]d

f(x1, x2, ..., xd)dx1dx2...dxd

In order to evaluate the integral we must construct a quadratic rule, con-
sider a one dimensional rule over n points:

∫ 1

0

g(x)dx ≈
n∑
k=1

wkg(xk)

Where there are many different quadrature schemes to determine the weights.
We can extend this to a d-dimensional quadrature rule as the tensor product
of one-dimensional rules:

I(f) ≈ Q(f) =
∑

k1,k2,...,kd

f(xk1 , xk2 , ..., xkd)wk1wk2 ...wkd

This approximate integration rule reduces to the mode contractions of ten-
sor by vector multiplications:

I(f) ≈ Q(f) = A×1 w ×2×d w

The right hand side of which can be calculated in O(dnr3) operations by
the algorithm given in [11]. However, we can reduce the required number of
operations to O(dnr2) by substituting the tensor A for its TT-decomposition
with carriages G1, ..., Gd:

Q(f) =
∑
i1,...,id

∑
α1,...,αd−1

G1(i1, α1)...Gd(αd, id)w(i1)...w(id)

41

TT Contraction algorithm. Given a tensor A ∈ <n1×n2×...×nd which is
in the TT format with carriages Gk; and vectors wk of size nk.

1. v = G1 ×1 w1,

2. for k = 2 to d compute the remaining modes,

3. Summate over αk−1:

4. W = Gk ×1 v, where W is nk × rk,

5. Summate over ik:

6. v = W Twk, where v is of size rk,

7. end for loop,

8. I = v where I = A×1 w1 ×2 ...×d wd

3.1 Computation of high-dimensional integration

3.1.1 Example 1

I will firstly consider the sine example as follows:

f(x1, x2, ..., xd) = sin(x1 + x2 + ...+ xd) (15)

The compression ranks in this case are equal to 2 [12], of course, over a
complex field the canonical rank is 2 due to the identity:

sin(x) =
eix − e−ix

2i

and that gives an exact value of the integral:

I(d) = Im

∫
[0,1]d

ei(x1+x2+...+xd)dx1dx2...dxd

42

= Im

∫
[0,1]d

eix1eix2 ...eixddx1dx2...dxd

= Im

∫
[0,1]d−1

eix1eix2 ...eixd−1
eixd

i
dx1dx2...dxd−1

= ...

= Im

([
eix1

i

eix2

i
...
eixd

i

]1
0

)

= Im

((
ei

i
− 1

i

)d)

= Im

((
ei − 1

i

)d)

= Im

(
(ei − 1)d

id

)
= Im

(
id(ei − 1)d

(−1)d

)
= Im

(
id(cos(1) + i sin(1)− 1)d

(−1)d

)
= Im

(
−(i(cos(1)− 1)− sin(1))d

)
Therefore for d = 1, I(1) = 1− cos(1),

d = 2, I(2) = −2 sin(1)(cos(1)− 1),

d = 3, I(3) = (cos(1)− 1)(cos(1)− 1− 3 sin2(1)), etc.

I will now apply the algorithm to the example shown in equation 15, using
Gaussian quadrature with varying step sizes to compare the absolute errors
and the efficiency. The step size is determined by the sizes of each dimension,
for example a 3-dimensional tensor of size 3 × 3 × 3 will have a step size of
0.5, due to integrating from 0 to 1 and taking 3 steps in each dimension. A
3-dimensional tensor of size 5 × 5 × 5 will have a step size of 0.25 due to
integrating from 0 to 1 and taking 5 steps in each dimension. It is possible

43

to take different step sizes in different dimension, but I will be consistent and
keep them equal, hence for A ∈ <x1×x2×...×xd , x1 = x2 = ... = xd.

The Gaussian quadrature Formula for one-dimensional integration is as
follows:

∫ b

a

f(x)dx =
b− a

2

∫ 1

−1
f

(
b− a

2
x+

b+ a

2

)
dx

≈ b− a
2

n∑
k=1

wif

(
b− a

2
xi +

b+ a

2

)
where wi =

2

(1− x2i)(P ′n(xi))2

We can extend this to a multidimensional problem:

∫ b

a

...

∫ b

a

f(x1, ..., xd)dx1...dxd

=

(
b− a

2

)d ∫ 1

−1
...

∫ 1

−1
f

(
b− a

2
x1 +

b+ a

2
, ...,

b− a
2

xd +
b+ a

2

)
dx1...dxd

≈
(
b− a

2

)d n∑
k1=1

...
n∑

kd=1

wk1 ...wkdf

(
b− a

2
(xk1 + ...+ xkd) + d

(
b+ a

2

))

where wki =
2

(1− x2ki)(P ′n(xki))
2

For the integration problem stated above, the associated polynomials are
Legendre polynomials, Pn(x). With the nth polynomial normalized to give
Pn(1) = 1, the ith Gauss node, xi, is the ith root of Pn [1]. The following,
table 8 gives the numerical values for the first few points and weights.

44

Table 8: Abscissae and weights of Gaussian quadrature

Number of points xi wi

2 −0.57735 1
+0.57735 1

3 −0.77459 0.555556
0 0.888889

+0.77459 0.555556
4 −0.86114 0.347855

−0.33998 0.652145
+0.33998 0.652145
+0.86114 0.347855

5 −0.9061798 0.236927
−0.5384693 0.478629

0 0.568889
+0.5384693 0.478629
+0.9061798 0.236927

Example 1 in 3-dimensions. Tables 9 and 10 display the numerical solu-
tions to equation 15 with decreasing step size’s from the TT-decomposition
and tensor respectively, in 3-dimensions.

steps (step size) Q Absolute Error time(s)

2 (0.5) 0.878724503604261 6.304270411398028e-004 0.000373
3 (0.33̇) 0.879356284977070 1.354331669478626e-006 0.000374
4 (0.25) 0.879354929107617 1.537783456129205e-009 0.000381
5 (0.2) 0.879354930646481 1.080580069867665e-012 0.000368

Table 9: Example 1, in 3 dimensions, from the TT-decomposition

The exact solution for I(d) where d=3 is 0.879354930645401, and even for
the smallest step size of 0.5 with three points we get a good approximation
with an error of ×10−4. When we reach a smaller step size of 0.2, which is
calculated with 6 points, we acquire a solution correct to 11 decimal places,
which is extremely accurate.

Another observation that can be made is that as the step size decreases,

45

steps (step size) Q Absolute Error time(s)

2 (0.5) 0.878724503604261 6.304270411401358e-004 0.000375
3 (0.33̇) 0.879356284977070 1.354331668923514e-006 0.000371
4 (0.25) 0.879354929107617 1.537783678173810e-009 0.000379
5 (0.2) 0.879354930646481 1.079913936052890e-012 0.000381

Table 10: Example 1, in 3 dimensions, from the tensor

the tensor gives a slightly better result to that of the TT-decomposition.
This may be due to the error generated from decomposing the tensor into a
tensor train.

Also the time taken to compute different step sizes are all very similar
and there is no difference between the computation via the tensor or the
TT-decomposition. The computation via the tensor is much more efficient
though, as in order to compute the contraction via the TT-decomposition,
you must ofcourse first compute the TT-decomposition. This also limits the
number of dimensions that can be investigated, as the TT-decomposition re-
quires use of the SVD. Whereas, calculating directly from the d-dimensional
tensor only requires d simple tensor-vector multiplications.

Example 1 in 4-dimensions. Tables 11 and 12 display the numerical so-
lutions to the integrations of equation 15 with decreasing step size’s from the
TT-decomposition and tensor respectively in 4-dimensions.

steps (step size) Q Absolute Error time(s)

2 (0.5) 0.767883465177419 7.346289976880582e-004 0.000398
3 (0.33̇) 0.768619672550432 1.578375325217429e-006 0.000402
4 (0.25) 0.768618092382932 1.792174963988202e-009 0.000411
5 (0.2) 0.768618094176365 1.257993709202765e-012 0.000405

Table 11: Example 1, in 4 dimensions, from the TT-decomposition

The exact solution for I(d) where d=4 is 0.768618094175107. Again for
the smallest step size of 0.5 with three points we get a good approximation

46

steps (step size) Q Absolute Error time(s)

2 (0.5) 0.767883465177420 7.346289976871701e-004 0.000401
3 (0.33̇) 0.768619672550432 1.578375325217429e-006 0.000399
4 (0.25) 0.768618092382932 1.792175075010505e-009 0.000412
5 (0.2) 0.768618094176365 1.258437798412615e-012 0.000410

Table 12: Example 1, in 4 dimensions, from the tensor

of ×10−4. When we reach the smallest step size of 0.2, we acquire a solu-
tion correct to 12 decimal places, which is the same as we acquired for the
3-dimensional case, although for 3-dimensions the error is slightly smaller,
which is to be expected.

Comparing the results from the TT-decomposition to the tensor give al-
most identical results, although the tensor gives the best results at the largest
step size, and unexpectedly the TT-decomposition gives the better result at
the smallest step size. This is a different result to that achieved in the 3-
dimensional case.

Also, it can be noted that the increase in dimension leads to the increase
in the time to calculate the integrations. Again the TT-decomposition and
the tensor give similar times over the decreasing step sizes.

Example 1 in 5-dimensions. Tables 13 and 14 display the numerical so-
lutions to the integrations of equation 15 with decreasing step size’s from the
TT-decomposition and tensor respectively in 5-dimensions.

steps (step size) Q Absolute Error time(s)

2 (0.5) 0.484485332277589 5.794491334570884e-004 0.000612
3 (0.33̇) 0.485066026526281 1.245115234249639e-006 0.000623
4 (0.25) 0.485064779997274 1.413772432456995e-009 0.000620
5 (0.2) 0.485064781412039 9.923173394099649e-013 0.000619

Table 13: Example 1, in 5 dimensions, from the TT-decomposition

47

steps (step size) Q Absolute Error time(s)

2 (0.5) 0.484485332277589 5.794491334571994e-004 0.000631
3 (0.33̇) 0.485066026526280 1.245115234027594e-006 0.000622
4 (0.25) 0.485064779997274 1.413772821035053e-009 0.000618
5 (0.2) 0.485064781412039 9.925948951661212e-013 0.000627

Table 14: Example 1, in 5 dimensions, from the tensor

The exact solution for I(d) where d=5 is 0.485064781411046. Again we
get a really good result for the largest step size, calculated with 3 points,
although gives a better approximation that with the same number of nodes
for the 3 and 4-dimensional cases. Also if we look at the smallest step size,
the result is again more accurate than that of that 3 and 4-dimensional cases.

Again comparing the TT-decomposition results to that of the tensor gives
the result that the TT-decomposition gives the best approximation at every
step size, which is unexpected due to the error caused via decomposing the
tensor in the first place.

Example 1 in 6-dimensions. Tables 15 and 16 display the numerical so-
lutions to the integrations of equation 15 with decreasing step size’s from the
TT-decomposition and tensor respectively in 6-dimensions.

steps (step size) Q Absolute Error time(s)

2 (0.5) 0.109514751865740 1.571956327768298e-004 0.000835
3 (0.33̇) 0.109672285319574 3.378210568505402e-007 0.000841
4 (0.25) 0.109671947114936 3.835808615182401e-010 0.000837
5 (0.2) 0.109671947498786 2.689515277154442e-013 0.000829

Table 15: Example 1, in 6 dimensions, from the TT-decomposition

The exact solution for I(d) where d=6 is 0.109671947498517. Clearly, in-
creasing the dimensionality of the problem increases the accuracy as the
6-dimensional case gives the most accurate results over every step size.

48

steps (step size) Q Absolute Error time(s)

2 (0.5) 0.109514751865740 1.571956327770380e-004 0.000837
3 (0.33̇) 0.109672285319574 3.378210566840068e-007 0.000829
4 (0.25) 0.109671947114936 3.835809447849670e-010 0.000832
5 (0.2) 0.109671947498786 2.690347944422911e-013 0.000840

Table 16: Example 1, in 6 dimensions, from the tensor

Also, increasing the dimensionality leads to the TT-decomposition giving
a more accurate result than that of the tensor. This is the opposite of what
we would expect due to the increasing dimensionality leads to an increased
error in the TT-decomposition.

The time taken to compute the calculations increases as the dimensions
increase, although the step size has no effect on the efficiency of the calcula-
tions.

3.1.2 Example 2

For This example I will consider the d-dimensional standard normal distribu-
tion, which in one-dimension is described by the probability density function:

f(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 (16)

Where parameters µ and σ2 are the mean and the variance [14]. The
distribution with µ = 0 and σ2 = 1 is called standard normal and these are
the parameters I will be using. Hence we will acquire the following equation:

f(x) =
1√
2π
e−

x2

2 (17)

We know that for the one dimensional case, 68% of the data will be within
1 standard deviation, σ = 1, of the mean. 95% of the data will fall within
2 standard deviations, 2σ = 2, of the mean and almost 97% of the data will
fall within 3 standard deviations, 3σ = 3.

49

This can of course be extended to a multiple dimensional case, which is
known as the multivariate normal distribution or multivariate Gaussian dis-
tribution.

If we firstly consider the 2-dimensional, bivariate case. The probability
density function is given by:

f(x, y) =
1

2πσxσy
√

1− ρ2
e
− 1

2(1−ρ2)

[
(x−µx)2

σ2
x

+
(y−µy)2

σ2
y
− 2ρ(x−µx)(y−µy)

σxσy

]
(18)

Where ρ = covarience(σx, σy)/σxσy, is the correlation between x and y [14].
Hence if we apply the same standard parameters we get:

f(x, y) =
1

2π
√

1− ρ2
e
−x

2−2ρxy+y2

2(1−ρ2) (19)

The general multivariate case for d-dimensions has the equation:

f(X,µ,Σ) =
1√

|Σ| (2π)d
e−

(x−µ)′Σ−1(x−µ)
2 (20)

Where X and µ are vectors of length d and Σ is a positive definite d × d
matrix [14]. If we apply our standard parameters, and so letting Σ equal a
d× d identity matrix, Id, this becomes :

f(x1, x2, ..., xd) =
1√

(2π)d
e−

X′X
2 (21)

In equation 21 X = [x1x2...xd]
′.

I will now apply the trapezium rule to this problem:∫ b

a

...

∫ b

a

f(x1, ..., xd)dx1...dxd

≈ h

2

n∑
k1=1

...
n∑

kd=1

wk1 ...wkdf ((xk1 , ..., xkd))

where wki = 2 for i 6= 1, n, wki = 1 for i = 1, n.

50

Example 2, between -1 and 1 (−σ to σ). I will firstly be analysing the
standard multivariate normal distribution between -1 and 1.

In 2 dimensions (variables), between -1 and 1 (−σ to σ). This
is the standard bivariate case and so we know that the exact solution we
are looking for is going to be 68% of 68%, which is 47%, or more precisely
46.60649%.

steps (step size) Q Absolute Error

3 (1) 0.410769479876322 0.055295462123678
4 (0.66̇) 0.441548891468991 0.024516050531009
5 (0.5) 0.452285610783585 0.013779331216415
6 (0.4) 0.457249316967022 0.008815625032978
7 (0.33̇) 0.459944149847137 0.006120792152863

8 (0.2857) 0.461568547371707 0.004496394628293
9 (0.25) 0.462622643958043 0.003442298041957
10 (0.22̇) 0.463345238793662 0.002719703206338
11 (0.2) 0.463862061760540 0.002202880239460
12 (0.1̇8̇) 0.464244428297124 0.001820513702876
13 (0.16̇) 0.464535235765965 0.001529706234035

14 (0.1538) 0.464761544217568 0.001303397782432
15 (0.1429) 0.464941107983212 0.001123834016788

Table 17: Example 2, in 2 dimensions from the tensor

As you can see from tables 17 and 18, the TT-decomposition and the ten-
sor contract to give exactly identical solutions at every step size. This is
due to the fact that the standard multivariate normal distribution is a rank
one tensor and so decomposes with zero error into a tensor train. This is
caused by having zero correlation between the variables, which means they
are independent, leading to a perfect TT-decomposition. I will now alter the
parameters µ and Σ so that we should get a tensor that isn’t of rank 1.

51

steps (step size) Q Absolute Error

3 (1) 0.410769479876322 0.055295462123678
4 (0.66̇) 0.441548891468991 0.024516050531009
5 (0.5) 0.452285610783585 0.013779331216415
6 (0.4) 0.457249316967022 0.008815625032978
7 (0.33̇) 0.459944149847137 0.006120792152863

8 (0.2857) 0.461568547371707 0.004496394628293
9 (0.25) 0.462622643958043 0.003442298041957
10 (0.22̇) 0.463345238793662 0.002719703206338
11 (0.2) 0.463862061760540 0.002202880239460
12 (0.1̇8̇) 0.464244428297124 0.001820513702876
13 (0.16̇) 0.464535235765965 0.001529706234035

14 (0.1538) 0.464761544217568 0.001303397782432
15 (0.1429) 0.464941107983212 0.001123834016788

Table 18: Example 2, in 2 dimensions from the TT-decomposition

Example 2, with non-standard parameters, between µi − σi and
µi + σi in the ith dimension. As we are altering the correlations, means
and standard deviations we will acquire a slightly different probability. If you
consider figures 7 and 8 which have correlations 0 and 0.9 respectively. Each
figure has the probability density function displayed from both the x1 = x2
angle and the x2 = x1 angle, which have means µ1 = 1, µ2 = 0 and standard
deviations σ2

1 = 1 and σ2
2 = 4.

52

Figure 7: bivariate with zero correlation

The increase in correlation leads to the different shape of the probability
density function, you can clearly see that the increase in correlation leads
to a larger probability at the center µ1, µ2, this comes form the fact that an
increase in correlation begins to constrict the probability density function
about the x1 = x2 plane. As we are calculating our integral about µ ± σ
we should acquire a larger probability than we previously did. Ofcourse if

53

Figure 8: bivariate with correlation 0.9

we to integrate from −∞ to ∞ we would get 1 regardless of the starting
parameters.

54

Example 2, in 2-dimensions. Due to the use of a non set of non-
standard parameters, a different µ and Σ, the distribution will shift accord-
ingly to center at µ with a variation of σ. For the 2-dimensional case I have
let

µ =

[
0
1

]
, Σ =

[
1 0.3

0.3 2

]
.

Hence, due to the correlation, we will achieve a slightly different percent-
age of 47.14143%, to that which would be achieved by the standard normal
distribution. Also a change of the integration limits is required, we must now
integrate form -1 to 1 in the x1 dimension and from 1−

√
2 to 1 +

√
2 in the

x2 dimension. These are obtained from µ± σ.

In this example I have included the time taken the time taken to complete
the TT-decomposition along with the contraction time, as we saw that the
difference in contraction times was negligible.

steps Q Absolute Error time(s)

3 0.414393921240724 0.057020401753395 0.000437
4 0.446112899732317 0.025301423261802 0.000516
5 0.457190030235556 0.014224292758563 0.000560
6 0.462313068201437 0.009101254792682 0.000639
7 0.465094899106634 0.006319423887485 0.000728
8 0.466771902389441 0.004642420604678 0.000832
9 0.467860201204107 0.003554121790012 0.000945
10 0.468606271616959 0.002808051377160 0.001082
11 0.469139899747050 0.002274423247069 0.001219
12 0.469534707273079 0.001879615721040 0.001371
13 0.469834981148493 0.001579341845626 0.001538
14 0.470068659084757 0.001345663909362 0.001736
15 0.470254071799575 0.001160251194544 0.001902

Table 19: Example 2, in 2 dimensions from the tensor

55

steps Q Absolute Error time(s)

3 0.414393921240724 0.057020401753395 0.000657
4 0.446112899732317 0.025301423261802 0.000712
5 0.457190027503422 0.014224295490697 0.000795
6 0.462313062884608 0.009101260109511 0.000867
7 0.465094892703025 0.006319430291094 0.000963
8 0.466771895800884 0.004642427193235 0.001070
9 0.467860194864586 0.003554128129533 0.001198
10 0.468606265707991 0.002808057286128 0.001333
11 0.469139894325028 0.002274428669091 0.001488
12 0.469534702335121 0.001879620658998 0.001651
13 0.469834976665403 0.001579346328716 0.001851
14 0.470068655017327 0.001345667976792 0.002044
15 0.470254068106520 0.001160254887599 0.002255

Table 20: Example 2, in 2 dimensions from the TT with error 0.0o1

steps Q Absolute Error time(s)

3 0.414375191391604 0.057039131602515 0.000643
4 0.446094948117974 0.025319374876145 0.000705
5 0.457180952375195 0.014233370618924 0.000779
6 0.462309112155652 0.009105210838467 0.000862
7 0.465093477034532 0.006320845959587 0.000957
8 0.466771576663234 0.004642746330885 0.001066
9 0.467860190454007 0.003554132540112 0.001191
10 0.468606150829030 0.002808172165089 0.001326
11 0.469139439638143 0.002274883355976 0.001472
12 0.469533788351477 0.001880534642642 0.001649
13 0.469833546648905 0.001580776345214 0.001831
14 0.470066688488310 0.001347634505809 0.002014
15 0.470251565562013 0.001162757432106 0.002228

Table 21: Example 2, in 2 dimensions from the TT with error 0.01

56

It is clearly visible from tables 19, 20 and 21 that calculating the con-
traction directly from the tensor is far more efficient than that of the TT-
decomposition. This is due to need to decompose the tensor to begin with.
Another observation that can be made from the times taken to compute
these contractions is that decreasing the step size leads to an increase in the
computation time. This wasn’t the case with example 1, where there were
all very similar. This may be due to using a different numerical scheme,
with different quadrature weights. Also, the errors are much larger for this
example when comparing them to that of example 1. This may again be due
to the choice of quadrature.

The tensor gives the smallest errors of the three tables, which is as we ex-
pect, because there has been no error introduced by decomposing the tensor
into a tensor train. Also, when using the less accurate TT-decomposition in
table 21, there is again a further loss of accuracy. This is caused by using
a less accurate tensor train, and so there is already a larger error before we
begin to compute the contraction. This loss of accuracy is compensated by
an increase in the efficiency.

Example 2, in 3-dimensions. For the 3-dimensional case I have let

µ =

 0
1
−0.5

 and Σ =

 1 0.3 0.1
0.3 2 −0.4
0.1 −0.4 1.5

 .
Again, due to the correlation’s, we will achieve a different percentage, this

time of 82.0579%.

In tables 22, 23 and 24, you can again see that the 3-dimensional case,
similarly to the 2-dimensional case that calculating the contraction directly
form the tensor is more efficient, although this time it is much more efficient,
this is due to the rime taken to decompose a tensor increases exponentially
as the number of dimensions increases. As expected the 2-dimensional case
is quicker than that of the 3-dimensional case, as we saw in example 1.

57

Again the tensor gives the smallest errors of the three tables. When com-
paring to the 2-dimensional case, as the step size decreases, the contraction
of the tensor trains give a larger difference in error, again caused by the
error introduced by decomposing the tensor, which increases with increased
dimensionality. Also, the less accurate TT-decomposition in table 24, leads
to a further loss of accuracy. Again caused by using a less accurate tensor
train.

steps Q Absolute Error time(s)

3 0.674409032016107 0.146169597802947 0.000660
4 0.754510492246537 0.066068137572517 0.000930
5 0.783211099959438 0.037367529859616 0.001635
6 0.796609576614736 0.023969053204319 0.002014
7 0.803917825445111 0.016660804373943 0.002930
8 0.808334660576165 0.012243969242889 0.004176
9 0.811205451161317 0.009373178657737 0.005840
10 0.813175515797560 0.007403114021495 0.007630
11 0.814585618897129 0.005993010921926 0.010263
12 0.815629433297236 0.004949196521818 0.012932
13 0.816423622967231 0.004155006851823 0.016239
14 0.817041858540985 0.003536771278069 0.020306
15 0.817532514931975 0.003046114887080 0.024855

Table 22: Example 2, in 3 dimensions from the tensor

58

steps Q Absolute Error time(s)

3 0.674409032016107 0.146169597802947 0.001045
4 0.754510492246537 0.066068137572517 0.001357
5 0.783211090055731 0.037367539763323 0.001882
6 0.796609550161228 0.023969079657826 0.002541
7 0.803917792104603 0.016660837714451 0.003517
8 0.808334626503367 0.012244003315688 0.004937
9 0.811205419255614 0.009373210563440 0.006660
10 0.813175487182350 0.007403142636704 0.009994
11 0.814585593832091 0.005993035986964 0.011186
12 0.815629411649693 0.004949218169361 0.014501
13 0.816423604444332 0.004155025374722 0.018131
14 0.817041842801271 0.003536787017783 0.022677
15 0.817532501637163 0.003046128181891 0.027940

Table 23: Example 2, in 3 dimensions from the TT with error 0.001

steps Q Absolute Error time(s)

3 0.674409032016107 0.146169597802947 0.001047
4 0.754501937645082 0.066076692173972 0.001338
5 0.783212872384791 0.037365757434263 0.001842
6 0.796618155884882 0.023960473934173 0.002542
7 0.803926341365658 0.016652288453397 0.003624
8 0.808339556192410 0.012239073626644 0.004785
9 0.811205113842517 0.009373515976537 0.006523
10 0.813169351140584 0.007409278678470 0.008751
11 0.814573549435406 0.006005080383648 0.011809
12 0.815611636493951 0.004966993325103 0.014554
13 0.816400394282805 0.004178235536249 0.018009
14 0.817013539619649 0.003565090199405 0.023063
15 0.817499456127917 0.003079173691137 0.027662

Table 24: Example 2, in 3 dimensions from the TT with error 0.01

59

4 Conclusions and Further Work

The TT-decomposition formula will decompose a tensor with zero error if its
auxiliary unfolding matrices are of low rank. This is always the case when
a tensor has a low canonical rank. Otherwise this formula can represent a
tensor with minimal accuracy.

The algorithm that we used for the TT-decomposition has room for im-
provement, although we obtained accurate results fairly efficiently the use of
the truncated SVD for large scale dense unfolding matrices is clearly unford-
able in higher dimensions. There are several options that can be considered
in replacing the SVD, such as a dyadic decomposition or the QR decompo-
sition [12]. This is an area in which further work could be done to construct
an improved algorithm and compare times taken and accuracy to that of the
currently used TT-decomposition algorithm.

When comparing the times taken between the tensor and the tensor train
to calculate the high-dimensional in integration there were only marginal dif-
ferences. This is due to the time taken to calculate the tensor train being
included, therefore anytime that is saved within the quadrature is used in
the decomposition stage. Although reducing the time taken is not the goal
of using the tensor train. The reason for using the tensor train is to dramat-
ically reduce the amount of computational memory required.

The high-dimensional integration of a tensor with a known low rank, will
give more accurate results as the dimensionality of the tensor increases. With
increasing dimensionality d the tensor train gives more accurate results than
that of the tensor itself. This is due to the low rank of the tensor, which
leads to a perfect decomposition into the tensor train.

When we compute the high-dimensional integration of a tensor with a
higher rank, we acquire the opposite result. The increase in dimensionality
leads to the increase in error of the tensor train, and increased computation
time. This is caused by the initial error introduced by computing the TT-
decomposition.

60

5 Appendix

5.1 M-files

5.1.1 tensor matrix multiplication

function[Output]= tensorxmatrix(A,M,n)
% Tensor A, Matrix M, n is mode of multiplication
% flatten a into n-mode matrix
B= shiftdim(A,n-1);
C= B(:,:);
% create target dimensions of the output
outdim = size(B);
outdim(1) = size(M,1);
% Multiuply the matrices
Output = M*C;
% unflattened into correct tensor shape
Output = reshape(Output,outdim);
% change dimensions back to get correct output
Output = shiftdim(Output,length(outdim)-n+1);

5.1.2 tensor vector multiplication

function[Output]= tensorxvector(A,V,n)
% Tensor A, Vector V, n is mode of multiplication
%flatten a into n-mode matrix
B= shiftdim(A,n-1);
C= B(:,:);
% create target dimensions of the output
outdim = size(B);
outdim(1) = 1;
% Multiuply the matrices
Output = V’*C;
% unflattened into correct tensor shape
Output = reshape(Output,outdim);
% change dimensions back to get correct output
Output = shiftdim(Output,length(outdim)-n+1);

61

5.1.3 truncated SVD

function[U,S,V,ranknew]=truncsvd(M,errorbound)
% calculate the truncated SVD of matrix M
% to satisfy the errorbound
ranknew=rank(M);
[U,S,V]=svd(M);
for i = 1 : min(size(M))
sum=0;
for j =i+1 : min(size(M))
sum=sum+S(j,j)2;
b = sqrt(sum);
end
if le(b,errorbound)==1
ranknew = i;
break
else
end
end

5.1.4 tensor inner product

function[Output] = tensor inner product(A,B)
% compute the inner product of Tensors A and B
Output=A(:)’*B(:);

62

5.1.5 tensor outer product

function[Output] = tensor outer product(A,B)
% compute the inner product of Tensors A and B
c=A(:)*B(:)’;
% The A(:) and B(:) vectorize A and B, then c
% is the outer product of two vectors
Output=reshape(c,[size(A) size(B)]);
% c is then reshaped to the correct dimensions,
% which are calculated by
% size(A) and size(B)

5.1.6 Sparse tensor generator

function[A]=sparsetensor(A,d)
n = d;
elements=3n;
for j = 1 : ceil(elements.*rand(1,1))
%ceil(n.*rand(1,1)) must be added for each dimension
%so that a random element is generated in a random position
A(ceil(n.*rand(1,1)),ceil(n.*rand(1,1)),ceil(n.*rand(1,1))) = rand;
end

63

5.1.7 tensor contracted product

function[Output] = tensor contracted product(A,B,da,db)
% contracts tensors A and B in their
% da, and db dimensions respectively,
dimA=ndims(A);
dimB=ndims(B);
% Generate the size of the output tensor
for k=1:da-1
sizeout1(1,k)=size(A,k);
end
for k=da+1:dimA
sizeout1(1,k-1)=size(A,k);
end
for k=1:db-1
sizeout2(1,k)=size(B,k);
end
for k=db+1:dimB
sizeout2(1,k-1)=size(B,k);
end
% reshape the tensors in their da and db modes
P= shiftdim(A,da-1);
C= P(:,:);
D=shiftdim(B,db-1);
E= D(:,:);
% Perform the multiplication and reshape Output=C’*E;
Output=reshape(Output,[sizeout1 sizeout2]);

64

5.1.8 tensor train decomposition

function[]=ttdecomp(A,error)
%dimensions of the tensor.
dimA=ndims(A);
%create dimA carriage’s using the cell function.
tt=cell(dimA,1);
%calculate the frobenious norm.
nrm=sqrt(A(:)’*A(:));
%create a vector r, to store the ranks of each step.
r=zeros(1,dimA-1);
%calculate the error bound using the given formula
errorbound=((error*nrm)/sqrt(dimA-1));
%calculate the dimensions of the first carriage.
Nl=size(A,1);
Nr=numel(A)/Nl;
%create a dummy tensor B.
B=A;
%reshape B to perform truncated svd.
M=reshape(B,[Nl,Nr]);
%perform the truncated svd to decompose the matrix, and
%to aquire its approximate rank which satisfies the
%error bound.
[U,S,V,ranknew]=truncsvd(M,errorbound);
r(1,1)=ranknew;
%here we ’crop’ the matrices as to only use ranknew
%orthonormal columns of U, S and V.
U=U(:,1:ranknew);
S=S(1:ranknew,1:ranknew);
%recalculate M for next carriage.
M=V(:,1:ranknew)*S;
M=M’;
%store the first carriage in the first cell.
tt1=U;

65

%calculate the remaining carriage’s.
for k=2:dimA-1
%calculate the new dimensions
Nl=size(A,k);
Nr=Nr/Nl;
%reshape acording to new dimensions and rank.
M=reshape(M,[r(1,k-1)*Nl,Nr]);
%perform the truncated svd to decompose the matrix,
%and to aquire its
%approximate rank which satisfies the error bound.
[U,S,V,ranknew]=truncsvd(M,errorbound);
r(1,k)=ranknew;
%agian we ’crop’ the matrices as to only use ranknew
%orthonormal columns of U, S and V.
U=U(:,1:ranknew);
S=S(1:ranknew,1:ranknew);
M=V(:,1:ranknew)*S;
M=M’;
%reshape U to its correct size and then store the kth
%carriage, in the kth cell.
U=reshape(U,[r(1,k-1),Nl,r(1,k)]);
ttk=U;
end
%the final carriage is simply the final M,
% and so we store it.
ttdimA=M’;
%this final section simply prints the output of the
%tensor train carriage sizes, and displays them aswell.
tt
for q=1:dimA
ttq
end
end

66

5.1.9 Multiplying out a tensor train

function[T] = ttmult(tt)
dimtt=size(tt,1);
T=tensorxmatrix(tt2,tt1,1);
for j=2:dimtt-1
if j==dimtt-1
T=tensorxmatrix(T,ttdimtt,j+1);
break
else
t=ndims(T);
T=tensor contracted product(T,ttj+1,t,1);
end
end

5.1.10 TT Contraction (Integration)

function[]=ttcontraction(steps,decomperror)
q=steps;
% Dependant on the type of quadrate chosen the weights and
% Abscissas will need to be entered as w and Z in the form
% of a column vector, of length q.
Z=[z1;
...;
zq];
w=[w1;
...;
wq];
% the fnction must the be calculated with d for loops to
% create the d-dimensional tensor.
for x1=1:q
...
for xd=1:q
A(x1,..,xd)=f(x1,...,xd) end
...
end
% set B to be a dummy tensor and then recalculate the

67

% tensor dependant on the Abscissas.
B=A;
d=ndims(A);
n=size(A,1);
for x1 = 1: n,
...
for xd=1:n
B(x1,...,xd)=f(Z(x1),...,Z(xd))
end,
...
end
% calculate the tt decomposition
tt=ttdecomp(B,decomperror);
% apply the chosen type of quadrature to tensor train.
v=tensorxvector(tt1,w,1)’;
for k= 2 : d
W = tensorxvector(ttk,v,1);
W = reshape(W,[size(ttk,2),size(ttk,3)]);
v = (W’*w);
end

68

References

[1] M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions,
With Formulas, Graphs and Mathematical Tables. Bernan Assoc, 1972.

[2] I. Avramidi. Vector analysis. Lecture Notes, New Mexico Institute of
Mining and Technology, 2008.

[3] B. W. Bader and T. G. Kolda. Algorithm 862: Matlab tensor classes for
fast algorithm prototyping. ACM Trans, Vol. 32, No. 4 , pp. 635-653,
2006.

[4] T.S. Blyth and E.F. Robertson. Basic Linear Algebra. Springer, second
edition edition, 2005.

[5] N. V. Boulgouris, K. N. Plataniotis, and E. Micheli-Tzanakou. Biomet-
rics: Theory, Methods, and Applications. Wiley-IEEE,, volume 9 of ieee
press series on computational intelligence edition, 2009.

[6] M. J. Crowe. A History of Vector Analysis. University of Notre Dame
Press, 1967.

[7] H. F. Davis and A. D. Snider. Introduction to Vector Analysis. Wm. C.
Brown Publishers, sixth edition edition, 1991.

[8] T. G. Kolda and B. W. Bader. Tutorial on matlab for tensors and the
tucker decomposition, 2005.

[9] T. G. Kolda and B. W. Bader. Tensor decompositions and applications.
SIAM, 2008.

[10] J. B. Kruskal. Rank, decomposition, and uniqueness for 3-way and N-
way arrays. North-Holland, Amsterdam, 1989.

[11] I. V. Oseledets. Compact matrix form of the d-dimensional tensor de-
composition. INM RAS, 2009-01, 2009.

[12] I. V. Oseledets and E. Tyrtyshnikov. Linear algebra and its applications.
ELSEVIER, 432 (2010) 7088, 2009.

[13] M. R. Spiegel. Theory and Problems of Vector Analysis. Schaum’s
Outline Series. McGraw-Hill Book Co., 1974.

69

[14] Y. L. Tong. The multivariate normal distribution. Springer series in
statistics. Springer-Verlag, 1990.

70

