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ABSTRACT

This paper considers the hypothesis that a suitably designed lift system
can be used for the automatic evacuation of tall buildings. It will identify
the key features that should be provided to ensure that lifts are controlled
efficiently during this task and so ensure that the evacuation time is
reduced to a practical minimum. An algorithm is described which has
been designed in line with these principles and its performance is
evaluated by simulation. The performance is then assessed against a
standard control algorithm and also against a theoretical best possible
solution. The initial results indicate that a dedicated evacuation algorithm
can provide significant benefits above a more generalised control strategy
for this particular traffic situation and that it is less susceptible to

variations in passenger arrival patterns.
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1 Introduction

The Lift has been an integral part of medium and high-rise architecture since its
inception. Indeed without it, it is doubtful that buildings would ever rise higher than
about 6 floors. In the public’s mind however, this form of transport has been seen as
an unfortunate necessity; often giving rise to apprehension and mistrust. A
plummeting lift car, or being trapped in a stuck lift in an empty building, has been the

theme of many films, or drama series.

As is usually the case the reality is somewhat different from the public perception. In
fact a modern lift system is subject to a high degree of regulation, making it one of the
safest forms of transport available to the public. Modern building regulations also
provide a high degree of security for the occupants of tall buildings, however the
nature of their design carries the potential for a high level of fatality, should a disaster
befall them, for this reason a means of evacuation is an integral part of the building
design. Most building regulations disregard the lifts as a safe means of evacuation
during an emergency and rely on protected stairways. Historically this was a prudent
view to take of the lift system, however modern standards are such that lifts can be

designed to operate safely under emergency conditions.

In the UK, legislation has been put in place in the form of the Disability
Discrimination Act and in BS5588. These are currently being introduced to ensure
disabled access to all buildings. In terms of the lift system, this ensures wheelchair
usefs can gain access to the lift, that they can reach the landing and car-call buttons

and that Braille legends enable buttons to be identified by the partially sighted



passengers etc. BS5588 recommends standards for the construction of fire fighting
and evacuation lifts, ensuring they can be used safely during a fire and so enable their
use in the managed evacuation of disabled people from the building. Unlike the
regulations on access, it makes no recommendation that all buildings should be
provided with this type of lift. This leaves the provision of a means of evacuation for

disabled people, to the discretion of the building owner.

The Canadian Institute for Research in Construction has looked at this general area
(Guylene, 2002) and has identified the use of “Safe Lifts” in conjunction with refuge
areas (areas of high fire protection, isolated from the main floor area) as enhancing
the safe evacuation of disabled occupants. The report also identifies special buildings
such as the Stratosphere Tower in Las Vegas, where the lifts are seen as the primary

route for evacuation for all occupants, not just the disabled.

In the UK the issue has also been raised. In his paper “In the event of fire — use the
elevator” (Hawkins, 2000) points out that valuable evacuation time is often wasted by
current practice. When a positive fire signal is received, it is common practice to
return the lifts to the home floor and then lock them out until the emergency services
arrive to provide managed control of the system. The time the emergency services
take to reach the building is likely to be variable. In a city centre during working
hours a response time of 5 — 10 minutes would be considered good. Modem lift
systems are designed with a capacity to move a good proportion of the maximum
building population (10% - 25%) in a 5-minute period. It can be seen therefore that if
the lift system were considered safe for automatic operation during this critical period,

it could contribute significantly to the evacuation before any rescue service arrives.



Given that construction standards have now been introduced, to make a lift safe for
the use of fire fighters and the supervised evacuation of the disabled, it seems a
natural further step to protect the whole lift system and enable it to play a role in the
automatic evacuation of the building. To achieve this the normal operating behaviour
of the lift will need to be superseded by an algorithm optimised for evacuation. It will
be the purpose of this paper to look at the issues involved in such an automatic control
algorithm, to implement an algorithm based on this analysis and to evaluate its

performance using a commercially available lift simulation program.

Following this introduction the paper will outline the basic features of a lift control
system and the general features that have a bearing on the evacuation issue. It then
moves on to identify specific aspects of the situation that must be considered in the
design of an evacuation strategy. In section four, the features of the proposed
algorithm are explained. This is followed by a description of the Elevate simulation
software to be used in its evaluation. A discussion of the tests performed and an
analysis of the results obtained is then given. The paper then draws together these

results in the conclusions and future work is identified.



2 Lift Control Principles

The operation of a lift system may at first appearance seem to be a simple matter. The
prospective passengers simply press a button; a lift arrives and the doors open. They
get in, select a destination floor and are delivered to their destination quickly and
safely. This apparent simplicity is in fact the culmination of over 150 years of
development, which has encompassed developments in Mechanical, Electrical,
Electronic and Computer engineering. By the 1950s the introduction of automatic

doors removed the need for a lift attendant and the fully automatic lift had arrived.

2.1 Collective Control

At every floor of the building each lift has it’s own landing-call button. The term
landing referring to the area on each floor immediately outside the lift and from which
the passenger enters the lift. Pressing the landing-call button summons the lift car and
allows the passenger to enter. The passenger then selects a destination using buttons
within the car; the car-call buttons. The lift car travels to its destination and the
passenger alights at this point the lift is free to accept further calls. This is the
simplest type of automatic control, known as non-collective control. It can be
implemented relatively cheaply, requiring only simple control logic and a single call
button at each landing. It is however only suitable for low demand situations, such as

freight lifts, because it can only handle one call at a time.

By enabling the lift to remember landing-calls and by providing two buttons at the
landing, one to register a desire to travel up the building and the other to travel down,

it has been possible to significantly improve the performance of the lift system. A lift



committed to travel in one direction, is able to detect other calls to move in the same
direction and is therefore able to pick up or “collect” further passengers as it reaches
these intermediate floors. The provision of this ability in both directions of travel is
known as full-collective control or directional collective control. As with most lift
control systems, priority is given to the passenger in the lift who registers their desired
destination through the car-call buttons. Landing-calls are only collected if; there is
room in the lift, they are registered in the lift’s direction of travel ahead of its current
position and the lift has sufficient time to stop before the landing is reached. When all
the car-calls have been served and there are no further landing-calls ahead of it in its
direction of travel, the lift will answer the furthest landing-call in the opposite
direction. When it reaches that call it will collect a new passenger and start its run in

the opposite direction.

2.2 Group Control

As passenger demand increased, buildings were equipped with multiple lifts, often
collected together in the same area of the building. Using individual control systems
for each lift showed up further areas of inefficiency. A person in a hurry wishing to
travel down the building may well register a down call with each lift. As the lifts are
working independently they would each try and respond, however when the first car
arrives the passenger gets in and completes the journey, meanwhile the other lifts also
responded and travelled to an empty landing. It was clear that to improve matters
some form of co-operation between the lifts was required and this came in the form of
a group controller. Instead of wiring the landing-call directly to the lift control
system, it was brought into the group controller. This control element has an

overview of the lift system; knowing the current position and direction of each of the



lifts and the current state of demand from the car and landing-call buttons. With this
information, it is possible to allocate the landing-calls to the lift that is best positioned
to serve the call. A passenger placing a landing-call on this type of system may press
the call button by one set of doors and find that the lift arrives at any of the entrances.
How this decision is arrived at is known as the car allocation strategy and has been
the basis of much research over the past twenty years, using both conventional and Al

techniques.

2.2.1 Nearest Car Allocation

One of the simpler conventional techniques for car allocation is termed Nearest Car.
This works on the full-collective principle, providing two landing-call buttons at each
floor apart from the terminal floors, where only one direction is required. The control
scheme is expected to space the lift effectively around the building in order to provide
an even service. It will also follow a parking policy to pre-position the cars,

commonly at the ground floor or other high demand areas, when the traffic is light.

Any car-calls are specific to an individual lift and are treated as the priority calls for
that lift. This prevents the group controller from sending the lift in the opposite
direction to that requested by the passenger. A landing-call on the other hand is
allocated to a lift that the group controller considers to be the best placed to answer it,
the nearest car. The search for the nearest car is continuously performed until the call
is serviced. This is possible due to the simple nature of the calculation and so enables
the system to adapt to the changing dynamics of the situation. The term “Nearest
Car” is somewhat misleading in that it is not simply concerned with how far the car is
from the landing-call. Apart from the separation distance the algorithm takes into

account the requested direction of travel for the landing-call and the current direction



of travel of the lift. The exact nature of the algorithm will be specific to the individual

manufacturer, but Barney (2003) gives a sample solution

He measures distance ‘d’ in terms of the number of floors between the landing-call
and the position of the car under consideration. The number of floors above the
ground floor is given as ‘N’, so that the total number of floors in the building is
(N+1). The objective of the algorithm is to calculate a figure of suitability ‘FS’ for
each lift that has space available. It then allocates the landing-call to the car with the
highest FS value. The basic equation is given by: -

FS = (N+1) -d

This is used for cars that currently have no allocated landing or car-calls and are
consequently idle; or for a car that is committed to moving towards the landing-call,

but in the opposite direction to that required by the landing.

For the condition when the car is moving towards the landing-call and in the direction
requested by it a factor of 1 is added, giving the equation: -

FS = (N+2) -d.

The final possible condition is when the lift is moving away from the landing-call. For
this situation the figure of suitability is set to one i.e.

FS =1

Having made this calculation for each lift the landing-call is allocated to the lift with
the highest FS value. In the case of more than one lift having the same value the call

is allocated to the first to be calculated. The process is then repeated for any other
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landing-calls that may be present. Having allocated all the calls the system waits for
the next time slice, typically 100 milliseconds and the whole process is then repeated.
This allows the system to adapt to changes in movement or direction caused by the
car-calls made by passengers. As the number of lifts and size of building increase, the
number of possible calls increases rapidly and so the time to perform the calculation

can become critical.

2.2.2 Bunching

According to Siikonen (1997) one of the drawbacks of this system and others that use
the collective control principle, is the bunching of lifts. During heavy traffic periods,
when people are entering or leaving the building, there are a lot of calls to serve and
the lifts have a tendency to move side by side, i.e. they start to bunch together at the
same level within the building. This happens because lifts always stop at the nearest
call and by-pass hall calls only when fully loaded. Early systems coped with this by
running the lifts in a scheduled manner, in a similar way to a bus service. A car
arriving at the ground floor would not be permitted to leave until a scheduled time.
This had the effect of distributing the cars more evenly around the building, but
reduced overall capacity. Other schemes giving priority to calls registered for a long
time and the ability to bypass calls registered for a short period, also had a desirable
result. During peak traffic conditions the application of Floor Zoning, Channelling
(Powell, 1992) and “Next car up” (Barney and dos Santos, 1985) have all been used

to tackle this issue.



2.2.3 Traffic Patterns

As mentioned in the previous section the actual flow of people around a building can
have a significant influence on the efficiency of the lift system. For the majority of
the day the traffic is likely to have no discernible pattern and is therefore termed
Random inter-floor traffic. For this type of traffic a full-collective control system is
well adapted and together with an intelligent parking policy can provide rapid

response to the moderate levels of traffic during the course of the day.

The most demanding routine traffic pattern is widely recognised as being the morning
Up-peak. This condition occurs as people arrive for work in the morning, enter at the
ground floor and travel up the building. The designation of an official start time
causes a synchronisation of the occupant’s movements and so places a heavy demand
on the lift system. Being considered the worst case condition, it is the condition
around which the lift system’s design calculations are based. The basic premise being
that if the system can provide an acceptable service for this condition, it will cope
with any other traffic condition. It is also a traffic pattern, which is amenable to

theoretic calculation and as such has been the basis of much research.

Under the up-peak traffic condition full-collective control does not provide an optimal
solution and special up-peak control strategies can be applied. If all the people
entering the building are trying to travel up, it would be wasteful to allow a lift car to
depart the ground floor with just a few occupants. Delaying the normal door closing
time may allow further people to enter and so fill the lift. Similarly when an empty
car arrives back at the ground floor, it may be wise for it to remain with doors closed
until a lift, still filling, is ready to depart. These and many other specialised strategies

have been adopted to improve performance under this traffic condition.



A similar traffic condition occurs at the end of the day, as people leave the building,
the Down-peak. Again the simple application of full-collective control does not
perform well under these conditions. When the car empties at the ground floor the car
allocation algorithm looks for up calls, or the furthest away down call. As most of the
floors in the building will have down calls, the algorithm sends the car to the highest
calling floor, so that it can collect from other floors on the way down. The problem
arises from the volume of people trying to travel. The lift car will fill at the first or
possibly second floor it stops at and will then travel down the building bypassing the
lower and intermediate floors. By the time the car is empty more passengers have
placed calls on the higher floors and the process repeats, leaving the lower floors with
poor service. Again the solution is to force a different traffic handling strategy.
Techniques that prove useful for the up-peak condition can also be applied usefully to

the down-peak.

2.3 Zoning

The division of a building into a number of Zones, each served by dedicated lifts has
been known for some time to improve overall system throughput under peak traffic
conditions. Barney (Barney et al, 1985) shows that for a 24 floor high-rise building,
the up-peak performance can be improved, using two less lifts, if the building is split
into two zones. The first zone has 6 dedicated lifts to serve floors 1- 13, while the
other zone serves floors 14 — 24 with a further 6 lifts. The benefits of zoning arise
from the reduction in the number of times a lift has to stop during a round trip, the
fact that it forces a more even distribution of lifts around the building and the

equalisation of traffic load between zones.
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Reducing the number of times a lift must stop, is the most important benefit. As a
significant amount of the journey time is taken with the acceleration/deceleration of
the lift and the door operating times. By zoning the lifts, passengers with common
destinations are forced to use the same lift cars and therefore as a proportion of the
capacity of the lift, the number of people travelling to a single floor is increased.
Another benefit of the zoning scheme described above is that for the high-rise zone,
the lifts are not expected to stop at the lower floors. This means the lift can always
reach and maintain maximum speed for over half the height of the building, this
would be significantly less likely, if zoning were not in place. A further benefit is a
more even distribution of lifts around the building, making the system more
responsive and so reducing average waiting times. It is in effect an anti-bunching

feature.

Finally provided the zone boundaries are selected correctly the passenger traffic can
be shared out equally. As can be seen from the zoning example above the lower zone
or Local Zone serves 13 floors while the second zone or high-rise Zone serves 11.
Obviously there is further to travel to service the floors in the high-rise zone and this
is balanced by the fact that there are fewer floors to service. The selection of this
zone separation point has been the focus of much research in dynamic zoning and will

be discussed shortly.

2.3.1 Zoning Methods

There are three methods by which Zoning is commonly implemented in buildings;

static zoning, layout-time zoning and dynamic zoning.
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Static zoning is the permanent allocation of certain lifts to serve a restricted number
of floors within the building and is often a feature of the architecture of the building.
The local zone lifts only have lift shafts, which reach partway up the building, while
the higher zone lifts will not have entranceways to the lower floors, just to the ground
floor. In fact for many high-rise buildings the high-rise zone may not have a direct
link to the ground floor at all. People wishing to reach one of these higher floors will
take an express lift to a restricted number of sky lobbies, where they transfer to lifts
servicing that zone. The World Trade Centre for example had a main entrance lobby
at ground level and two sky lobbies at floors 44 and 78. Each sky lobby was linked to
the ground by its own group of express lifts and a further express group linked the two
sky lobbies. Each of the three lobby floors then served the floors above them, which

were divided into four zones, giving a total of twelve zones to service 110 floors.

Layout — time zoning is a temporary form of zoning set to operate at particular times
of the day, to cope with peak traffic conditions. An information panel or indicator at
the entrance to the lift informs the passenger when zoning is in operation and which
floors the particular lift car is serving. While the use of zoning can be seen to provide
increased handling capacity during peak flows of people into and out of the building,
it does have disadvantages for other traffic conditions. For most of the working day,
random inter-floor traffic will form the bulk of the journeys within the building. In
these circumstances zoning can be seen to reduce the performance of the system for
journeys between zones. This is because a passenger has to travel to an intermediate
transfer floor, before being able to enter a lift capable of travelling to the required
destination. By engineering the building so that all lifts can service all floors and then
allowing the control system to zone the lifts just at peak times of day, it is possible to

provide an efficient means of coping with both types of traffic condition.
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Dynamic zoning is a more flexible method of implementing zoning. With the
previous types of zoning, the zone boundaries are either permanently fixed by the
design of the building, or at least pre-programmed into the controller. The
introduction of modern control systems enables closer monitoring of the prevailing
traffic pattern and provides the potential for adapting the control regime to suit the
traffic pattern. It aims to dynamically allocate the zone boundaries in an optimal
manner for the current traffic condition. Chan & So (1995) first introduced the
concept for up-peak and down-peak traffic conditions and then further developed it
for random inter-floor traffic (So & Chan, 1997). Their approach is to provide as
many zones as there are lifts and adjust the zone boundaries in such a manner that it
minimises the Round Trip Time (RTT) for all the lifts within their respective zones

and so ensure an even traffic load. The strict rule: -
0 < nl < n2 ocun< nj < sese < nm.l < N

Defines the m-1 zone boundaries between the Ground Floor = 0 and the highest floor
in the building = N. The mathematical problem becomes the minimisation of the
following cost function: -
Min Y RTT;
Nyyeeeslp =

Where: -

The number of lift cars = the number of zones = m

The number of floors above the ground floor =N

The highest floor served by car 1 in zone 1 =m
The round trip time for the j™ car = RTT;

The solution of this problem is however non trivial. Chan & So initially described a

solution, based on a standard Lagrange function together with Kuhn-Tucker

13



conditions and then in their second paper a solution based on a genetic algorithm.
Further work has however criticised these solutions for practical implementation into
real time systems, due to the intensive nature of the calculations involved. Qun has
proposed two alternative methods (Qun, Zen-Shi & Xiago-guang, 2001) and (Qun,
Xin-Yu & Zen-Shi, 2002) involving a direct search numerical method and a dynamic
programming approach. Which if any of these solutions will be deemed practicable is

beyond the scope of this paper.
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3 Factors affecting the performance of an
automated evacuation.

If we accept the hypothesis that in the future a suitably designed lift control system
can be used to provide a safe means of evacuating medium and high-rise buildings,
we must then consider what control strategy it should adopt and the factors that will

govern its operation

3.1 Everybody-Out vs. Prioritised Evacuation.

The optimum strategy may well depend on the type of emergency and how it’s
perceived by the occupants of the building. Certain threats such as fire may present
an immediate threat to a relatively small proportion of the buildings population, under
these circumstances it can be argued that the everybody-out option is not the best
strategy, as it could delay the evacuation of those at most risk (Guylene, 2002) also
(Howkins, 2000). They propose a sequential evacuation, where floors are evacuated
by priority. Starting with the affected floors and those directly threatened. It is
however conceded that this type of evacuation requires training and good
communications, to be effective. Guylene describes three stages of training,
consisting of talk-through, announced drills and finally surprise drills. It is also noted
however, that maintaining the motivation of occupants to take part can be a difficult
issue. Favro (1997) quotes studies in human behaviour, which clearly show that
people in emergency situations do what they are used to. They tend to follow their
familiar route out of the building, or if they are just visiting, to reverse the way they
came into the building. In both cases they tend to gravitate towards the lifts, even if

warned not to do so. Keating and Loftus have found that under heightened anxiety,

15



people’s attention becomes narrowly focused, making them aware of only the most
obvious aspects of their environment. Under these circumstances habit will tend to
take over and specific emergency procedures tend to be forgotten. Favro (1997) goes
on to question the concept of partial evacuation, considering it to be naive. He points
out that people faced with a threat, either real or perceived, will attempt to flee. It is
unlikely that they will be convinced that they are not in danger, if they see what they
consider to be evidence of an immediate problem. He quotes an incident at the World
Trade Centre in 1975. In this case a fire involving a wastebasket, which was confined
to a single room, caused the spontaneous evacuation of 11 floors, though the smoke

was light, non-lethal and the occupants were told that evacuation was unnecessary.

Other types of threat may require evacuation in a less specific manner. A terrorist
warning of a bomb may well require the full evacuation of a building by the quickest
means possible, presenting no scope for prioritising floors. It must also be conceded
that at the start of an emergency, precise information on the threat is a rare
commodity. While it may be feasible to think of an automatic transfer of information
from the fire control system to the lift control system, this is only likely to happen in

buildings with highly integrated systems.

With these points in mind, we must consider the everybody-out option as being the
more general strategy. But to allow a prioritised evacuation to be implemented if and
when it becomes clear that the threat is localised within the building and the floors of
higher risk are identified. Our algorithm will need to be flexible to cope with both

conditions.
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3.2 Effects of Bunching

Since fully automated lift groups have been in use, it has been known that under peak
traffic conditions there is a tendency for their movements to synchronise. Al-Sharif
(1995) has described a method of determining a bunching factor, which shows when
bunching comes into effect for a group of lifts serving the same floors. Using
simulation techniques, he has been able to demonstrate the process starting to take
effect in an eight car group, at system traffic levels of as little as 40% of the total liftv
capacity and at 60% for a two car group. His findings indicated that the main result of
bunching was to increase the average waiting time for the system, but not to
materially affect the system handling capacity. Previous work done by Poschel
(1994) reported on the dynamics of a jamming effect as large numbers of occupants
leave the building. He describes it as the “Feierabend Effect”, or end of day down
peak. These conditions are a less extreme example of what could occur during an
emergency evacuation. As with Al-Sharif’s work he also describes a threshold effect
as passenger movements increase. His work was again based on simulation, but in
this case he implemented two forms of control strategy. Both were based on Nearest
Car allocation with full collective control. One algorithm was able to make use of car
weighing to ensure full cars are not stopped at intermediate floors. He refers to this
strategy as “smart” control, while the other algorithm without car weighing was
referred to as “naive”. He showed that a naive control algorithm demonstrates the
bunching threshold earlier than the smart algorithm and that passenger throughput
falls back after the threshold is reached. Thus reducing the overall capacity of the

system just at the point it is needed the most.
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For an evacuation strategy these effects must be avoided, therefore our algorithm will
attempt to avoid bunching and will implement car weight to measure the level of

occupancy of the lift, as used in the smart control algorithm.
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4 Features of the proposed evacuation
algorithm

An automatic evacuation strategy has the task of moving the building population to
the evacuation floor, typically the ground floor, in the fastest time possible. This
essentially means minimising the number of times a lift stops during the round trip
from the evacuation floors and back again, while ensuring it returns with a full load.
As a general principle it will assume an everybody-out policy is being adopted, but
will make provision for a prioritised strategy to be imposed should the nature of the
emergency make that approach more appropriate. This decision would need to be
taken as part of the evacuation management plan and would be made by a suitably
authorised member of staff. The control equipment will be assumed to include a car
weight sensor, which enables the level of occupancy of the lift to be estimated. A pre-
recorded announcement should be played to inform all passengers that the lift is
operating as an evacuation lift and will be travelling to the evacuation floor. In the
event of overloading, or door obstruction further messages should be played to inform
the passengers of the current status of the lift and so allow corrective action to be
taken. As with the current standards (BS5588) it is assumed that the landing, from
which the evacuees are to enter the lift, is a refuge area with adequate protection from

smoke and fumes and therefore panic should not be a prime concern.

The evacuation algorithm will be designed to meet and cope with a number of
potential conditions during the various stages of an evacuation. Initially the algorithm
will allocate all the floors in the building to a number of zones; one lift per zone. This
will prevent any form of bunching and also ensure an even distribution of lifts

throughout the building. Should a prioritised evacuation from above a designated fire
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floor be called for, then the zoning routine may be called again to remove the zoning
allocation from low priority floors and redistribute the priority floors amongst the

Zones.

The next phase is to start allocating cars to landing-calls. For this exercise all
landing-calls are treated in the same manner, regardless of direction. An up landing-
call means that a person is at the landing and should therefore be moved to the
evacuation floor in just the same way as if they had placed a down call. Initially as
people start arriving at the floors a lift may not fill up completely before leaving the
floor. This implies that there are no passengers left waiting at the floor and this factor
is used to lower the floors priority for an immediate revisit. The partially filled car

will then be allocated another floor to pickup from until it is full.

As the evacuation progresses the number of people waiting at the landing ensures that
the lift is filled, each time it visits a floor. The objective now is to ensure that all the
floors are visited regularly. The zoning of floors ensures that there is a lift prioritised
to serving those floors, however within the zone there may well be a number of floors
requiring service from just one lift. Conventional collective control tends to send the
lift to highest floor first and then collect passengers on the way down. In this traffic
condition it would result in a very poor service for the lower floors in the zone
(Barney et al 1985). The lift would pass the lower floors on the way up; then fill to
capacity at the highest floor and so return directly to the evacuation floor. Only when
the higher floors are cleared would the lower floors in the zone see service. To avoid
this happening the allocation process needs to track the last time each floor is visited

and prioritise floors that have not had recent service.
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As the evacuation proceeds it is likely that one zone will be emptied before the others.
With a conventional zone this would result in the lift being designated as free and it
would remain at a parking floor. In our case the zoning algorithm gives weight to
landing-calls in surrounding zones, thus enabling the lift to continue to assist in other
zones. This can then lead to the floors with higher populations being serviced more

rapidly.
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S Elevate Simulation Software

The Elevate Simulation software is a commercially available software package, which
enables designers to trial different lift configurations and control strategies in all types
of buildings (Peters, 2001). It provides various modes of operation, including the
ability to link in a custom designed control strategy to the main simulation program.

This is the mode of operation used for evaluating the evacuation strategy.

Initially the simulation software needs to be confi gured with details of the building, its
occupancy and the characteristics of the lift system. Having set these physical
characteristics, the dynamics of the system can also be configured. This consists of
the arrival rate of people at the landings, a probability factor for their destination
floor, a time slice for each simulation step and finally a control strategy. This can be
the basic algorithm provided as a standard with the package, or a custom package
developed using Microsoft Visual C++ and accessed as a Dynamic Link Library

(DLL).

For all the tests performed the simulator was configured to cause the total population
of each floor, to arrive at its landing and try to travel to the ground floor, during the
first five minutes of the simulation. A random number generator schedules the
individual passenger arrival times using a seed value from the configuration, this
determines which passenger arrives at what floor and when. Using the same seed
value in subsequent runs will produce the same passenger arrival sequence and so
enables a consistent comparison to be made between different control algorithms. By

varying the seed value a different arrival pattern is produced, but in all cases the
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overall arrival rate follows a Poisson distribution, which is generally accepted as a
good model for passenger arrivals (Barney et al, 1985). As a passenger arrives at the
landing, the control strategy is notified by the registering of a landing-call, it then
responds by allocating a lift car to service the call. The dynamics of these processes,
time to close the doors, car acceleration, travel speed and deceleration, are all
simulated in accordance with the configuration information provided initially. The
passenger is then simulated entering the lift and placing a car-call to the destination
floor, in accordance with the probability factor designated. For our simulation this is

100% for the ground floor, forcing all cars to empty when this floor is reached.

As the simulation progresses, a mimic display, as shown in figure 1, shows an

animation of the lift operations.
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Figure 1 — Elevate simulation screen.

This allows a visual inspection of the system’s operation, while at the same time
statistics on each passenger’s journey are being recorded. This information can then
be used, at the end of the simulation, to provide more objective measures of
performance, in the form of an analysis report. Appendix B shows typical reports

generated during testing.
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6 Evacuation Strategy Evaluation

The basic data for this evaluation, such as number of lifts, speed, capacity, number of
floors, etc was based on a traffic survey performed prior to a lift modernisation on an
office block in London. It therefore forms a realistic model for a medium rise
commercial building. The building consists of 8 floors, including the ground floor,
with a floor separation of 3.5 Metres. It is served by 5 lifts, each with a capacity of 24
people. The lift cars can travel at a speed of 2 Metres/Sec; accelerate at 1 Metre/Sec?,

with a maximum Jerk of 2 Metres/Sec>

The floor population is significantly different for each floor and is shown in the

following table.

Floor Population
110
191
287
237
131
259
138

NNl W N =

Table 1 - Floor Populations

6.1 Optimum evacuation.

To provide an assessment of the best possible performance, the spreadsheet shown in
Appendix A was developed. This calculates the minimum time to evacuate the
buil»ding, using the lift system alone, for an everybody-out evacuation. It takes the
population for each floor and calculates the number of full car journeys required to

remove the majority of people from that floor. The simulator was used to measure the

25



time to evacuate one person from each floor in turn, thus giving a round trip time for
one person from that floor. The simulator allows 2.4 seconds for one person to enter
and leave the lift. As the lift capacity is 24 the single person round trip time is
extended by 55.2 Seconds (23 * 2.4) to give the round trip time for a full car to that
floor. By inspection, the number of full journeys to nearly evacuate that floor can be
allocated to various columns of the spreadsheet, representing the 5 lifts. The aim
being to keep the total journey times for each lift as near as possible the same. To

assess this, the average journey time and its variance is calculated for each lift.

Having allocated all the full car journeys, there are still people remaining at the floors.
As the numbers will not fill a lift car, the car is allowed to stop at more than one floor
until it is full. The journey times are calculated in a similar way to that when full, but
allowing for the additional stop. These journey times are shown in the “Journey time
for people remaining” column and are allocated to the lift columns as described

previously.

The resulting prediction is the time each lift would be in continuous operation and
provided the difference between these journey times is small, when compared to the
individual journeys, then the times achieved will be the best that can be achieved from

that system.

As can be seen from the spreadsheet Lift 2 will deliver the last person after 15.32 =

15 minutes 19 seconds. This should be considered the optimum value we are trying to

achieve for this building.
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6.2 Basic Simulation

To provide a base reference, the standard control algorithm supplied with the Elevate
software was used to perform a series of runs. This is a nearest car allocation system,
with full collective control evacuating the whole building population. The building
and population data was configured into the system, with all the passengers arriving at
the landings within the first five minutes and all passengers travelling to the ground
floor as their destination. The simulation was allowed to run until all the passengers
had been delivered to the ground floor and the elapsed time was recorded. The test
was then repeated a further four times using a different seed number for the random
passenger arrival generator. This change alters the pattern of passenger arrivals while
retaining the overall Poisson distribution for the five-minute arrival period. Having
made five simulation runs the average evacuation time was calculated to be
23minutes 31seconds as shown in Table 2. This is the base that any improvement can
be measured against. A value for the standard deviation on the data was also made,

which gives a measure of the variability between results.

Seed Value Evacuation time
1 23:26
5 23:11
10 22:59
15 23:59
20 24:02
Average 23:31
Standard Deviation 28.3

Table 2 — Evacuation times using the basic simulation.

6.3 Evacuation Strategy Simulation

The-Elevate simulation software allows custom algorithms to be evaluated by linking
them in as a Dynamic Link Library (DLL) of the name “DispatchX.dlI”. This routine

can be developed in Microsoft Visual C++ and is based on a skeleton routine
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provided as part of the Elevate development software. The development pack
provides header files for various modules within the Elevate software, making
variables and functions available to the DLL. It also provides a skeleton version of
the DispatchX.dll source code, which defines the interface routines that must be
provided to the Elevate software for it to operate correctly. The Reset routine is
called once at the start of the simulation to initialise any working variables within the
DLL, while the Update routine is called every 100 milliseconds to allow the algorithm
to update its calculations in line with the new dynamic position of the lifts. Before the
simulation started the operator was able to select between alternative control
algorithms, the case statement within this routine simply reflects that decision, calling
the actual algorithm under test, in our case “Algorithem0”. Section 4 described the
features that the evacuation algorithm would seek to achieve; we will now describe

how these features have been provided. The full algorithm is shown in Appendix C.

6.3.1 Zone Allocation

The Reset routine is used to initialise any working variables and to load certain
building data constants. It then calls the Zone Allocation routine. For this test we are
considering an everybody-out strategy, so the routine is passed the first and top floors,
as the area to allocate zones between. In the case of a prioritised evacuation, the
routine would be passed the lowest and highest floors to be evacuated, so that zoning
would only be permitted for this area of the building.

The zone allocation process is essentially the problem addressed by dynamic zoning
in Section 2.3.1. and will allocate a zone for each of the available lifts. However in
our case we are not concerned with changing traffic patterns, the intention being to
consider the zone allocation as just one of a number of factors for car allocation. We

are therefore less interested in discovering the exact mathematical optimum solution,
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than with providing a simple and quick calculation that will provide a fair allocation.
Indeed even with an exact mathematically optimum solution, the zoning boundaries
are not integer values, so must be rounded to the nearest floor, introducing a level of
approximation. The method of allocation used in the zone allocation routine, is based
on estimating the amount of traffic associated with the floors being zoned and then
dividing this across the number of lifts available. This therefore allocates as many
zones as there are lifts, as is the case with dynamic zoning. The zone allocation

routine is shown below.

// Allocate a zone number to each floor level
void dispatchX::ZoneAllocation(int StartFloor, int EndFloor)
{

int i;

// Initialise all floors
for { i=1; i<= TopFloor; i++) {

m_Userl [ZONE_FOR_FLOOR + i] = 0;
} // for i <= TopFloor
// Cumulative Floor Population Distance.
m_Userl [CUMULATIVE_POP_DISTANCE] = 0;

for ( i= StartFloor; i<= EndFloor; i++) {

m_Userl [POP_DISTANCE + 1] = m_Userl[POP_OF_FLOOR + i] *
m_Userl [FLOOR_HEIGHT + i] ;

m_Userl [CUMULATIVE_POP_DISTANCE + i} = m_Userl[POP_DISTANCE + i} +
m_Userl [CUMULATIVE_POP_DISTANCE + i - 1];

} // for i <= EndFloor

// Calculate an average population to be moved by each lift.

m_Userl [AV_FLOOR_POPULATION] = m_Userl [CUMULATIVE_POP_DISTANCE + TopFloor]
/ (m_NoOfLifts -~ 1);

// Allocate the zone to a floor based on how many times the average value

// is contained in the cumulative value for that floor.

for ( i= StartFloor; i<= EndFloor; i++) {

m_Userl [ZONE_FOR_FLOOR + 1i] + m_Userl [CUMULATIVE_POP_DISTANCE + 1]

=1

/ m_Userl [AV_FLOOR_POPULATION] ;
}

} // Zone Allocation

This routine is going to calculate what zone each floor is a member of. This is done
by allocating one element of an array for each floor and allocating it the zone number
chosen for that floor. The initial stage of the routine is to initialise this array to zero
for each floor in the building. If a prioritised evacuation were to be used the

subsequent phases would allocate zones only to the floors involved in the evacuation.
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The remaining floors will remain initialised to zero and can be ignored for call
allocation during the initial evacuation phase.

The next stage in the routine is to calculate a cumulative floor population x distance.
To estimate the amount of traffic involved in evacuating a floor, the product of the
number of people on the floor and the distance they have to travel is calculated. A
cumulative value is then calculated for each floor, starting at the first floor. This is a
total for the current floor and all floors below it. Consequently the top floor holds the
total traffic for all the floors under consideration. As each zone is to be served by
only one lift, taking this total traffic value and dividing it by the number of lifts can
calculate the average traffic for each zone.

The final stage is to make the zone allocation. Again starting at the first floor the
cumulative value for that floor is divided by the average traffic value. The integer
result, ignoring any remainder is then increased by one to give a zone number. The
average value represents the capacity of one zone, while the cumulative value
represents the total demand to that level and so the division process gives the number
of zones worth of capacity required at that floor. Basing the zone allocation on that

value ensures that each zone has roughly the average traffic allocated to it.

6.3.2 Car Allocation

The car allocation process is where the decision about which car to send to a specific
floor is made. This decision is based on the dynamics of the situation and is therefore
revisited each time the update program is called. All previous allocations are
cancelled and the landing-calls are held as primary calls. The allocation process
considers each available lift car in turn and reviews all the primary landing-calls. A
selection factor is calculated for each of these calls and the call with the highest

selection factor has the lift allocated to it. The status of that landing-call is then
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changed to that of secondary allocation. The decision about which lift cars are
available is based on the current status of the lift car. If the car has its doors closed
i.e. it is not loading or unloading and it is not full, the car weight is less then the 24
person maximum of 1800 Kg, then it can be considered for allocation. For most of
the evacuation period this process is sufficient to allocate all the lift cars‘ available,
however as the evacuation draws to a conclusion, there are more lifts available than
there are floors to be served. Rather than let these spare lifts stand idle, a second car
allocation is performed. This uses the same process as the primary allocation
however the selection factor is based on a different factor, an estimate of the floor

with the highest number of people remaining, the Population factor.

6.3.3 Selection Factors

The heart of the allocation process is the calculation of the selection factor. This
calculation will be repeated many thousands of times during the calculation and
should therefore be as efficient as possible. The main selection factor routine
SelFactor combines the results of three selection functions as a weighted sum.
However the weighting factors for the duration of this test were set to 1, giving each
factor equal significance. The SelFactor routine is shown below, followed by

descriptions of each of the selection functions.

// Calculate a selection Factor for calling this lift to this floor. Based on
// the set criteria.

double dispatchX::SelFactor (double CurrentTime, lift 1[MAX_LIFTS],
int iLiftNo, int iFloor)
{

iFloor--;

double dFactor = FillWeight * FillFactor(iFloor) +
DurationWeight * DurationFactor (CurrentTime, iFloor) +
ZoneWeight * ZoneFactor (iLiftNo, iFloor) ;
return dFactor;

}
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The FillFactor is of significance at the start of the evacuation. In the early stages of
an evacuation the number of people waiting may be less than the capacity of the lift.
If this is the case then the lift car will not be full on leaving the floor and by
implication the floor will be empty. Under these circumstances the floors priority for
allocation of a further visit should be down rated for a period of time. The routine

below calculates a % factor for how full the lift was the last time it left the floor.

// % of Car Capacity used when leaving this floor last time

double dispatchX::FillFactor(int iFloor)

{

double dFactor = 100 * m_User2[WEIGHT ON_LEAVING_FLOOR + iFloor]/ WEIGHT_OF_FULL_CAR;
return dFactor;

}

The DurationFactor provides a measure of how long it has been since the floor was
last visited. It is calculated as a % of the round trip time to that floor and is aimed at
ensuring an even service within a zone. It also works as a way of timing out the
depressive effect of the fill factor, ensuring that a revisit is made and that a full lift

does eventually leave the floor.

// Time since last pickup as a % of the round trip time

double dispatchX::DurationFactor (double dNow, int iFloor)

{

double dFactor = 100 * (dNow - m_User2 [LAST_PICKUP_FROM_FLOOR+iFloor]) /
m_Userl [RTT_FOR_FLOOR+iFloor];

return dFactor;

}

The ZoneFactor is the most significant factor during the main part of the evacuation.

Its purpose is to provide an even distribution of lifts around the floors to be evacuated.
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Unlike conventional zoning we are not attempting to make an absolute allocation of a

floor to a zone, we simply provide a degree of membership for a particular floor.

The algorithm starts with a designated floor and lift, we are attempting to find if this
floor is to be served by this lift. The first line of the calculation finds the difference
between the zone the floor is allocated to and the zone for the lift. A value of 0
indicates the floor is in a zone served by this lift. A value of +1 or —1 indicates the
floor is in a zone adjacent to the zone served by the lift. The next step is to normalise
the fit value giving the zoning selection factor. If the floor is a member of the lift’s
zone then the selection factor is 100%, while neighbouring zones score 93% and

Zones once remove score 75%

Zone Factor = 100 * ( (No of Zones-1 )2 - Value’ )/ (No of Zones-1)°

This form of allocation gives the floor a degree of membership to all of the zones
however the further away it is from the lift’s zone the less likely it is to be served by

it. The allocation profile can be seen from fi gure 2.

// Factor for membership of the zone

int dispatchX::ZoneFactor(int iLiftNo, int iFloor)

{

int ivalue = m_Userl [ZONE_FOR_FLOOR + iFloor] - iLiftNo;
int iFactor = 100 * (16 - iValue*ivValue)/16;

return iFactor;
}
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Figure 2 — Zone factor for each floor

Unlike the other factors PopulationFactor is called by the main algorithm, but only
when there is a second lift available to visit a floor. This condition can arise towards
the end of the evacuation, as the floors are cleared, and is intended to provide a bias
for floors likely to have more people on them. It initially works from the designated
floor population as a % of the building population, the floor population is however
reduced by the lift capacity each time a full lift leaves the floor, so a running estimate
is maintained of the number of people remaining at the floor. A floor with the highest

estimated people remaining will get allocated a second car if one is available.

// % of Building population possibly remaining at this floor.
int dispatchX::PopulationFactor{int iFloor)

{
int iFactor = 100 * m_Userl[POP_OF_FLOOR + iFloorl/ m_Userl [POP_OF_BUILDING] ;

return iFactor;

}
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6.3.4 Simulation Results

The evacuation algorithm was compiled and linked as a DLL and run as a custom
control, repeating the tests outlined in Section 6.2. Again five runs were performed
and the average and standard deviation were calculated. As can be seen from Table 3
the average evacuation time has been reduced by 4 minutes 38 seconds to give

18minutes 53 seconds.

cecd C O

1 18 :58

5 18 : 49

10 18:51

15 18 :58

20 18 : 50

Average 18 : 53
Standard Deviation 4.4

Table 3 - Evacuation times using the evacuation simulation.
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7 Analysis and Conclusions
A simple inspection of the results obtained shows a significant improvement in the
evacuation time. Table 4 shows the results obtained, as compared to the Basic

Simulation, which is to be used as a base line for the evaluation.

Time to evacuate 2331 18:53 15:19

Improvement on 4:38 8:12

Basic Simulation

% Improvement 20% 35%
Standard Deviation 28.3 4.4

Table 4 — Comparison of simulation results.

From these figures it can be seen that the Evacuation strategy has produced a 20%
improvement on the basic algorithm supplied with the simulation software. This is
3 minutes 34 seconds short of the optimum evacuation time, but still a significant
improvement. The other significant factor to be drawn from these test results is the
value of standard deviation. This factor is a measure of the variability in evacuation
time that arises from different arrival patterns. It shows clearly that the Evacuation
strategy is much less susceptible to variation in the arrival pattern and therefore gives

a more predictable outcome.

While the objective data of evacuation time, gives a measure of the improvement

seen, it was also possible to make a number of observations on the causes of this

improvement. From simply watching the lift animation screen it is possible to infer
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what may be happening. Figure 3 shows a snapshot of the Basic simulation just over

9 minutes into the first run, with a seed value of 1.

| * Elevate - [100EvacStratl elv]
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Figure 3 — Basic simulation after 9 minutes

As can be seen from this screen snapshot, the effect of bunching is pronounced and
has been for a significant period up to this point. The evacuation pattern has been
very repetitive, with the same floors being serviced at the expense of others. This can
be seen from the pronounced difference in the number of people waiting at the

different floors. Table 5 shows how uneven the evacuation has been so far.
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138 18 120

7
6 259 235 24
5 131 35 96
-+ 237 117 120
3 287 191 96
2 191 71 120
1 110 89 21
Total 1,353 765 597
Std. Dev. = 44.2

Table 5 - Population distribution after 9 minutes with the basic simulation.

As the evacuation progresses this imbalance has a pronounced effect on the
evacuation time. Floors empty and eventually three floors remain with people
waiting.  Under these conditions some lifts park at the ground floor, while the
populated floors are being serviced by individual lifts. This effectively wastes the

capacity of the lift parked at the ground floor.

For the Evacuation Strategy the picture is somewhat different. Figure 4 shows a

screen snapshot at approximately the same point in time for the equivalent run with

the evacuation algorithm.
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Flgure 4 — Evacuatlon s1mu1at10n after 9 mlnutes

Here we can see no evidence of bunching and that has been apparent from the start of
the simulation. It is also apparent that the floor populations are not as badly out of
balance as for the previous case. If we calculate the number of people evacuated we

have the following results.

7 138 54 84

6 259 146 113

b 131 41 90

4 237 150 87

3 287 160 127

P 191 21 120

1 110 41 69
Total 1,353 672 690
0 Std. Dev. = 21.5

Table 6 - Population distribution after 9 minutes with the evacuation simulation.

Here we see some variation in the numbers evacuated from each floor, but the

variation is not as marked. Comparing the standard deviation for the numbers
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evacuated, it is seen to be just less than half the value of the Basic Simulation,

indicating a more even service.

While watching the evacuation algorithm run, with various passenger arrival patterns,
it was possible to identify two situations where the lifts moved in a less than efficient
manner. The first situation arose at the initial stage of the simulation. With some
arrival patterns there was insufficient demand to occupy all the available lifts. In this
situation the second car routine dispatches the spare car to the floor with the highest
expected population. As this is still the early moments of the simulation only a few
people have arrived at the floor and two lifts are available to collect them. In these
circumstances both lifts partially fill and either return to the ground floor, or have to
make a second stop to collect passengers from an intermediate floor. In either case a
small amount of capacity has been lost from the system. The second situation also
arises when the lift car partially fills. Because of the way the simulator operates the
lift car is only permitted to travel down the building when passengers are onboard. It
has been seen on occasions where a lift only partially full ignored a landing-call on a
floor immediately above it and the call had to be serviced by a lift travelling from the

ground floor.

In conclusion a 20% improvement has been achieved with this dedicated evacuation
algorithm and it has a more consistent operation when faced with different passenger
arrival patterns. From a theoretic assessment of the situation it is possible to say that
further improvement should be possible, but this improvement could only be of the
order of 3 minutes 34 seconds. It is felt that the benefits seen stems mainly from
improving the balance of service to the individual floors and this may be an area to

develop if further improvements are to be achieved.
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If we consider 9 minutes as being a reasonable response time for the emergency
services to respond to the building. It can be seen that allowing the lift system to
operate in automatic evacuation mode has allowed 690 people, over half the building
population, to leave the building before the emergency services arrive to provide
supervised evacuation. This is a strong argument for allowing a suitably designed lift
system to operate automatically during an emergency situation. It however remains to

be seen if this added benefit will be recognised within building codes of practice.
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8 Future Work

The results described in the previous section should only be seen as an encouraging
first step in the development of a specialised evacuation control algorithm. So far the
algorithm has only been tested for one specific building layout, with an everybody-out
strategy. As such any benefits seen can only safely be said to apply to a building of
that particular size. The next step should therefore be to perform a series of further
tests to investigate the effectiveness of the algorithm under different operating
conditions. There are several areas to consider; the building construction needs to be
varied in terms of the height, population and lift performance, here the use of actual
building examples would be of great assistance, to ensure realistic scenarios are
tested. In addition to this the evacuation strategy should also be considered, for our
test we opted for an everybody-out approach, however the algorithm is capable of
operating over a restricted number of floors, to give a prioritised evacuation. Its
performance in this area has not yet been evaluated and as such is another area for

attention.

A third and less obvious area is the assumption made about building and floor
populations. The tests performed so far used the building design populations for
calculating the zoning requirements and for the second car allocation. These values
were also used to configure the simulator, so in effect we presented the algorithm with
an idealised situation. In a real building it is unlikely the design population and the
actual population would be the same; visitors come into the building, the staff take
holidéys etc. It would therefore be of some interest to measure the effect of varying

simulated floor populations, away for the design norm.
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A further area of investigation, that had been envisaged, is to try and optimise the car
selection factors. Provision was made in the original design to weight each of the
individual selection factors. For the purpose of these tests however, these weighting
factors were given a common value of 1 and hence had no effect on the selection
process. The application of different weighting factors could be investigated to see if

a critical factor could be identified and enhanced within the car selection process.

The final area to be considered, is the decision to use the Basic Simulation as a
baseline to measure improvement from. This form of control is a general-purpose
nearest car strategy, which was selected for the purely practical reason that it was
available. A more considered approach would suggest that an algorithm designed to
cope with a normal down peak traffic flow, would be a better benchmark to judge the

evacuation algorithm against.
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ppendix A

Best Evacuation time calculation

Time to :
Floor Floor No of Full People Load/unload lf ::3::‘ Time to fill Full Car Time for all Journey time
Level Populati Car Size Journe Remaini  People Round / empty the Round Full Car for people
on vs ng Remaining car trip time journeys | remaining
trip time
24 Sec Sec Sec Sec Sec
Level 7 138 24 5 18 43.20 38.50 55.20 93.70 468.50 86.35
Level 6 259 24 10 19 45.60 35.00 55.20 90.20 902.00
Level 5 131 24 5 11 26.40 31.50 55.20 86.70 433.50 57.90
Level 4 237 24 9 21 50.40 28.00 55.20 83.20 748.80 70.90
Level 3 287 24 11 23 55.20 24.50 55.20 79.70 876.70
Level 2 191 24 7 23 55.20 21.00 55.20 76.20 533.40
Level 1 110 24 4 14 33.60 17.60 55.20 72.80 291.20 51.20
Ground
Total 1,353 51 4,254.10 4.44
70.90 Min(Total)
14.18 Min (Avr)
24 Sec (Time to load &
: unload 1 person)
Lift 1 Lift 2 Lift3 Lift 4 Lift5
1 93.70  90.20 90.20 83.20 83.20
2 93.70  90.20 90.20 83.20 83.20
3 93.70  90.20 90.20 83.20 83.20
4 93.70  90.20 90.20 83.20 83.20
5 93.70  86.70 90.20 83.20 79.70
6 86.70  86.70 79.70 79.70 79.70
7 76.20  86.70 76.20 79.70 79.70
8 7620 76.20 76.20 79.70 79.70
9 72.80 76.20 72.80 79.70 79.70
10 70.90 72.80 86.35 79.70 76.20
11 51.20 72.80 57.90 86.70 90.20
Sum (Sec) 902.50 918.90 900.15 901.20  897.70 4,520.45
(Minutes) 15.04 15.00 15.02 14.96
Lift 1 Lift 2 Lift3 Litt 4 Lift5
Average 904.09 904.09 904.09 904.09  904.09
Variance  -1.59 14.81 -3.94 -2.89 -6.39 0.00
Var Sq 253 219.34 15.52 8.35 40.83 16.93
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Appendix B

Standard control algorithm results.
ELEVATE

Version 4.0

© Peters Research Ltd. 2001

JOB DATA

Job Title Internal Group Collective
Job No

Calculation Title

Made By

File 100EvacStrat1.elv

Date 17-Nov-02

ANALYSIS DATA

Analysis Type Simulation
Measurement system Metric
Dispatcher Algorithm Group Collective
Time slice between simulation calculations (s) 0.1

No of time slices between screen updates 1
Random number seed for passenger generator 1
Start at 11:00:00
End at 11:23:26

BUILDING DATA

Floor Name Floor Height (m)

Ground 3.5

Level 1 3.5

Level 2 3.5

Level 3 3.5

Level 4 35

Level 5 3.5

Level 6 3.5

Level 7

ELEVATOR DATA

No of Elevators 5
Capacity (kg) 1800
Door Pre-opening Time (s) 0
Door Open Time (s) 1.8
Door Close Time (s) 2.9
Speed (m/s) 2
Acceleration (m/s2) 1
Jerk (m/s3) 2
Motor Start Delay (s) 0.5
Home Floor Ground

PASSENGER DATA (Period 1)

Start Time 11:00
End Time 11:05
Loading Time (s) 1.2
Unloading Time (s) 1.2
Passenger Mass (kg) 75
Capacity Factor (%) 100
Stair Factor (%) 0
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Evacuation algorithm results.
ELEVATE

Version 4.0

© Peters Research Ltd. 2001

JOB DATA

Job Title Evacuation Routine
Job No

Calculation Title

Made By

File 100EvacStrat1.elv
Date 20-Nov-02

ANALYSIS DATA

Analysis Type

Measurement system

Dispatcher Algorithm

Time slice between simulation calculations (s)
No of time slices between screen updates
Random number seed for passenger generator
Start at

End at
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Simulation
Metric
+2nd car to Populous floor
0.1
1
1
11:00:00
11:18:58



Appendix C

Evacuation Control Algorithm.

Filename xDISPATCH.CPP

Purpose Implementation of dispatchX class
For the testing of an Evacuation stratergy.

Version 8/10/2002

#include "stdafx.h"
#include "arraysize.h"
#include "xdispatch.h"
#include "math.h"
#include "FLOAT.H"

#define max(a, b) (((a) > (b)) ? (a) : (b))

// Index values into the Userl array where these values are held.

#define POP_OF_BUILDING 10
#define POP_OF_FLOOR 10
#define ZONE_FOR_FLOOR 40

#define LAST_PICKUP_FROM_FLOOR 60
#define WEIGHT_ON_LEAVING_FLOOR 80
#define RTT_FOR_FLOOR 100

#define POP_DISTANCE 120 // For each floor the number of people * how
//far they have to travel
#define CUMULATIVE_POP_DISTANCE 140 // Cumulative value of above.
#define FLOOR_HEIGHT 160 // Floor Height
#define WEIGHT_OF_FULL_CAR 1400..// Consider lifts above this weight to be full (Kg)

#define AV_FLOOR_POPULATION 1401 // Average floor population.
#define TopFloor 7 // Highest floor

//FILE * fDebug;

//constructor
dispatchX::dispatchX{) {}

//member functions

// This routine is called before the simulation starts
void dispatchX::Reset (building b) {

//FILE * fDebug = fopen("debug.txt", "a+");
//fprintf (fDebug, "This is in Reset routine \n");

m_NoOfAlgorithms=1; //enter here the number of algorithms you have defined
//and want to be accessed by the user from Elevate

m_AlgorithmName[0]="2nd car to Populus floor"; // Identify the routine

for (int ctr=1l;ctr<=b.m_NoFloors;ctr++) //this ensures there are no left
// over calls
{ //registered with the dispatcher when the
m_UpLandingCalls([ctr]=0; //simulation commences
m_DownLandingCalls[ctr]=0;
}

for (ctr=0;ctr<1000;ctr++) //reset the user variables
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}

// and is called every time slice (0.1 to
// 0.01 seconds as entered by the user)

m_Userl[ctr]=0;
m_User2[ctr]=0;
}

// Allocate Floor Population.

m_Userl [POP_OF_FLOOR
m_Userl [POP_OF_FLOOR
m_Userl [POP_OF_FLOOR
m_Userl [POP_OF_FLOOR
m_Userl [POP_OF_FLOOR
m_Userl [POP_OF_FLOOR
m_Userl [POP_OF_FLOOR

+

+
+
+
+
+
+

1]
2]
3]
4]
5]
6]
7]

110;
191;
287;
237;
131;
259;

= 138;

for (int i=1; i<= TopFloor; i++)
nLUserl[POP_OF_BUILDING]

m _Userl [POP_OF_FLOOR + i];

// Floor Height

m_Userl [FLOOR_HEIGHT
m_Userl [FLOOR_HEIGHT
m_Userl [FLOOR_HEIGHT
m_Userl [FLOOR_HEIGHT
m_Userl [FLOOR_HEIGHT
m_Userl [FLOOR_HEIGHT
m_Userl [FLOOR_HEIGHT

+ o+ 4+ 4+ 4+

1]
2]
3]
4]
5]
6]
7]

ZoneAllocation({1l, TopFloor) ;

fclose (fDebug) ;
return;
//Reset

= m_Userl [POP_OF_BUILDING] +

35;
70;
105;

= 140;

175;
210;
245;

// This routine contains the dispatching algorithm(s),

void dispatchX::Update{double CurrentTime,lift 1[MAX_LIFTS],double SimulationTimeStep,
building b,int NoLifts, CString message, CString &mode)

//call the algorithm selected by the user

switch(m Algorithm)
{
case 0:

AlgorithmO(CurrentTime,l,SimulationTimeSte

break;
case 1:

Algorithml(CurrentTime,l,SimulationTimeSte

break;
case 2:

Algorithm2(CurrentTime,l,simulationTimeSte

break;
case 3:

p,b,NoLifts, message, mode) ;

p,b,NoLifts, message, mode) ;

p.b,NoLifts, message, mode) ;

Algorithm3(CurrentTime,l,SimulationTimeStep,b,NoLifts,message,mode);

break;
case 4:

Algorithm4(CurrentTime,l,SimulationTimeSte

break;

p,b,NoLifts, message, mode) ;
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void dispatchX::AlgorithmQ (double CurrentTime, 1ift 1[MAX_LIFTS]), double SimulationTimeStep,
building b,int NoLifts,CString message, CString &mode)
{ // Algorithem 0

int iLiftNo;

int iFloor;

int iBestFloor;
int iDemandSeen;
double dBestFactor;

for (int i=1; i<= b.m_NoFloors; i++)
{
for (int LiftNo=1; LiftNo<=NoLifts; LiftNo++)
{
if (1[LiftNo].m_UpLandingCalls[i]l==1 && i!=1[LiftNo].m_DestinationFloor)

m_UpLandingCalls([i]=1;
1[LiftNo].m UpLandingCalls[i]=0;

if (1[LiftNo].m DownLandingCalls[i]==1 && 1!=1[LiftNo].m DestinationFloor)

m_DownLandingCalls[i]=1;
1{LiftNo).m DownLandingCalls[i]=0;

// For Each lift car find a floor to send it to
for ( iLiftNo=1; iLiftNo<=NoLifts; iLiftNo++) {

// 1t we have reached the destination floor cancel the call
if ( 1[iLiftNo].m_DoorStatus == OPENNING &&
1[iLiftNo] .m DestinationFloor == 1[iLiftNo].FloorAt() ) {

1{iLiftNo] .m_UpLandingCalls [1({iLiftNo] .FloorAt ()] = 0;
l[iLiftNo].m_DownLandingCalls[l[iLiftNo].FloorAt()] 0;
1[iLiftNo].m_Direction = DOWN;

}

// Now chose the best floor to send this lift to
iBestFloor = -1;

dBestFactor -1;

iDemandSeen = 0;

for ( iFloor=1; iFloor <= b.m_NoFloors; iFloor++ ) {

double FloorFactor = -1;

// If there is a demand on this floor

if ( m_UpLandingCalls [iFloor] > 0 ||
m_DownlLandingCalls[iFloor] > 0 ) {
iDemandSeen++;

// If the lift can collect passengers
if( 1{iLiftNo].m_DoorStatus == CLOSED &&
1{iLiftNo] .m_CurrentLoad < WEIGHT_OF_FULL_CAR ) {

// Can the lift collect from this floor. If so find out how important it is
if ( 1[iLiftNo].m_Direction == UP &&
1[iLiftNo].QuickestFloorStopFloor() <= iFloor }
FloorFactor = SelFactor (CurrentTime, 1, iLiftNo, iFloor) ;

if { 1[iLiftNo).m Direction == DOWN &&
l[iLiftNo].QuickestFloorstopFloor() >= iFloor ) {
FloorFactor = SelFactor (CurrentTime, 1, iLiftNo, iFloor) ;
}

if ( 1[iLiftNo].m_Direction == NONE &&
1[iLiftNo].m_CurrentLoad == 0 )
FloorFactor = SelFactor (CurrentTime, 1,iLiftNo, iFloor);

// See if this floor is more important than the others so far
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if ( FloorFactor > dBestFactor ) ({
dBestFactor = FloorFactor;
iBestFloor = iFloor;

} // new best factor

} // if 1lift available for allocation.
} // If Landing Call
} // For Each floor

// If a best floor chosen then allocate a lift to it. & set the landing

// demand as a possible candidate for a second car visit.

if ( iBestFloor > 0 } {
1[iLiftNo] .m_DownLandingCalls[iBestFloor] = 1;
m_UpLandingCalls[iBestFloor] = 0;
m_DownLandingCalls[iBestFloor] =
1[iLiftNo].Update(CurrentTime) ;

} // if best floor found

-1;

// 2nd Car Allocation
// No unallocated landing calls available for this lift, so
// check back over any allocated demand to find which floor
// would be served best by a second car visiting it.

if { iDemandSeen == 0 ) { // If no primary demand 2nd car allocation
for ( iFloor=1; iFloor <= b.m_NoFloors; iFloor++ ) {
double FloorFactor = -1;
if ( m_DownLandingCalls[iFloor] == -1 )} {

// If the lift can collect passengers
if( 1[iLiftNo].m _DoorStatus == CLOSED &&
1[iLiftNo] .m_CurrentLoad < WEIGHT_OF_FULL_CAR ) {

// Can the lift collect from this floor. If so find out how important it is
if ( 1[iLiftNo]}.m Direction == UP &&
1[(iLiftNo}.QuickestFloorStopFloor() <= iFloor )
FloorFactor = PopulationFactor (iFloor);

if ( 1[iLiftNo].m_Direction == DOWN &&
1[iLiftNo] .QuickestFloorStopFloor{) >= iFloor )} {
FloorFactor = PopulationFactor (iFloor);
}

if ( 1[iLiftNo].m Direction == NONE &&
1[iLiftNo].m Currentload == 0 )
FloorFactor = PopulationFactor (iFloor);

// See if this floor is more important than the others so far
if ( FloorFactor > dBestFactor ) {

dBestFactor = FloorFactor;

iBestFloor = iFloor;

} // new best factor
} // if the lift can collect passengers.
} // Down Landing Call = -1 2nd car allocation
} // For each floor again

// 1If a floor chosen send a second lift to it

if ( iBestFloor > 0 ) {
1[iLiftNo] .m DownLandingCalls[iBestFloor] = 1;
m_UpLandingCalls{iBestFloor] = 0;
m_DownLandingCalls[iBestFloor] = 0;
1[(iLiftNo] .Update (CurrentTime) ;

} // if best floor found

} // No primary demand seen
} // For Each lift

// Clean up.

for ( iFloor=1; iFloor <= b.m_NoFloors; iFloor++ ) {
if ( m_DownLandingCalls[iFloor] == -1 ) {

m_DownLandingCalls[iFloor] = 0;
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}
return;

} // Algorithem 0

void dispatchX::Algorithml (double CurrentTime,lift 1[MAX_LIFTS], double SimulationTimeStep,
building b,int NoLifts,CString message,CString &mode)
{ // Algorithem 1

return;
} // Algorithem 1

void dispatchX::Algorithm2 (double CurrentTime,lift 1[MAX_LIFTS], double SimulationTimeStep,
building b, int NoLifts,CString message,CString &mode)
{ // Algorithem 2

return;
} // Algorithem 2

void dispatchX::Algorithm3 (double CurrentTime,lift 1[MAX_LIFTS], double SimulationTimeStep,
building b, int NoLifts,CString message,CString &mode)
{ // Algorithem 3

return;

} // Algorithem 3

void dispatchX::Algorithmd (double CurrentTime,lift 1[MAX_LIFTS], double SimulationTimeStep,
building b,int NoLifts, CString message,CString &mode)
{ // Algorithem 4

} // Algorithem 4

// Cancel Landing calls for a lift when it arrives at floor.
// Skip canceling Landing coall alocation to other lifts.

void dispatchX::CancellLandingCalls(lift 1[MAX_LIFTS),int NoLifts)
//This function is called every time slice
//in order to cancel landing calls that have
//been answered.
//We recommend that you do not edit this
//function.

{ // CancellandingCalls

for (int ctr=1; ctr<=NoLifts; ctr++)
{
int i=l[ctr].FloorAt(); //find out what floor lift is at

if (1[ctr].m_TravelStatus== //not travelling and doors closed/closing
&& (l[ctr].m_DoorStatus==CLOSED||l[ctr].m _DoorStatus==CLOSING} )

{

m_User2 [WEIGHT_ON_LEAVING_FLOOR + i)
m_User2 [LAST_PICKUP_FROM_FLOOR + i]
} // Stopped & Doors Closing

l[ctr].m_CurrentLoad;
l{ctr].m_CurrentTime;

if (l[ctr].m TravelStatus==0 //not travelling and doors open/openning
&& (l[ctr].m _DoorStatus==OPEN || l[ctr].m_DoorStatus==OPENNING))
{
if (llctr].m _Direction==UP) //travelling up
{
for (int ctr2=1;ctr2<=NoLifts;ctr2++) //cancel calls
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1[ctr2).m_UpLandingCalls([i]=0;
m_UpLandingCalls{i!=0;

}

if (llctr].m Direction==DOWN) //travelling down
{
for (int ctr2=1;ctr2<=NoLifts;ctr2++)
1[ctr2].m DownLandingCalls[i]=0;
m_DownLandingCalls({i]=0;

}

if (l[ctr].m_Direction==NONE) //no direction
{
//up call at landing
for (int ctr3=1;ctr3<=NoLifts;ctr3++)
if (1[etr3).m UpLandingCalls[il==1||m_UpLandingCalls([i]==1)
{
for (int ctr2=1;ctr2<=NoLifts;ctr2++)
l(ctr2].m UpLandingCalls(i]=0;
m_UpLandingCalls[i]=0;

l[ctr]).m_Direction=1;
}

//down call at landing
for (ctr3=1;ctr3<=NoLifts;ctr3++)
if (1l{etr3).m DownLandingCalls[i]==1||m _DownLandingCalls[i]==1)}
{
for (int ctr2=1l;ctr2<=NoLifts;ctr2++)
l{ctr2].m_DownLandingCalls[i]=0;
m_DownLandingCalls[i]=0;

l({ctr].m Direction=-1;

}

}
} // For each Lift
} // CancellLandingCalls

/7 End of Sceleton code.
J/HBHRARERERERA R R RB B AR H R R R R R R RS R AR R R R AR RS BB R R 244

// Calculate a selection Factor for calling this 1ift to this floor. Based on
// the set criteria.

double dispatchX::SelFactor(double CurrentTime, 1lift 1[MAX_LIFTS],
int iLiftNo, int iFloor)
{

iFloor--;

double dFactor = FillWeight * FillFactor (iFloor) +
DurationWeight * DurationFactor (CurrentTime, iFloor) +
ZoneWeight * ZoneFactor(iLiftNo,iFloor) ;

return dFactor;

// % of Building population possibly remaining at this floor.

int dispatchX::PopulationFactor(int iFloor)

{

int iFactor = 100 * m_Userl[POP_OF_FLOOR + iFloor)/ m_Userl [POP_OF_BUILDING] ;

return iFactor;

// Factor for membership of the zone

int dispatchX::ZoneFactor(int iLiftNo, int iFloor)

{

int iValue = m Userl[ZONE_FOR_FLOOR + iFloor] - iLiftNo;
int iFactor = 100 * (16 - iValue*iValue)/16;
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return iFactor;

// Time since last pickup as a % of the round trip time
double dispatchX::DurationFactor (double dNow, int iFloor)

{
double drFactor = 100 * (dNow - m User2[LAST_PICKUP_FROM_FLOOR+iFloor]) / m_Userl[RTT_FOR_FLOOR+iFloor];

return dFactor;

// % of Car Capacity used when leaving this floor last time

double dispatchX::FillFactor(int iFloor)

{
double dFactor = 100 * m_User2[WEIGHT_ON_LEAVING_FLOOR + iFloor]/ WEIGHT_OF_FULL_CAR;

return dFactor;

// Allocate a zone number to each floor level

void dispatchX::ZoneAllocation{int StartFloor, int EndFloor)
{

int i;
// Initialise all floors
for ( i=1; i<= TopFloor; i++) {
m_Userl [ZONE_FOR_FLOOR + i] = 0;

} // for i <= TopFloor

// Cumulative Floor Population Distance.
m _Userl [CUMULATIVE_POP_DISTANCE] = 0;
for ( i= StartFloor; i<= EndFloor; i++) {

m _Userl {POP_DISTANCE + i] = m_Userl[POP_OF_FLOOR + i] *
m_Userl [FLOOR_HEIGHT + i] ;

m_Userl [CUMULATIVE_POP_DISTANCE + i] = m_Userl[POP_DISTANCE + i] +
m_Userl {CUMULATIVE_POP DISTANCE + 1 - 1];

} // for i <= EndFloor

// Calculate an average population to be moved by each lift.
m_Userl [AV_FLOOR_POPULATION] = m_Userl [CUMULATIVE_POP_DISTANCE + TopFloor]
/ (m_NoOfLifts - 1);

// Allocate the zone to a floor based on how many times the average value
// is containd in the cumlative value for that floor.
for ( i= StartFloor; i<= EndFloor; i++) {

+ m_Userl [CUMULATIVE_POP_DISTANCE + i}

m_Userl [ZONE_FOR_FLOOR + i] = 1
/ m_Userl [AV_FLOOR_POPULATION] ;

}
} // Zone Allocation
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