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Abstract. The naive Bayes and maximum entropy approaches to text classifi-
cation are typically discussed as completely unrelated techniques. In this paper,
however, we show that both approaches are simply two different waysof doing
parameter estimation for a common log-linear model of class posteriors.In par-
ticular, we show how to map the solution given by maximum entropy into an
optimal solution for naive Bayes according to the conditional maximum likeli-
hood criterion.

1 Introduction

The naive Bayes andmaximum entropy text classifiers are well-known techniques for
text classification [1, 2]. Both techniques work with text documents represented as word
counts. Also, both are log-linear decision rules in which anindependent parameter is
assigned to each class-word pair so as to measure their relative degree of association.
Apparently, the only significant difference between them isthe training criterion used
for parameter estimation: conventional (joint) maximum likelihood for naive Bayes and
conditional maximum likelihood for (the dual problem of) maximum entropy [2, 3].
This notable similarity, however, seems to have passed unnoticed for most researchers
in text classification and, in fact, naive Bayes and maximum entropy are still discussed
as unrelated methods.

In this paper, we provide a direct, bidirectional link between the naive Bayes and
maximum entropy models for class posteriors. Using this link, maximum entropy can
be interpreted as a way to train the naive Bayes model with conditional maximum likeli-
hood. This is shown in Section 3, after a brief review of naiveBayes in the next section.
Empirical results are reported in Section 4, and some concluding remarks are given in
Section 5.

2 Naive Bayes Model

We denote the class variable byc = 1, . . . , C, the word variable byd = 1, . . . ,D, and
a document of lengthL by dL

1 = d1d2 · · · dL. The joint probability of occurrence ofc,
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L anddL
1 may be written as:

p(c, L, dL
1 ) = p(c) p(L) p(dL

1 | c, L) (1)

where we have assumed that document length does not depend onthe class.
Given the classc and the document lengthL, the probability of occurrence of any

particular documentdL
1 can be greatly simplified by making the so-callednaive Bayes

or independence assumption: the probability of occurrence of a worddl in dL
1 does not

depend on its positionl or other wordsdl′ , l′ 6= l,

p(dL
1 | c, L) =

L
∏

i=1

p(di | c) (2)

Using the above assumptions, we may write theposterior probability of a document
belonging to a classc as:

p(c | L, dL
1 ) =

p(c, L, dL
1 )

∑

c′ p(c′, L, dL
1 )

(3)

=
ϑ(c)

∏D

d=1 ϑ(d | c)xd

∑

c′ ϑ(c′)
∏D

d=1 ϑ(d | c′)xd

(4)

△
= pθ(c | x) (5)

wherexd is the count of wordd in dL
1 , x = (x1, . . . , xD)t, andθ is the set of unknown

parameters, which includesϑ(c) for the classc prior andϑ(d | c) for the probability
of occurrence of wordd in a document from classc. Clearly, these parameters must be
non-negative and satisfy the normalisation constraints:

∑

c ϑ(c) = 1 (6)
∑D

d=1 ϑ(d | c) = 1 (c = 1, . . . , C) (7)

The Bayes’ decision rule associated with model (5) is a log-linear classifier:

x → cθ(x) = arg max
c

pθ(c | x) (8)

= arg max
c

{

log ϑ(c) +
∑

d

xd log ϑ(d | c)

}

(9)

3 Naive Bayes Training and Maximum Entropy

Naive Bayes training refers to the problem of deciding (a criterion and) a method to
compute an appropriate estimate forθ from a given collection ofN labelled training
samples(x1, c1), . . . , (xN , cN ). A standard training criterion is thejoint log-likelihood
function:

L(θ) =
∑

n log pθ(xn, cn) (10)

=
∑

c Nc log ϑ(c) +
∑

d Ncd log ϑ(d | c) (11)
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whereNc is the number of documents in classc andNcd is the number of occurrences
of wordd in training data from classc. It is well-known that the global maximum of (10)
under constraints (6)-(7) can be computed in closed-form:

ϑ̂(c) =
Nc

N
(12)

and

ϑ̂(d | c) =
Ncd

∑

d′ Ncd′

(13)

This computation is usually preceded by a preprocessing step in which documents are
normalised in length so as to avoid parameter estimates being excessively influenced by
long documents [4]. After training, this preprocessing step is no longer needed since the
decision rule (8) is invariant to length normalisation. In what follows, we will assume
that documents are normalised to unit length, i.e.

∑

d xd = 1.

In this paper, we are interested in theconditional log-likelihood criterion:

CL(θ) =
∑

n

log pθ(cn | xn) (14)

which is to be maximised under constraints (6)-(7). To this end, consider the conven-
tional maximum entropy text classification model, as definedin [2]:

pΛ(c | x) =

exp

[

∑

i

λifi(x, c)

]

∑

c′
exp

[

∑

i

λifi(x, c′)

] (15)

where the setΛ = {λi} includes, for each class-word pairi = (c′, d′), a (free) parame-
terλi ∈ IR for its associated feature:

fi(x, c) = fc′d′(x, c) =

{

xd′ if c′ = c

0 otherwise
(16)
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Given an arbitrary value of the lambdas,Λ̃ = {λ̃i}, we have:

pΛ̃(c|x)=

exp

[

∑

d

λ̃cd xd

]

∑

c′
exp

[

∑

d

λ̃c′dxd

] (17)

=

∏

d

α̃xd

cd

∑

c′

∏

d

α̃xd

c′d

with: α̃cd
△
= exp(λ̃cd) (18)

=

∏

d

ϑ̃(c, d)xd

∑

c′

∏

d

ϑ̃(c′, d)xd

ϑ̃(c, d)
△
=

α̃cd
∑

c′

∑

d′

α̃c′d′

(19)

=

ϑ̃(c)
∏

d

[

ϑ̃(c,d)

ϑ̃(c)

]xd

∑

c′
ϑ̃(c′)

∏

d

[

ϑ̃(c′,d)

ϑ̃(c)

]xd
ϑ̃(c)

△
=

∑

d

ϑ̃(c, d) (20)

= pθ̃(c | x) ϑ̃(d | c)
△
=

ϑ̃(c, d)

ϑ̃(c)
(21)

where, by definition,̃θ is non-negative and satisfy constraints (6)-(7).
Note that the definition given in (18) is a one-to-one mappingfrom Λ̃ to {α̃cd}.

In contrast, that in (19) is a many-to-one mapping from{α̃cd} to {ϑ̃(c, d)}, though
all possible{α̃cd} mapping to the same{ϑ̃(c, d)} can be considered equivalent since
they lead to the same class posterior distributions. Also note that{ϑ̃(c, d)} can be inter-
preted as the joint probability of occurrence of classc and wordd. Thus, the mapping
from {ϑ̃(c, d)} to θ̃ defined in (20) and (21) is another one-to-one correspondence. All
in all, the chain of equalities (17)-(21) and its associateddefinitions provide a direct,
bidirectional link between the naive Bayes and maximum entropy models. In particu-
lar, to maximise (14) under constraints (6)-(7), it sufficesto find a global optimum for
the maximum entropy model and then map it to class priors and class-conditional word
probabilities using the previous definitions.

4 Experiments

The experiments reported in this paper can be considered an extension of those reported
in [2] and [5]. Our aim is to empirically compare conventional (joint) and conditional
maximum likelihood training of the naive Bayes model. As in [5], we used the following
datasets:Job Category, 20 Newsgroups, Industry Sector, 7 Sectors and 4 Universities.
Table 1 contains some basic information on these datasets. For more details on them,
please see [6], [7] and [5].

Preprocessing of the datasets was carried out withrainbow [8]. We used html skip
for web pages, elimination of UU-encoded segments for newsgroup messages, and a
special digit tagger for the4 Universities dataset [6]. We did not use stoplist removal,
stemming or vocabulary pruning by occurrence count.
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(b) 20 Newsgroups
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(d) 4 Universities
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Fig. 1. Naive Bayes classification error rate as a function of the vocabulary size for the five
datasets considered. Each plotted point is an error rate averaged overten 80%-20% train-test
splits. Each panel contains three curves: one corresponds to conventional parameter estimates
(relative frequencies) and the other two refer to maximum entropy (conditional maximum likeli-
hood) training using the GIS algorithm.
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Table 1. Basic information on the datasets used in the experiments. (Singletons are words that
occur once;Class n-tons refers to words that occur inn classes exactly).

Job 20 Industry 4 7
Category Newsgroups Sector Universities Sectors

Type of documents
job titles & newsgroup web web web
descriptions messages pages pages pages

Number of documents 131 643 19 974 9 629 4 199 4 573
Running words 11 221K 2 549K 1 834K 1 090K 864K
Average document length 85 128 191 260 189
Vocabulary size 84 212 102 752 64 551 41 763 39 375
Singletons (Vocab.%) 34.9 36.0 41.4 43.0 41.6
Classes 65 20 105 4 48
Class1-tons (Vocab.%) 49.2 61.1 58.7 61.0 58.8
Class2-tons (Vocab.%) 14.0 12.9 11.6 17.1 11.7

After preprocessing, ten random train-test splits were created from each dataset,
with 20% of the documents held out for testing. Both, conventional and conditional
maximum likelihood training of the naive Bayes model were compared in each split,
using a training vocabulary comprising the topD most informative words in accor-
dance to theinformation gain criterion [9] (D was varied from100, 200, 500, 1000,
. . . up to full training vocabulary size). We used Laplace smoothing with ǫ = 10−5

for conventional training [5], and the GIS algorithm without smoothing for conditional
maximum likelihood training through maximum entropy [10].The results are shown in
Figure 1. Each plotted point in this Figure is an error rate averaged over its correspond-
ing ten data splits. Note that each plot contains one curve for the conventional training
method and two curves for GIS training: one corresponds to the parameters obtained
after the best iteration and the other to the parameters returned after GIS convergence.
This “best iteration” curve may be interpreted as a (tight) lower bound to the error rate
curve we could obtain by early stopping of the GIS to avoid overfitting.

From the results in Figure 1, we may say that conditional maximum likelihood
training of the naive Bayes model provides similar to or better results than those of
conventional training. In particular, they are significantly better in the Job Category and
4 Universities tasks, where it is also worth noting that maximum entropy does not suffer
from overfitting (the best GIS iteration curve is almost identical to that after GIS conver-
gence). However, in the 20 Newsgroups, Industry Sector and 7Sectors tasks, the results
are similar. Note that, in these tasks, the error curve for relative frequencies tends to lie
in between the two curves for GIS, which are parallel and separated by a non-negligible
offset (2% in 20 Newsgroups, and 4% in Industry Sector and 7 Sectors). Of course, this
is a clear indication of overfitting that may be alleviated byearly stopping of GIS and,
as done for relative frequencies, by parameter smoothing. Another interesting conclu-
sion we may draw from Figure 1 is that, with the sole exceptionof the 4 Universities
task, the best results are obtained at full vocabulary size.This was previously observed
in [5] for relative frequencies.

Summarising, the best test-set error rates obtained in the experiments are given
in Table 2. These results match previous results usign the same techniques on the five
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Table 2.Best test-set error rates for the five datasets considered.

Parameter estimation
Smoothed GIS GIS
relative after best after

Dataset frequencies iteration convergence
Job category 32.6 26.3 26.4
20 Newsgroups 13.2 12.4 14.5
Industry-Sector 22.4 19.9 24.1
4 Universities 13.4 7.7 7.8
7 Sectors 17.7 17.6 21.3

datasets considered, though there are some minor differences due to different data pre-
processing, experiment design or parameter smoothing [2, 5].

5 Conclusions

We have shown that thenaive Bayes andmaximum entropy text classifiers are closely
related. More specifically, we have provided a direct, bidirectional link between the
naive Bayes and maximum entropy models for class posteriors. Using this link, max-
imum entropy can be interpreted as a way to train the naive Bayes model with condi-
tional maximum likelihood. We have extended previous empirical tests comparing these
two training criteria. In summary, it may be said that conditional maximum likelihood
training of the naive Bayes model provides similar to or better results than those of
conventional training.
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