
AN ANALYSIS OF STARTUP AND DYNAMIC LATENCY IN PHASE
VOCODER-BASED TIME-STRETCHING ALGORITHMS

Eric Lee, Thorsten Karrer, and Jan Borchers
Media Computing Group
RWTH Aachen University
52056 Aachen, Germany

{eric, karrer, borchers}@cs.rwth-aachen.de

ABSTRACT

The phase vocoder has become a popular method for time-
stretching audio (altering its play rate without changing
its pitch) in recent years. Despite continuing improve-
ments to the algorithm itself for enhanced audio qual-
ity, the latency introduced by the processing is less well-
understood. Such an understanding is crucial for accurate
synchronization in the context of a larger interactive mul-
timedia or computer music system. Our analysis shows
that the phase vocoder has an effective startup latency of
2 (Ra − Rs), and a dynamic latency (in response to rate
changes) of2Rs, whereRa andRs are the input and out-
put hop factors used for time-stretching.

1. INTRODUCTION

Computers and processing capacity continue to advance
at rates that exceed Moore’s original prediction in 1965
[11]. Certain types of processing that were once a fantasy
are now possible to perform in real-time. One example
is using the phase vocoder for altering the play rate of an
audio stream while preserving its original pitch (a process
also known astime-stretching) – while it was originally
developed in 1966 [3], it wasn’t until recently that real-
time implementations became possible [6].

Any non-trivial processing of signals will introduce
some degree of latency. If this latency is small, it can
usually be ignored without any significant impact on the
system behavior, and this is often assumed in many in-
teractive media and computer music systems today. The
most obvious artifact of improperly handling latency in a
system is a loss of synchronization between, for example,
the audio and video.

Two recent trends in multimedia systems and com-
puter technology, however, motivate the need for a re-
examination of processing latency for these systems.

Firstly, computers are increasingly being used for pro-
fessional multimedia applications, replacing both special-
ized and expensive hardware. A professional studio VTR
(video tape recorder) capable of frame-accurate synchro-
nization, for example, can cost upwards of ten thousand
dollars. Television and film production studios are slowly
migrating to digital production –Star Wars II, Attack of

the Clones, for example, was the first major Hollywood
film to be captured digitally, rather than on film [10].
More recently, even media companies, such asCurrent
TV, a news broadcaster in the United States, have moved
away from tape to a completely digital and computer-
based production pipeline [15]. This trend requires system
designers to migrate to what Greenebaum [4] refers to as
a “sample-accurate” mentality when dealing with latency,
rather than the current “best-effort” one.

Secondly, with the increased availability of computing
power, it is now possible to incorporate increasingly com-
plex processing and still maintain real-time performance.
Interactive conducting systems such as ourPersonal Or-
chestra family [9], for example, employ a multitude of
processing to recognize gestures, stream compressed au-
dio and video from disk, and time-stretch the audio – all
in real-time. More specifically, let us compare the com-
plexity of an audio resampler, which was employed in an
early version ofPersonal Orchestra – a resampler requires
a few tens of multiply-add operations per output audio
sample. In contrast, PhaVoRIT, a phase vocoder-based
algorithm employed in our latest system [6], performs
the time-stretching in real-time, but requires many orders
of magnitude more processing per output audio sample.
An unfortunate side-effect of this increased complexity in
processing is increased latency.

We will divide our discussion of latency into two as-
pects: startup latency and dynamic latency. Startup la-
tency is introduced when the filter is initially fed with data
– many filters require some “priming” before they can be-
gin to produce output. A 64-point sinc kernel used for
resampling an audio signal, for example, requires the first
32 samples of input data before it can produce the first
output sample. If these samples are being streamed from
a real time data source, this introduces a 32 sample la-
tency at startup (see Figure 1). Dynamic latency occurs
when filter parameters (for example, the resampling fac-
tor) are changed; if the filter cannot respond immediately
to a parameter change, latency will be introduced. Resam-
pling using a sinc kernel has, for example, zero dynamic
latency – it is theoretically possible to immediately switch
from a resampling factor of 0.5 to 2 from one output sam-
ple to the next. In contrast, a phase vocoder algorithm is
limited to rate changes at specific block intervals defined

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publikationsserver der RWTH Aachen University

https://core.ac.uk/display/36480141?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

64 samples

32 samples

output

output

output

input

input

input

Figure 1. Latency introduced by a 64-bit sinc kernel for
resampling. A sinc kernel interpolation filter will start
producing output samples as soon as input is available.
The first 32 output samples, though, do not correspond to
any of the input samples – this is the startup latency. The
samples corresponding to the input do not show up until
sample 33 of the filter’s output.

by the block size used for processing. Moreover, as we
will show in this paper, there is a non-zero latency in re-
sponse to rate changes.

In an interactive media system, an accurate handling
of dynamic latency is critical, as the error introduced by
improper handling has the potential to create a cumulative
error that worsens over time. Let us consider again an in-
teractive conducting system such asPersonal Orchestra,
where rate changes occur on the order of ten times per
second, or more. An error of just 0.1 ms (just over 4 sam-
ples of audio sampled at 44.1 kHz) per rate change, can
result in a worst case cumulative error of 100 ms in under
two minutes, which is sufficient to produce a noticeable
loss of synchronization between audio and video [2].

This paper is structured as follows: we will begin with
a brief summary of the phase vocoder algorithm to provide
the context for this work. Next, we will propose a number
of schemes for mapping the timeline of time-stretched au-
dio back to the original input. The results from this discus-
sion will then be used to analyze the startup and dynamic
latency of phase vocoder-based algorithms. We will con-
clude with a discussion of design implications.

2. RELATED WORK

To the best of our knowledge, no similar discussion of la-
tency in phase vocoder-based time-stretching algorithms,

or even any time-stretching algorithms of similar com-
plexity, exist. [14] describes some of the challenges
of synchronizing audio time-stretched using the phase
vocoder to an external clock. However, the discussion is
limited to calculating an appropriate input hop factor for
input to the phase vocoder, and the fact that rate changes
are limited to block boundaries.

DIRAC is a time-stretching algorithm that uses
wavelet-based processing [1]. The DIRAC SDK docu-
mentation claims that the processing framework has zero
processing latency. However, “processing latency” is de-
fined to be thestartup latency when the time-stretcher is
set to its nominal rate; we feel this is an oversimplification,
as the processing latency of a filter of this complexity is
almost certain to be parameter dependent (as we will show
in this paper for phase vocoder-based algorithms). More-
over, the document contains a subsequent discussion that
describes how there is no way to predict which, or even
how many, input samples are required to produce a spe-
cific block of output samples; this supports the conclusion
that the input to output sample mapping is, in fact, non-
trivial. The documentation for élastique, another commer-
cial time-stretcher [17], offers a similar discussion, and
also implies that the input to output sample mapping is
non-trivial because of internal buffering of the input data.

There may be multiple reasons for this lack of rigor-
ous discussion of latency in time-stretching: from a sig-
nal processing perspective, it is not clear how a time-
stretching signal can be interpreted, since the nature of
the processing “smears” a single sample from the original
signal across a range of output samples. This smearing is
frequency dependent, resulting in a reverberation-like ef-
fect. There is also no mathematically “correct” answer to
time-stretching of arbitrary signals on which to base such
an analysis; current work on time-stretching algorithms
aim to minimize the perceptual artifacts introduced by the
processing to produce a psychoacoustically pleasant re-
sult [6]. Finally, such a discussion becomes important
only when sample-accurate synchronization is required,
or when there are frequent changes to rate. The former
is a topic that is typically neglected in software systems,
as discussed by Greenebaum [4]; the latter seldom occurs
in traditional multimedia systems such as video editing,
where the stretch factor is typically held constant over a
long period of time (one use for time-stretching in video
editing would be to fit, for example, ten seconds of au-
dio into nine). In interactive media systems, however, rate
adjustments occur orders of magnitude more frequently,
and so accumulation errors from an improper treatment of
dynamic latency also manifest that much more quickly.

3. THE PHASE VOCODER IN A NUTSHELL

The phase vocoder has become popular algorithm in re-
cent years for time-stretching (altering the play rate of
audio without changing its pitch), as it is able to pro-
duce much higher quality results over a wider range of
stretch factors than existing algorithms such as time-

(a)

(b)

(c)

(d)

t
0

a
t
1

a
t
2

a

Ra Ra

Rs Rs

t
0

s
t
1

s
t
2

s

Figure 2. Illustration of time-stretching by dividing the
audio into overlapping windows (a), respacing them (b,
c), and overlap-adding them (d). The resulting audio has
a rate ofr = 1

α = Ra

Rs
.

domain harmonic scaling (TDHS) [12] and waveform
similarity overlap-add (WSOLA) [16]. The algorithm is
described in detail in existing literature [3, 7] – the goal
here is to provide a brief summary of how the phase
vocoder works to set the context for our subsequent dis-
cussion.

3.1. The Concept

Audio can be time-stretched similar to how the length of a
telescope or car radio antenna can be changed – the audio
is divided into overlapping blocks that are spaced apart by
some intervalRa (the analysis, or input, hop factor), and
then reassembled with a different spacingRs (the synthe-
sis, or output, hop factor, see Figure 2). The resulting au-
dio has a rate ofr = 1

α = Ra

Rs

with respect to the original.
While this naı̈ve method fulfills the basic requirements

of time-stretching – namely, the play rate is changed with-
out altering the pitch – the resulting audio will have sig-
nificant artifacts. These artifacts are phase discontinuities
caused by respacing the blocks of audio. For example, the
frequenciesf of two subsequent blocks will cancel each
other out if 1

2f (2k + 1) = Ra − Rs (k ∈ Z), as they will
be 180◦ out of phase when they are accumulated.

One way to solve the problem of phase jumps in the
time-stretched signal is to adjust the starting phases of ev-
ery block in the time-stretched signal to match the phases
of the previous block at the overlap point. This would have

to be done for all of the partials (dominant frequencies) in
a block, and the problem is determining the phases of all
of the partials at this overlap point. The starting phases of
a block are known, and so is synthesis spacingRs; the last
factor for calculating the phases is the exact instantaneous
frequency of each partial, which could be measured using
a bank of bandpass filters.

3.2. The Algorithm

The phase vocoder algorithm uses this basic strategy to
perform time-stretching of audio signals. Amplitude and
phase information for all frequency channels at specific
analysis pointstua = u · Ra (u ∈ N) of the input au-
dio signal are obtained using the short-time Fourier Trans-
form (STFT). The STFT partitions the input signal into
blocks using a window function of lengthN , and then
transforms these blocks into the frequency domain using a
Fast Fourier Transform (FFT). Note that the window func-
tion represents the impulse response of the bandpass filters
(shifted to the base band) of an equivalent filter bank, and
thus the calculated amplitudes and phases are an estimate
for only the time point at the center of the block.

X(tua , Ωk) =

N/2−1
∑

t=−N/2

h(t − tua)x(t)e−jΩkt

= |X(tua , Ωk)| · ej∠X(tu

a
,Ωk)

(1)

In the frequency domain, the phases are adjusted to fit
the audio at the new spacing:

∠X ′(tus , Ωk) = ∠X ′(tu−1
s , Ωk) + Rsω̂k(tua) (2)

The instantaneous frequencŷωk(tua) of the kth fre-
quency channel can be approximated by looking at the de-
viation ∆Φu

k of the actual phase increment between two
consecutive analysis pointstu−1

a and tua from what we
would expect when looking at the channel’s center fre-
quencyΩk:

∆Φu
k = ∠X(tua , Ωk) − ∠X(tu−1

a , Ωk) − RaΩk (3)

Since that deviation happened over the duration ofRa

we can determine the frequency deviation fromΩk and
thus the instantaneous frequencyω̂k(tua):

ω̂k(tua) = Ωk +
∆pΦ

u
k

Ra
, (4)

where∆pΦ
u
k ∈ [−π; π] is the principal determination

of ∆Φu
k .

Now, the pairs of amplitudes|X(tua , Ωk)| and adjusted
phases∠X ′(tus , Ωk) are transformed back to blocks of
samples using an inverse FFT and a synthesis window
function. These blocks are inserted at the synthesis points
tus = u · Rs (u ∈ N), and overlap-added to produce the
time-stretched audio signal.

3.3. Improvements to the Phase Vocoder

The basic phase vocoder described above introduces a
number of reverberation and transient-smearing artifacts
in the time-stretched audio. Subsequent work has at-
tempted to address these issues [6, 7, 13]. However, they
are all based on the basic phase vocoder algorithm de-
scribed above, and do not impact our discussion here.

4. INTERPRETING TIME-STRETCHED AUDIO

Before we can begin to analyze the perceived latency of
rate changes, we need to examine how one can interpret
the timeline of time-stretched audio. Note that our goal
here is not to determine an exact, sample-accurate map-
ping from output samples to input samples. Such an anal-
ysis is not practically feasible, since it is unclear from a
mathematical perspective what it means to “time-stretch”
a signal. The nature of the phase vocoder processing intro-
duces a frequency-dependent smearing in the signal simi-
lar to reverberation, and thus the different frequency com-
ponents of a particular time instant of input audio may be-
come smeared across an interval in the output. Moreover,
some of the proposed transient detection and processing
schemes, such as [13], add an additional non-linear distor-
tion to the time information of the time-stretched signal.

Instead, our aim is to provide a means of interpreting
the timeline of time-stretched audio in a way such that the
error is bounded, and, more importantly, does not accu-
mulate over time. Our task is, given a block of output
samples, to determine the corresponding samples in the
input audio. We cannot establish this mapping by simply
counting the input samples that have been requested by
the time-stretcher, since it is common for filters of such
complexity to pull ahead and buffer a certain amount of
input data. We will useτ(ts) to refer the input time that
corresponds to an output (synthesis) timets; ta is, again,
the input (analysis) time.

4.1. Black-Box Approach

The simplest, albeit naı̈ve, approach is to maintain a
counter of the current input position. The input position,
τ , would be incremented for each output block that is pro-
duced by the size of that block,M , scaled by the requested
play rate:

τj = τj−1 +
M

r
; τ0 = 0 (5)

The problem is that the increment factor,M
r is only an

estimation that is based onr. Recall that the rate at which
the audio is time-stretched is represented by the ratioRa

Rs

,
and bothRa andRs are two integer numbers; thus, the
actual rate at which the audio is time-stretched will not
be exactlyr. Moreover, rate changes can only be made
at specific intervals defined by the output hop factorRs.
SinceRs 6= M in the general case, a rate change that is
requested in the middle of a block will not take effect until
the next block. Finally, a requested rate change does not

take effect immediately, as we will demonstrate in the dis-
cussion of dynamic latency in Section 6. Regardless, it is
sufficient for the time being to realize that the calculation
above will always introduce a small amount of error, and
that this error will accumulate over time. This accumu-
lation error also means that synchronization will be lost
over time, and will become increasingly worse.

4.2. Hop-Factor Approach

To produce a better result than the one described above,
we must examine how the phase vocoder produces time-
stretched audio. Recall, as described in Section 3, that the
phase vocoder operates on sample windows sizeN that
are then overlap-added to produce the output blocks. In a
real-time system, the output block spacingRs is typically
held constant, and time-stretching occurs by respacing the
input blocks. For illustration purposes, we will use the
specific example where each sample window has a length
of 8 time units, and the output hop factor is fixed at 2 time
units (a 75% overlap at the output, see Figure 3).

An improved approach uses the input hop factor to de-
termine the input time:

τu = tua (6)

For example, to create the output foru = 4, samples
starting at the input timet4a = 10 were fetched from the
input and processed. Thus, it would seem reasonable to
say that the starting time of output block 4 corresponds to
time τ = 10. This scheme, which we proposed in [9], is
accurate enough for many applications; it was, for exam-
ple, used in our third generationPersonal Orchestra sys-
tem [9]. It does, however, require an internal knowledge
of how the data is buffered and how the input and output
hop factors are calculated, information which is typically
not available as a client of a time-stretcher module. One
important characteristic of (6) is that the error does not ac-
cumulate, since the current value ofτ does not depend on
previous computations, as in (5).

4.3. Overlap-Add Approach

The scheme presented above, however, does not take into
account the fact that each output block produced by the
phase vocoder is the result of an overlap-add with the
three preceding processed blocks. One could argue that
this overlap-add results in an “averaging” effect, which re-
duces artifacts in the processed audio, but also results in a
“smear” of the timeline. Moreover, these blocks are win-
dowed with a Hanning (or similar) window during pro-
cessing – which means that at the start of output block 4
in Figure 3, the input sample at timet4a = 10 doesn’t even
contribute to the actual output!

This problem was uncovered during the design and im-
plementation of DiMaß [8], a technique for audio scrub-
bing using the phase vocoder for feedback. With DiMaß,
changes to the play rate are both more diverse and frequent

input output

0 4 8 12

0 8

3

4

6

7 9

6 8

8

62 4

5

10

ta

u = 0

u = 1

u = 3

u = 2

u = 4

10

ts

τ4N

12 14

Figure 3. An interpretation of time-stretched audio. Two approaches are possible: in the first, only the input hop factor is
considered, resulting inτ = 10; in the second, the overlap-add nature of the algorithm is considered, andτ = 8.25.

than withPersonal Orchestra, and especially at the slow
scrub rates, the error, while bounded, becomes noticeable.

We developed a solution that uses a weighted average
of the time stamps of the samples that are being summed
together to produce the output. The weights,h(n), are
determined by the STFT window (which has lengthN),
and the start time of block is thus a weighted sum of the
times with the previous four blocks (see Figure 3):

τu =

∑4
i=0 h(i·N

4) ·
(

tu−i
a + i·N

4

)

∑4
i=0 h(i·N

4)
(7)

Using, again, our example ofu = 4 and a Hanning
window forh(n), we obtain:

τ4 =
0 · 10 + 0.5 · 8 + 1 · 8 + 0.5 · 9 + 0 · 8

0 + 0.5 + 1 + 0.5 + 0
= 8.25

The astute reader may observe that this interpretation
has a major flaw: namely, the STFT does not, from a
mathematical perspective, preserve time intervals. Let us
take, for example, block 0, which starts at timeta = 0
and ends atta = 8. We assumed in (7) that, after pro-
cessing, the output block also starts atta = 0 and ends at
ta = 8. However, by definition of the Fourier transform,
the act of transforming the block into the frequency do-
main destroys all temporal information.1 A more correct
interpretation would thus be to set theentire output block
to time ta = 4, the time at the center of the input block.
The subsequent windowing and overlap-add introduce an
averaging that restores the continuity of the timeline at the
output. Applying this interpretation to the scenario in Fig-
ure 3 results in the following:

1 An exception is if the block was transformed into the frequency
domain, and then immediately back into the time domain. However,
this defeats the purpose of performing the Fourier transform in the first,
place, and is certainly not applicable in the general case!

τu =

∑4
i=0 h(i·N

4) ·
(

tu−i
a + N

2

)

∑4
i=0 h(i·N

4)
(8)

Repeating our calculation ofτ4 using (8) yields:

τ4 =
0 · 14 + 0.5 · 10 + 1 · 8 + 0.5 · 7 + 0 · 4

0 + 0.5 + 1 + 0.5 + 0
= 8.25

This result is identical to that given by (7). It is, in fact,
not difficult to show that the two interpretations always
give the same results when the output hop factorRs is
fixed (which is usually the case with implementations for
real-time systems).

4.4. Other Considerations

Our scheme could be further improved by taking into ac-
count, in the analysis, the group and phase delay of the
filters that perform the phase re-estimation and transient
processing; however, for our purposes, we have found the
above scheme to be sufficient with respect to accuracy,
and we reserve such an analysis for future work.

One further consideration is computing values ofτ in
the middle of a block, since equations (6) and (7) are only
valid for the block boundaries. Since the rate is constant
for each block, we feel it is sufficient to simply compute
the values forτ at the start and end of a block, and per-
form linear interpolation to obtain the value forτ for in-
between values ofts.

5. STARTUP LATENCY

It is typically desirable to specify a starting point in the
audio at which to begin producing time-stretched output.
In an audio editor, for example, the user sets the cursor to a

specific part of the audio waveform, and the audio begins
playing from this position. For these type of applications,
it is critical that the audio starts exactly where the user has
specified, so that the audio is consistent with the visual
waveform representation.

This problem is often known as “startup synchroniza-
tion” in multimedia systems, and has been studied before
in existing literature [5]. Here, we discuss the additional
complexity that results from the use of the phase vocoder.
Consider the scenarios illustrated in Figure 4, where we
wish to slow down and speed up the audio by a factor
of two (r = 0.5 and2, respectively). In both cases, we
wish to start the time-stretched audio atτ = 0; however,
the time-stretched audioactually begins atτ = 2 when
r = 0.5, andτ = −4 whenr = 2. Put another way, we
have a latency of−2 time units whenr = 0.5, and4 time
units whenr = 2.

Note that this latency is calculated by extrapolating
backwards in time after the block 3 has been processed
at the requested rate. It could be argued that such an
extrapolation cannot be correct, since it is impossible to
have a negative latency, which is the case when the audio
is slowed down (i.e.,Ra < Rs). An alternative inter-
pretation, and also one that is perhaps more mathemati-
cally correct, is that the first three output blocks are not
actually produced at the requested rate: the first block is
always time-stretched at rate one, and the rate gradually
converges to the requested one over the next two blocks
(we will revisit this in the next section on dynamic la-
tency). However, we feel this is simply a matter of in-
terpretation of the phase vocoder priming, and it still does
not solve the problem that the audio does not start at the
desired point at the requested rate.

To ensure that the time-stretched audio begins at the
desired start time, we must begin pulling the input data at
some offset. Based on Figure 4, we can derive a formula
for this offset,∆τ0:

∆τ0 = 2 (Ra − Rs) (9)

As mentioned previously, the offset will be negative
when Ra is less thanRs. As it is not always possible
to retrieve data in the past, the data can simply be zero-
padded up to that point.

6. DYNAMIC LATENCY

In addition to ensuring the time-stretched audio starts at
the desired point, it is often desirable to ensure the time-
stretched audio stays synchronous with a reference time-
base. Using our earlier audio editor example, if the user
interactively adjusts the audio play rate, we would still
like to keep the play head moving across the visual wave-
form synchronously to the audio. Even if the audio and
visual play head start synchronously, these two indepen-
dent timebases may still gradually drift apart, especially
if there are frequent rate changes. This is because rate
changes do not occur instantaneously – they can only oc-
cur at output block intervals, and even then, as we will

show below, they can take some time to take effect be-
cause the overlap-add mechanism produces a “low-pass
filter” effect on rate changes.

To illustrate, let us take the example of a rate change
from half speed to double speed (see Figure 5). The rate
change is requested at timet0, just after block 3 has started
playing (but before processing for block 4 has begun).
The requested rate change begins to take effect at time
t1, when block 4 begins to play. However, as shown in
Figure 5, this output block has an effective rate,reff , of
only five-eighths normal speed! This effective rate was
determined by computing the input time that corresponds
to the start and end of that output block using (7) – the
rate, then, is ratio of the number of input samples to the
number of output samples.

Using this same process, we can see that the effective
rate of output block 5 is seven-eighths normal speed, and
output block 6 is finally produced at the desired speed – a
latency of two output blocks, or2Rs! If we had naı̈vely
assumed that the rate change was applied at timet1, then
our actual audio position could be 23 ms less than what
we expect!2 Recall thatτ is effectively computed from
a weighted average of threetua values, and thus it should
not be surprising that a rate change will always require
two output blocks, or2Rs, to take effect.

∆τd = 2Rs (10)

7. DISCUSSION

As we have shown in the above sections, the process-
ing introduced by the phase vocoder introduces a non-
negligible latency both at startup and at each rate change.
An analysis of these latencies requires knowledge of the
underlying algorithm. It is not possible, as a client, to in-
fer this latency by examining the behavior of a black-box
time-stretcher, and in these situations, the best result than
can be achieved is as described in Section 5 – clearly an
unsatisfactory result.

The time-stretcher, then, must report these latency val-
ues to the client. In most situations, it is sufficient for the
time-stretcher to report the input to output sample map-
ping and the startup latency; the dynamic latency can be
inferred from the input to output sample mapping over
time – however, very few time-stretchers, if any, report
these properties to their clients. As demonstrated in our
previous work [8, 9], such properties are necessary to pre-
cisely synchronize time-stretched audio to other media, or
a reference time base.

8. FUTURE WORK

We hope to continue to develop this work by further con-
sidering the phase and group delay introduced by the

2 Using a sample window size ofN = 4096 samples, a constant
output hop factor ofRs = 1024 samples, the difference would be
3(1024) − (1

2
1024 + 5

8
(1024) + 7

8
(1024)) = 1024 samples, or ap-

proximately 23 ms for 44.1 kHz audio.

16

Ra Rs

input output

0 4 8 12 0 4 8 12

Ra

0 8

1

2

3

0 6 8

1

2

3

5 7

4 6

5

0 8

4

8

12

0 6 8

4

8

12

8 10

10 12

14

8 10

10 12

14

5 7

4 6

5

6

6

432

40-4

5 6

8 12

τ

τ

tsta

r = 0.5

r = 2.0

u = 0

u = 1

u = 3

u = 2

u = 0

u = 1

u = 3

u = 2

Rs

Figure 4. Illustration of startup latency. In the first case, audio isslowed down by a factor of two, and the fourth output
block starts at timeτ = 5, computed using (7). Extrapolating backwards, the audio would start at timeτ = 2, which is 2
time units too late. Similarly, in the second case, audio sped up by a factor of two starts 4 time units too early.

5 6 7.25 9 11

ta ts

u = 0

u = 1

u = 3

u = 2

u = 4

u = 5

u = 6

1

2

1.25

2

1.75

2

2

2

τ

4 8 122 6 10 14ts

t0 t1

re f finput

output

0 4 8 12

0 8

1

2

3

5 7

4 6

5

62 4

3

5

1 2 3 5 6 7 9 10 11 13 14

9

8 10

7 9 11

7 9 11 13

7 9 11 13

9 11 13

Figure 5. Illustration of dynamic latency. A rate change from half speed to normal speed is gradual, and takes two full
output blocks to complete.

phase estimation calculations in the phase vocoder. Such
an analysis is algorithm-dependent – the methods used
to perform peak-picking, phase-locking, and transient re-
alignment, for example, will all affect the results. The
delay is also typically signal-dependent, in which case no
closed-form solution is possible. However, there remains
some possibilities for future work:

• perform an analysis for a specific algorithm, such as
the basic phase vocoder

• perform an analysis for the startup latency only,
eliminating most data-dependent factors; these re-
sults would still be useful for performing sample-
accurate startup synchronization [4]

• where a closed-form solution is not possible, try to
determine anupper bound on the phase/group de-
lay introduced by the processing, perhaps using a
combination of analytical and empirical methods

9. CONCLUSIONS

In this paper, we presented an analysis of startup and dy-
namic latency for phase vocoder-based time-stretching al-
gorithms, which operate on the principle of respacing fol-
lowed by overlap-add. We presented three approaches
to interpreting the timeline of audio time-stretched us-
ing such algorithms, which consider a time-stretcher as a
black-box, consider only the hop-factor, and considering
the full overlap-add nature of the algorithm. We then used
the result of this third interpretation to analyze startup la-
tency and dynamic latency of the phase vocoder. We de-
termined the startup latency to be given by2 (Ra − Rs),
and the dynamic latency to be2Rs.

These results have already been used in applications
that require precise synchronization of time-stretched au-
dio to other media and external time sources, and we hope
our work will continue to advance the state-of-the-art in
interactive media and computer music systems.

10. ACKNOWLEDGEMENTS

The authors would like to thank Julius Smith for his feed-
back on an early draft.

11. REFERENCES

[1] Bernsee, S. M. DIRAC: C/C++ library for high qual-
ity audio time stretching and pitch shifting.

[2] DiFilippo, D., and Greenebaum, K.Audio Anec-
dotes. A K Peters, 2004, ch. Perceivable Auditory
Latencies, pp. 65–92.

[3] Flanagan, J. L., and Golden, R. M. Phase vocoder.
In Bell Systems Technical Journal (November 1966),
vol. 45, pp. 1493–1509.

[4] Greenebaum, K.Audio Anecdotes III: Tools, Tips,
and Techniques for Digital Audio. A K Peters, 2007,
ch. Synchronization demystified: An introduction to
synchronization terms and concepts. In Print.

[5] Greenebaum, K.Audio Anecdotes III: Tools, Tips,
and Techniques for Digital Audio. A K Peters,
2007, ch. Sample Accurate Synchronization Using
Pipelines: Put a sample in and we know when it will
come out. In Print.

[6] Karrer, T., Lee, E., and Borchers, J. PhaVoRIT:
A phase vocoder for real-time interactive time-
stretching. InProceedings of the ICMC 2006 Inter-
national Computer Music Conference (New Orleans,
USA, November 2006), ICMA, pp. 708–715.

[7] Laroche, J., and Dolson, M. Improved phase vocoder
time-scale modification of audio.IEEE Transactions
on Speech and Audio Processing 7, 3 (1999), 323–
332.

[8] Lee, E., and Borchers, J. DiMaß: A technique for
audio scrubbing and skimming using direct manipu-
lation. InProceedings of AMCMM 2006 Audio and
Music Computing for Multimedia Workshop (Santa
Barbara, USA, 2006).

[9] Lee, E., Karrer, T., and Borchers, J. Toward a frame-
work for interactive systems to conduct digital audio
and video streams.Computer Music Journal 30, 1
(2006), 21–36.

[10] Magid, R. George Lucas discusses his ongoing ef-
fort to shape the future of digital cinema.American
Cinematographer (September 2002).

[11] Moore, G. E. Cramming more components onto in-
tegrated circuits.Electronics 38, 8 (April 1965).

[12] Rabiner, L. R., and Schafer, R. W.Digital Process-
ing of Speech Signals. Prentice-Hall, 1978.

[13] Röbel, A. Transient detection and preservation in the
phase vocoder. InProceedings of the ICMC 2003 In-
ternational Computer Music Conference (Singapore,
2003), ICMA, pp. 247–250.

[14] Sussman, R., and Laroche, J. Application of the
phase vocoder to pitch-preserving synchronization
of an audio stream to an external clock. InPro-
ceedings of the 1999 IEEE Workshop on Applica-
tions of Signal Processing to Audio and Acoustics
(New York, October 1999), IEEE, pp. 75–78.

[15] TV Technology. News bytes, March 2007.

[16] Verhelst, W., and Roelands, M. An overlap-add tech-
nique based on waveform similarity (WSOLA) for
high quality time-scale modification of speech. In
Proceedings of the ICASSP 1993 International Con-
ference on Acoustics, Speech, and Signal Processing
(1993), vol. II, IEEE, pp. 554–557.

[17] zplane.development. élastique time-stretching.

