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ABSTRACT For example, the pronunciation of “speaking” may be regahuate

i . a sequence of five graphones:
We present a fully data-driven, language independent way of

building a grapheme-to-phoneme converter. We apply the ‘speaking” _ s p ea k ing
joint-multigram approach to the alignment problem and use [spizky] [s] [pl [i] [kl [m]

standard language modelling techniques to model trarismrip
probabilities. We study model parameters, training pracesiand

effects of corpus size in detail. Experiments were condlore

English and German pronunciation lexica. Our proposeditrgi

scheme performs better than previqusly published onesdrhe plp,g) = Z plqi,... ,q0) 2)
error rates as low a3.98% for English and0.51% for German 2€S(g.9)

were achieved.

However the segmentation into graphones may be not unique.
The joint probabilityp(e, g) is determined by summing over all
matching graphone sequences:

whereS(g, ) is the set of all joint segmentations gfande.

9ay..u9a _ 9 } A3)
Pary...uPar ¥
The joint probability distribution(¢, g) has thus been reduced to
a probability distribution over graphone sequeneg@g) which we
o(g) = argmaxp(¢, g) o) model using a standatl -gram:

P €™ L+1

1. INTRODUCTION S(g, @) = {qlL c o

The task of grapheme-to-phoneme conversion, or phonetic
transcription, can be formalized using Bayes’ decisior ad

L

This means, for a given orthographic form (sequence ofritte plar) = H P(gilgi-1, - gi-m+1) )
g € G" we seek the most likely pronunciation (phoneme =t
sequencep € &*. where positionsi < 1 andi > L are virtually understood

Most work on grapheme-to-phoneme conversion has neg-to contain a special boundary symbgl = L which allows
lected the alignment problem. A popular approach is usimglha ~ modelling of characteristic phenomena at word starts add.en
crafted rules to align letters and phonemes (e.g. [1]). Qiftgr Ly _
this alignment has been produced, machine learning tecésiq plar) =p(Llgr-..)---plelar, DplalL) ®)
are applied to perform the actual mapping. In developing a
grapheme-to-phoneme conversion system for a new language i 3. TRAINING
is inconvenient to write alignment rules by hand. But doing

with just one-to-one alignment does not give acceptablaltes A : di h he fxs
Furtunatelly alignments can be inferred using joint-ngrtim estimation is performed in two separate phases. In the fistep

models, an approach pioneered by S. Deligne, F. Yvon and F.he graphone s€p is inferred using only unigram statistics/( =
Bimbot [2][3]. 1). The resulting unigram graphone model is then used to co-

segment the corpus into a stream of graphones according to

Given a training sample(g1, v1),...,(gn,¥nN), parameter

2. JOINT MULTIGRAM MODELS qi = argmax p(q) ©
q'€5(gi,pi)

For the convenience of the reader we provide a brief review The segmented corpug,,...,q, is then used in the second
of the joint-multigram model in the context of grapheme-to- phase to train thd/-gram modeb(qgi|qi—1, ... ,gi—m+1) Using
phoneme conversion [2]. A grapheme-phoneme joint multigra  standard techniques. In this work we used bi- and trigrametsod
or graphonefor short, is a paiy = (g,p) € Q@ C G* x ¢~ of with absolute discounting, estimating discount paransetesing
a letter sequence and a phoneme sequence of possibly differe leaving-one-out [4].
length. We use the expressiogs and ¢, to refer to the first Integrated optimization of th&/-gram probabilities should be

and second component gfrespectively. In the joint multigram  possible in principle but has not been tried. In the follayvime
model we assume that for each word its orthographic formt@nd i focus on the inference of the multigram set, i.e. traininghef
pronunciation are generated by a common sequence of graphon unigram probabilities.
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3.1. Maximum Likelihood Training this so-calledviterbi-training is very sensitive to initialization and
careful selection of graphone trimming thresholds. Inipatar it
is necessary to initialize unigram probabilities propmwél to the
occurence counts, which is equivalent to setpfg|g;, ¢i; 9) =

1 in equation (8).

Maximum likelihood training can be performed using the
expectation maximization (EM) algorithm. In the case ofjnams
we can identify the model paramters with the uni-graphone
probaility ¥, = p(¢g;¥). The re-estimation equations for the
updated parametes® are:

4. TRANSCRIPTION

pl@;9) = []v ) In producing the phonemic transcription from the orthogiap
i=1 form, we restrict ourselves to the maximum approximation:
N
e@d) = > > pllgiei9nde)  (® p(e.9) ~ max p(qi,... . qu) (11)
i=1 g€S(g;i ;) q9€S(g,¥)
N p(g;9) This means, we look for the most likely graphone sequence
= Z 9 nq(q) matching the given spelling and project it onto the phonerfias
i=1 q€S(g;,%i) ’ Z p(q;9) is performed using a straight-forwardl* implementation using a
a'€S(giei) zero rest-cost term.
e(q;9
"9:1 = ) (z(q")ﬂ) 9)
¢ ' 5. EXPERIMENTS

whereny(q) is number of occurences @fin g. The quantity
e(q; 9), which we call theevidencéor g, is the expected number
of occurences of the graphongin the training sample under
the current set of parametefs The evidence can be calculated
efficiently by a forward-backward procedure [3].

Obviously the above equations do not permit a new graphone
to emerge once its probability is zero. Therefore we ingal
the model parameters by assigning a uniform distribution to
all graphones satisfying certain manually set length cairgs.
We will use the notatiorlgy| = Ilmin...lmax t0 indicate that
only graphones with at leadt,i» and at mostm.x letters were
considered, anflpg| = rmin - . - rmax likewise for the number of
phonemes.

We conducted experiments on a German and an English tran-
scription task which we constructed from available proratian
dictionaries.

For English we used the&LEX Lexical Database of English
(version 2.5) [5]. Phrases and abbreviations were remoyéid.
words were converted to lower case, resulting in the usual 26
grapheme symbols. The phoneme set consists of 53 symbols (12
vowels, 8 diphtongs, 4 nasalized vowels, 24 consonantd|eby
consonants, 2 affricates), though some of them are extyerae.

The preprocessed database contains 66278 word forms.

For German we used the Bielefeld Lexicon Database VM-I,
version 14.0 (lExDB) [6]. Preprocessing steps included removal
of hyphenated compounds, abbreviations and pronunciation
variants. All words were converted to lower case, resuliing

3.2. Evidence Trimming 30 grapheme symbols (including 3 umlauts and sz-ligaturlg

Not all graphones satisfying the length constraints arpfbkto phoneme set consists of 46 symbols (18 vowels, 3 diphtorigs, 2
the transcription task. On the contrary, most of them witieiee consonants, 4 affricates). After preprocessing there W&e58
negligibly small probabilities, and, as we will see latanadler word forms. )
graphone inventories generally yield better results. Tioba From each database we ra_ndomly selected an evaluatlon_ test
reasonably sized models we apply thresholding to the evilen Set of 15000 words and a training set of 40000 words, which
values, i.e. in equation (9) we use are disjoint, of course. Details about the corpus sizes @n b
found in table 1. Performance is measured by pie®neme
N 0 if e(q;9) <7 error rate, which is the Levenshtein distarfceetween automatic
é(g;9) = e(q;9) otherwise (10) transcription result and reference pronunciation dividgdthe

number of phonemes in the reference pronunciation.
We call this procedurevidence trimmingnd find that it causes
the unlikely graphones to gradually die out during the tiera

process. (Actually there is always implicit trimming cadidey Table 1. Statistics of the corpora used

the limited machine precision.) Evidence trimming is sigrer LexDB German CeLEX English
to model trimming where a similar thresholding is applied to train eval train eval
the probability estimate#),. This is because even graphones words 40,000 15,000 40,000 15,000
with low probabilitiesp(g; 9) can have a conditional probability graphemes 417,264 156,497 334,583 125,696
p(q|gi, pi; ¥) of one in certain words; trimming them would leave phonemes | 359,750 134,858 282,732 106,143

the training sample not representable by the model.

3.3. Training with Maximum Approximation The minimum graphone length was one letter and one

. . . - . h in all i ts. As for th i length wetltri
Earlier experiment with the joint multigram approach [2gdghe phoneme in afl experiments. As for the maximum fength weitne

maximum approximation during training. Therefore we haieit 1This is the minimum number of insert, delete and substitperations
this strategy as well. Like in earlier work, we have foundttha required to transform one sequence into the other.




Table 2. Selected results using marignal trimming (40k words Table 3. Results using differently sized training sets and matigna

training sets) trimming. (Only best unigram and trigram results shown)
English English
length constrainty  |Q)| phoneme error rate [%)] training | length constraints PER [%]

94 |ql M=1 M=2 M=3 set 94| |l Q] M=1 M=3
1...1 1...1 417 53.02 37.93 34.31 5000 | 1...4 1...4 6337 | 22.04 18.77
1...2 1...1 1155 | 34.18 12.92 6.38 10000 1...4 1...4 8486 17.94 13.80
1...2 1...2 1920 | 30.38 7.20 4.02 20000 1...5 1...5 | 15046 | 13.38 11.30
1...3 1...1 1119 | 31.66 12.76 6.35 40000| 1...6 1...6 | 26319 9.83 9.10
1...3 1...2 3847 | 24.46 6.26 4.41 5000 1...3 1...1 619 32.02 11.51
1...3 1...3 7313 | 20.20 5.22 477 10000 1...2 1...2 1396 | 30.39 9.14
1...4 1...4 | 15789| 13.78 6.22 6.29 20000 1...2 1...2 1658 | 30.45 6.32
1...5 1...5 | 21637| 10.42 7.30 7.28 40000 1...2 1...2 1920 | 30.38 4.02
1...6 1...6 | 26319 9.83 8.68 9.10 German
German training | length constraints PER [%]
length constrainty  |Q)| phoneme error rate [%] set lgql A Q| M=1 M=3

|94l |ql M=1 M=2 M=3 5000 | 1...4 1...4 3472 7.48 5.78
1...1 1...1 170 | 4154 31.59 29.98 10000 1...4 1...4 3656 6.20 4.13
1...2 1...1 521 20.20 4.16 0.89 20000 1...5 1...5 6226 411 3.07
1...2 1...2 1120 | 14.08 0.94 0.52 40000| 1...5 1...6 | 11181 2.79 2.30
1...3 1...1 431 17.80 4.15 0.89 5000 1...3 1...1 258 17.81 1.94
1...3  1...2 1611 9.92 0.85 0.53 10000 1...4 1...1 291 17.80 1.48
1...3 1...3 3370 6.58 0.72 0.70 20000 1...2 1...2 1025 | 14.11 0.89
1...4 1...4 5762 3.67 0.96 1.00 40000 1...2 1...2 1120 | 14.08 0.52
1...5 1...5 8062 2.82 1.56 1.58
1...6 1...6 | 11181 2.79 2.27 2.30

length was restricted to one letter, proves the importarfca o
proper alignment model. For the unigram model, error rates
all combinations of length constraints up to six symbols othb decrease as longer and longer graphones are consideredwdls

sides. find that in the unigram case, marginal trimming yields thetbe
We experimented with the setting of the trimming threshold  results in all cases.

and found that the resulting model is affected mostly by tiee For higher M-gram model the picture is less clear: On the

of 7 during the first couple of iterations. In later iterationgan one hand longer graphones cover a larger context. On the othe

be increased to speed up convergence without changingsbk re  hand, larger allowed graphone sizes imply that Afiemodel has
significantly. A first series of tests (cf. table 2) was cortddc o handle a larger number of symbols, which naturally leads t
with what we callmarginal trimming Starting with very small  sparseness problems. Therefore the bigram and trigramrates
values (0 *°) 7 is increased gradually (by a factor of ten in five go up if the graphone lengths are increased beyond threecor tw
iterations) up to a maximum value 6f1. Additional test used respectively.
higher, but constant threshold§ (cf. table 6). . Applying stronger trimming generally has a negative eftect

To see how performance is affected by the amount of training e ynigram error rate, but is effective in restricting tieef the
data available, we repeated some of the experiments onngain  ,4del and consequently keeping the bi- and trigram errasrat

sets of 5, 10 and 20 thousand words (cf. table 3). low (cf. fig. 1). Optimizingr on the trigram phoneme error rate
can slighly improve upon the best results of the marginairiting
6. RESULTSAND DISCUSSION strategy in some cases (cf. table 6).

In reducing the amount of training data, we observe that
In summary the phoneme error rates are lower on the Germanlonger graphones become harder to estimate reliably. Tdrere
task because the spelling is closer to the pronunciation tha  the optimal length restrictions decrease (cf. table. 3).
English. (Interestingly also the number of inferred mukigs|Q| The maximum approximation in training causes infrequent
is smaller for German.) Apart from that, all result are stuually graphones to die out more quickly; sometimes too quicklyin
similar. The best phoneme error rate obtained with marginal the algorithm more prone to local optima. Careful evidence
trimming for German i9).52%, for English4.02%, which seems  trimming is needed te achieve good performance. In the anigr
quite competitive, given the simplicity of the model. case the (true) EM algortihm with summation was consisgentl
The large error rates for the experiments where the graphonesuperior to Viterbi training (cf. table 4); and had the aiddial
5 ) ) ] ] advantange of not having to optimize the trimming paranseter
Unfortunatelly we cannot provide direct comparison witthant In the trigram case the EM algorithm (with summation) isl stil
methods, but to get a rough idea: Torkolla [1] reports a mappiccuracy gy superior, but looses this additional advantagetéble 5).

of 90.8% on an English task with 18000 words for training. |Bes[7] . S .
reports a phoneme error rate of 3.55% on a German task wit@6B03 We have to apply strong trimming in both cases to avoid spasse

words for training. Please keep in mind that the conditiossain those problems. This is most likely because fof-gram training we
studies were possibly harder. resort to the maximum approximation anyway.
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Fig. 1. Effect of the evidence trimming threshotdon model size
and error rates for differem/-gram models (English; 40k training
set; length constraint$g,| =1...6, [, =1...6)

Table 4. Comparison of unigram results using Viterbi and EM
training (40k training setp = 1; trimming optimized only for
Viterbi)

English
length constraints Viterbi EM

lgal  led | QI PER[%]| [Q| PER[%]
1...2 1... 813 30.41| 1920 30.38
1...3 1...3 3776 20.64| 7313 20.20
1...4 1...4 | 16267 14.94| 15789 13.78
German
length constraints Viterbi EM

l9Jl  leol | QI PER[%]| |Q| PER[%]
1...2 1...2 1113 14.67| 1120 14.08
1...3 1...3 2719 7.19| 3370 6.58
1...4 1...4 6100 3.79| 5762 3.67

Table 5. Comparison of trigram results using Viterbi and EM
training (40Kk training sets)/ = 3; trimming optimized in Viterbi
and EM training)

English
length constraints Viterbi EM

l9J) el | 1Q PER[%]| |Q PER[%]
1...2 1...2 | 1775 3.99| 1714 3.98
1...3 1...3 | 1673 4.42| 1474 4.29
1...4 1...4 | 1681 4.29| 1596 4.24
German
length constraints Viterbi EM

lgal  led | 1Q PER[%]| |Q PER[%]

. .. 1101 0.52| 1126 0.51
1...3 1...3 | 2069 0.61| 1714 0.54
1...4 1...4 | 2089 0.66| 1760 0.58

Table 6. Selected results with trimming optimized for the trigram
model (40Kk training setsi/ = 3)

English

length constraintg phoneme
l9sl  leal | ot | 1Q] | error rate [%]

1...2 1...2 0.4 | 1714 3.98

1...4 1...4 3.0 | 1121 4.38

1...6 1...6 3.0 | 1087 4.34

German

length constraintg phoneme
94l leal | 7ot | 1QI | errorrate [%]
.2 ...2 [ 0.25] 1126 0.51

1...4 1...4 0.6 | 1760 0.58

1...6 1...6 0.6 | 1627 0.60

7. SUMMARY AND OUTLOOK

We have investigated several variations on the multigrapnageh

to grapheme-to-phoneme conversion. Experiments on Geainghn
English demonstrate that very good performance can beathie
with relatively simple models. We have shown that evalugatire
sum in the EM training algorithm yields consistently bet&sults
than using the maximum-approximation and allows us to get by
with fewer empirical parameters.

Currently we train thel/-gram models in a separate step at
the same time resorting to a maximum approximation. Outtesu
seems to indicate that using an integrated training proegdu
which optimizesM -gram probabilities and graphone boundaries
simultaneously, might be beneficial.
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