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Abstract

In statistical machine translation, the gen-
eration of a translation hypothesis is com-
putationally expensive. If arbitrary word-
reorderings are permitted, the search prob-
lem is NP-hard. On the other hand, if
we restrict the possible word-reorderings
in an appropriate way, we obtain a
polynomial-time search algorithm.

In this paper, we compare two different re-
ordering constraints, namely the ITG con-
straints and the IBM constraints. This
comparison includes a theoretical dis-
cussion on the permitted number of re-
orderings for each of these constraints.
We show a connection between the ITG
constraints and the since 1870 known
Schr̈odernumbers.

We evaluate these constraints on two
tasks: the Verbmobil task and the Cana-
dian Hansards task. The evaluation con-
sists of two parts: First, we check how
many of the Viterbi alignments of the
training corpus satisfy each of these con-
straints. Second, we restrict the search to
each of these constraints and compare the
resulting translation hypotheses.

The experiments will show that the base-
line ITG constraints are not sufficient
on the Canadian Hansards task. There-
fore, we present an extension to the ITG
constraints. These extended ITG con-
straints increase the alignment coverage
from about 87% to 96%.

1 Introduction

In statistical machine translation, we are given
a source language (‘French’) sentencefJ

1 =
f1 . . . fj . . . fJ , which is to be translated into a target
language (‘English’) sentenceeI

1 = e1 . . . ei . . . eI .
Among all possible target language sentences, we
will choose the sentence with the highest probabil-
ity:

êI
1 = argmax

eI
1

{Pr(eI
1|fJ

1 )} (1)

= argmax
eI
1

{Pr(eI
1) · Pr(fJ

1 |eI
1)} (2)

The decomposition into two knowledge sources
in Eq. 2 is the so-called source-channel approach
to statistical machine translation (Brown et al.,
1990). It allows an independent modeling of tar-
get language modelPr(eI

1) and translation model
Pr(fJ

1 |eI
1). The target language model describes

the well-formedness of the target language sentence.
The translation model links the source language sen-
tence to the target language sentence. It can be fur-
ther decomposed into alignment and lexicon model.
The argmax operation denotes the search problem,
i.e. the generation of the output sentence in the tar-
get language. We have to maximize over all possible
target language sentences.

In this paper, we will focus on the alignment
problem, i.e. the mapping between source sen-
tence positions and target sentence positions. As
the word order in source and target language may
differ, the search algorithm has to allow certain
word-reorderings. If arbitrary word-reorderings are
allowed, the search problem is NP-hard (Knight,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publikationsserver der RWTH Aachen University

https://core.ac.uk/display/36478195?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1999). Therefore, we have to restrict the possible
reorderings in some way to make the search prob-
lem feasible. Here, we will discuss two such con-
straints in detail. The first constraints are based on
inversion transduction grammars(ITG) (Wu, 1995;
Wu, 1997). In the following, we will call these the
ITG constraints. The second constraints are the IBM
constraints (Berger et al., 1996). In the next section,
we will describe these constraints from a theoretical
point of view. Then, we will describe the resulting
search algorithm and its extension for word graph
generation. Afterwards, we will analyze the Viterbi
alignments produced during the training of the align-
ment models. Then, we will compare the translation
results when restricting the search to either of these
constraints.

2 Theoretical Discussion

In this section, we will discuss the reordering con-
straints from a theoretical point of view. We will
answer the question of how many word-reorderings
are permitted for the ITG constraints as well as for
the IBM constraints. Since we are only interested
in the number of possible reorderings, the specific
word identities are of no importance here. Further-
more, we assume a one-to-one correspondence be-
tween source and target words. Thus, we are inter-
ested in the number of word-reorderings, i.e. permu-
tations, that satisfy the chosen constraints. First, we
will consider the ITG constraints. Afterwards, we
will describe the IBM constraints.

2.1 ITG Constraints

Let us now consider the ITG constraints. Here, we
interpret the input sentence as a sequence of blocks.
In the beginning, each position is a block of its own.
Then, the permutation process can be seen as fol-
lows: we select two consecutive blocks and merge
them to a single block by choosing between two op-
tions: either keep them in monotone order or invert
the order. This idea is illustrated in Fig. 1. The white
boxes represent the two blocks to be merged.

Now, we investigate, how many permutations are
obtainable with this method. A permutation derived
by the above method can be represented as a binary
tree where the inner nodes are colored either black or
white. At black nodes the resulting sequences of the
children are inverted. At white nodes they are kept in
monotone order. This representation is equivalent to
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Figure 1: Illustration of monotone and inverted con-
catenation of two consecutive blocks.

the parse trees of the simple grammar in (Wu, 1997).
We observe that a given permutation may be con-

structed in several ways by the above method. For
instance, let us consider the identity permutation of
1, 2, ..., n. Any binary tree withn nodes and all in-
ner nodes colored white (monotone order) is a pos-
sible representation of this permutation. To obtain
a unique representation, we pose an additional con-
straint on the binary trees: if the right son of a node
is an inner node, it has to be colored with the oppo-
site color. With this constraint, each of these binary
trees is unique and equivalent to a parse tree of the
’canonical-form’ grammar in (Wu, 1997).

In (Shapiro and Stephens, 1991), it is shown that
the number of such binary trees withn nodes is
the (n − 1)th large Schr̈oder numberSn−1. The
(small)Schr̈odernumbers have been first described
in (Schr̈oder, 1870) as the number of bracketings of
a given sequence (Schröder’s second problem). The
largeSchr̈odernumbers are just twice theSchr̈oder
numbers. Schr̈oder remarked that the ratio between
two consecutiveSchr̈odernumbers approaches3 +
2
√

2 = 5.8284... . A second-order recurrence for
the largeSchr̈odernumbers is:

(n + 1)Sn = 3(2n− 1)Sn−1 − (n− 2)Sn−2

with n ≥ 2 andS0 = 1, S1 = 2.
The Schr̈oder numbers have many combinatori-

cal interpretations. Here, we will mention only two
of them. The first one is another way of view-
ing at the ITG constraints. The number of permu-
tations of the sequence1, 2, ..., n, which avoid the
subsequences(3, 1, 4, 2) and(2, 4, 1, 3), is the large
Schr̈oder numberSn−1. More details on forbidden



subsequences can be found in (West, 1995). The
interesting point is that a search with the ITG con-
straints cannot generate a word-reordering that con-
tains one of these two subsequences. In (Wu, 1997),
these forbidden subsequences are called ’inside-out’
transpositions.

Another interpretation of theSchr̈odernumbers is
given in (Knuth, 1973): The number of permutations
that can be sorted with an output-restricted double-
ended queue (deque) is exactly the largeSchr̈oder
number. Additionally, Knuth presents an approxi-
mation for the largeSchr̈odernumbers:

Sn ≈ c · (3 +
√

8)n · n− 3
2 (3)

wherec is set to 1
2

√
(3
√

2− 4)/π. This approxi-
mation function confirms the result of Schröder, and
we obtainSn ∈ Θ((3 +

√
8)n), i.e. theSchr̈oder

numbers grow like(3 +
√

8)n ≈ 5.83n.

2.2 IBM Constraints

In this section, we will describe the IBM constraints
(Berger et al., 1996). Here, we mark each position in
the source sentence either as covered or uncovered.
In the beginning, all source positions are uncovered.
Now, the target sentence is produced from bottom to
top. A target position must be aligned to one of the
first k uncovered source positions. The IBM con-
straints are illustrated in Fig. 2.

J

uncovered position

covered position

uncovered position for extension

1 j

Figure 2: Illustration of the IBM constraints.

For most of the target positions there arek per-
mitted source positions. Only towards the end of the
sentence this is reduced to the number of remaining
uncovered source positions. Letn denote the length
of the input sequence and letrn denote the permitted

number of permutations with the IBM constraints.
Then, we obtain:

rn =
{

kn−k · k! n > k
n! n ≤ k

(4)

Typically, k is set to 4. In this case, we obtain an
asymptotic upper and lower bound of4n, i.e. rn ∈
Θ(4n).

In Tab. 1, the ratio of the number of permitted re-
orderings for the discussed constraints is listed as
a function of the sentence length. We see that for
longer sentences the ITG constraints allow for more
reorderings than the IBM constraints. For sentences
of length 10 words, there are about twice as many
reorderings for the ITG constraints than for the IBM
constraints. This ratio steadily increases. For longer
sentences, the ITG constraints allow for much more
flexibility than the IBM constraints.

3 Search

Now, let us get back to more practical aspects. Re-
ordering constraints are more or less useless, if they
do not allow the maximization of Eq. 2 to be per-
formed in an efficient way. Therefore, in this sec-
tion, we will describe different aspects of the search
algorithm for the ITG constraints. First, we will
present the dynamic programming equations and the
resulting complexity. Then, we will describe prun-
ing techniques to accelerate the search. Finally, we
will extend the basic algorithm for the generation of
word graphs.

3.1 Algorithm

The ITG constraints allow for a polynomial-time
search algorithm. It is based on the following dy-
namic programming recursion equations. During
the search a tableQjl,jr,eb,et is constructed. Here,
Qjl,jr,eb,et denotes the probability of the best hy-
pothesis translating the source words from position
jl (left) to positionjr (right) which begins with the
target language wordeb (bottom) and ends with the
wordet (top). This is illustrated in Fig. 3.

Here, we initialize this table with monotone trans-
lations of IBM Model 4. Therefore,Q0

jl,jr,eb,et
de-

notes the probability of the best monotone hypothe-
sis of IBM Model 4. Alternatively, we could use any
other single-word based lexicon as well as phrase-
based models for this initialization. Our choice is
the IBM Model4 to make the results as comparable



Table 1: Ratio of the number of permitted reorderings with the ITG constraintsSn−1 and the IBM constraints
rn for different sentence lengthsn.

n 1 ... 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Sn−1/rn ≈ 1.0 1.2 1.4 1.7 2.1 2.6 3.4 4.3 5.6 7.4 9.8 13.0 17.4 23.3 31.4
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Figure 3: Illustration of theQ-table.

as possible to the search with the IBM constraints.
We introduce a new parameterpm (m=̂ monotone),
which denotes the probability of a monotone combi-
nation of two partial hypotheses.

Qjl,jr,eb,et = (5)

max
jl≤k<jr,

e′,e′′

{
Q0

jl,jr,eb,et
,

Qjl,k,eb,e′ ·Qk+1,jr,e′′,et · p(e′′|e′) · pm,

Qk+1,jr,eb,e′ ·Qjl,k,e′′,et · p(e′′|e′) · (1− pm)
}

We formulated this equation for a bigram lan-
guage model, but of course, the same method can
also be applied for a trigram language model. The
resulting algorithm is similar to the CYK-parsing al-
gorithm. It has a worst-case complexity ofO(J3 ·
E4). Here,J is the length of the source sentence
andE is the vocabulary size of the target language.

3.2 Pruning

Although the described search algorithm has a
polynomial-time complexity, even with a bigram
language model the search space is very large. A full
search is possible but time consuming. The situation
gets even worse when a trigram language model is
used. Therefore, pruning techniques are obligatory
to reduce the translation time.

Pruning is applied to hypotheses that translate the
same subsequencef jr

jl
of the source sentence. We

use pruning in the following two ways. The first
pruning technique is histogram pruning: we restrict
the number of translation hypotheses per sequence
f jr

jl
. For each sequencef jr

jl
, we keep only a fixed

number of translation hypotheses. The second prun-
ing technique is threshold pruning: the idea is to re-
move all hypotheses that have a low probability rela-
tive to the best hypothesis. Therefore, we introduce
a threshold pruning parameterq, with 0 ≤ q ≤ 1.
Let Q∗

jl,jr
denote the maximum probability of all

translation hypotheses forf jr

jl
. Then, we prune a

hypothesis iff:

Qjl,jr,eb,et < q ·Q∗
jl,jr

Applying these pruning techniques the computa-
tional costs can be reduced significantly with almost
no loss in translation quality.

3.3 Generation of Word Graphs

The generation of word graphs for a bottom-top
search with the IBM constraints is described in
(Ueffing et al., 2002). These methods cannot be
applied to the CYK-style search for the ITG con-
straints. Here, the idea for the generation of word
graphs is the following: assuming we already have
word graphs for the source sequencesfk

jl
andf jr

k+1,
then we can construct a word graph for the sequence
f jr

jl
by concatenating the partial word graphs either

in monotone or inverted order.
Now, we describe this idea in a more formal way.

A word graph is a directed acyclic graph (dag) with
one start and one end node. The edges are annotated
with target language words or phrases. We also al-
low ε-transitions. These are edges annotated with
the empty word. Additionally, edges may be anno-
tated with probabilities of the language or translation
model. Each path from start node to end node rep-
resents one translation hypothesis. The probability
of this hypothesis is calculated by multiplying the
probabilities along the path.

During the search, we have to combine two word
graphs in either monotone or inverted order. This



is done in the following way: we are given two
word graphsw1 and w2 with start and end nodes
(s1, g1) and (s2, g2), respectively. First, we add
an ε-transition (g1, s2) from the end node of the
first graphw1 to the start node of the second graph
w2 and annotate this edge with the probability of a
monotone concatenationpm. Second, we create a
copy of each of the original word graphsw1 andw2.
Then, we add anε-transition(g2, s1) from the end
node of the copied second graph to the start node of
the copied first graph. This edge is annotated with
the probability of a inverted concatenation1 − pm.
Now, we have obtained two word graphs: one for a
monotone and one for a inverted concatenation. The
final word graphs is constructed by merging the two
start nodes and the two end nodes, respectively.

Let W (jl, jr) denote the word graph for the
source sequencef jr

jl
. This graph is constructed

from the word graphs of all subsequences of(jl, jr).
Therefore, we assume, these word graphs have al-
ready been produced. For all source positionsk with
jl ≤ k < jr, we combine the word graphsW (jl, k)
andW (k + 1, jr) as described above. Finally, we
merge all start nodes of these graphs as well as all
end nodes. Now, we have obtained the word graph
W (jl, jr) for the source sequencef jr

jl
. As initializa-

tion, we use the word graphs of the monotone IBM4
search.

3.4 Extended ITG constraints

In this section, we will extend the ITG constraints
described in Sec. 2.1. This extension will go beyond
basic reordering constraints.

We already mentioned that the use of consecutive
phrases within the ITG approach is straightforward.
The only thing we have to change is the initializa-
tion of theQ-table. Now, we will extend this idea to
phrases that are non-consecutive in the source lan-
guage. For this purpose, we adopt the view of the
ITG constraints as a bilingual grammar as, e.g., in
(Wu, 1997). For the baseline ITG constraints, the
resulting grammar is:

A → [AA] | 〈AA〉 | f/e | f/ε | ε/e

Here, [AA] denotes a monotone concatenation and
〈AA〉 denotes an inverted concatenation.

Let us now consider the case of a source phrase
consisting of two partsf1 andf2. Let e denote the

corresponding target phrase. We add the productions

A → [e/f1 A ε/f2] | 〈e/f1 A ε/f2〉

to the grammar. The probabilities of these pro-
ductions are, dependent on the translation direction,
p(e|f1, f2) or p(f1, f2|e), respectively. Obviously,
these productions are not in the normal form of an
ITG, but with the method described in (Wu, 1997),
they can be normalized.

4 Corpus Statistics

In the following sections we will present results on
two tasks. Therefore, in this section we will show
the corpus statistics for each of these tasks.

4.1 Verbmobil

The first task we will present results on is the Verb-
mobil task (Wahlster, 2000). The domain of this
corpus is appointment scheduling, travel planning,
and hotel reservation. It consists of transcriptions
of spontaneous speech. Table 2 shows the corpus
statistics of this corpus. The training corpus (Train)
was used to train the IBM model parameters. The
remaining free parameters, i.e.pm and the model
scaling factors (Och and Ney, 2002), were adjusted
on the development corpus (Dev). The resulting sys-
tem was evaluated on the test corpus (Test).

Table 2: Statistics of training and test corpus for
the Verbmobil task (PP=perplexity, SL=sentence
length).

German English

Train Sentences 58 073
Words 519 523 549 921
Vocabulary 7 939 4 672
Singletons 3 453 1 698
average SL 8.9 9.5

Dev Sentences 276
Words 3 159 3 438
Trigram PP - 28.1
average SL 11.5 12.5

Test Sentences 251
Words 2 628 2 871
Trigram PP - 30.5
average SL 10.5 11.4



Table 3: Statistics of training and test corpus
for the Canadian Hansards task (PP=perplexity,
SL=sentence length).

French English

Train Sentences 1.5M
Words 24M 22M
Vocabulary 100 269 78 332
Singletons 40 199 31 319
average SL 16.6 15.1

Test Sentences 5432
Words 97 646 88 773
Trigram PP – 179.8
average SL 18.0 16.3

4.2 Canadian Hansards

Additionally, we carried out experiments on the
Canadian Hansards task. This task contains the pro-
ceedings of the Canadian parliament, which are kept
by law in both French and English. About 3 million
parallel sentences of this bilingual data have been
made available by the Linguistic Data Consortium
(LDC). Here, we use a subset of the data containing
only sentences with a maximum length of 30 words.
Table 3 shows the training and test corpus statistics.

5 Evaluation in Training

In this section, we will investigate for each of the
constraints the coverage of the training corpus align-
ment. For this purpose, we compute the Viterbi
alignment of IBM Model 5 with GIZA++ (Och and
Ney, 2000). This alignment is produced without any
restrictions on word-reorderings. Then, we check
for every sentence if the alignment satisfies each of
the constraints. The ratio of the number of satisfied
alignments and the total number of sentences is re-
ferred to as coverage. Tab. 4 shows the results for
the Verbmobil task and for the Canadian Hansards
task. It contains the results for both translation direc-
tions German-English (S→T) and English-German
(T→S) for the Verbmobil task and French-English
(S→T) and English-French (T→S) for the Canadian
Hansards task, respectively.

For the Verbmobil task, the baseline ITG con-
straints and the IBM constraints result in a similar
coverage. It is about 91% for the German-English
translation direction and about 88% for the English-
German translation direction. A significantly higher

Table 4: Coverage on the training corpus for align-
ment constraints for the Verbmobil task (VM) and
for the Canadian Hansards task (CH).

coverage [%]
task constraint S→T T→S
VM IBM 91.0 88.1

ITG baseline 91.6 87.0
extended 96.5 96.9

CH IBM 87.1 86.7
ITG baseline 81.3 73.6

extended 96.1 95.6

coverage of about 96% is obtained with the extended
ITG constraints. Thus with the extended ITG con-
straints, the coverage increases by about 8% abso-
lute.

For the Canadian Hansards task, the baseline ITG
constraints yield a worse coverage than the IBM
constraints. Especially for the English-French trans-
lation direction, the ITG coverage of 73.6% is very
low. Again, the extended ITG constraints obtained
the best results. Here, the coverage increases from
about 87% for the IBM constraints to about 96% for
the extended ITG constraints.

6 Translation Experiments

6.1 Evaluation Criteria

In our experiments, we use the following error crite-
ria:

• WER (word error rate):
The WER is computed as the minimum num-
ber of substitution, insertion and deletion oper-
ations that have to be performed to convert the
generated sentence into the target sentence.

• PER (position-independent word error rate):
A shortcoming of the WER is the fact that it
requires a perfect word order. The PER com-
pares the words in the two sentences ignoring
the word order.

• mWER (multi-reference word error rate):
For each test sentence, not only a single refer-
ence translation is used, as for the WER, but a
whole set of reference translations. For each
translation hypothesis, the WER to the most
similar sentence is calculated (Nießen et al.,
2000).



• BLEU score:
This score measures the precision of unigrams,
bigrams, trigrams and fourgrams with respect
to a whole set of reference translations with a
penalty for too short sentences (Papineni et al.,
2001). BLEU measures accuracy, i.e. large
BLEU scores are better.

• SSER (subjective sentence error rate):
For a more detailed analysis, subjective judg-
ments by test persons are necessary. Each
translated sentence was judged by a human ex-
aminer according to an error scale from 0.0 to
1.0 (Nießen et al., 2000).

6.2 Translation Results

In this section, we will present the translation results
for both the IBM constraints and the baseline ITG
constraints. We used a single-word based search
with IBM Model 4. The initialization for the ITG
constraints was done with monotone IBM Model 4
translations. So, the only difference between the two
systems are the reordering constraints.

In Tab. 5 the results for the Verbmobil task are
shown. We see that the results on this task are sim-
ilar. The search with the ITG constraints yields
slightly lower error rates.

Some translation examples of the Verbmobil task
are shown in Tab. 6. We have to keep in mind,
that the Verbmobil task consists of transcriptions
of spontaneousspeech. Therefore, the source sen-
tences as well as the reference translations may have
an unorthodox grammatical structure. In the first
example, the German verb-group (“würde vorschla-
gen”) is split into two parts. The search with the
ITG constraints is able to produce a correct transla-
tion. With the IBM constraints, it is not possible to
translate this verb-group correctly, because the dis-
tance between the two parts is too large (more than
four words). As we see in the second example, in
German the verb of a subordinate clause is placed at
the end (“̈ubernachten”). The IBM search is not able
to perform the necessary long-range reordering, as it
is done with the ITG search.

7 Related Work

The ITG constraints were introduced in (Wu, 1995).
The applications were, for instance, the segmenta-
tion of Chinese character sequences into Chinese

“words” and the bracketing of the source sentence
into sub-sentential chunks. In (Wu, 1996) the base-
line ITG constraints were used for statistical ma-
chine translation. The resulting algorithm is simi-
lar to the one presented in Sect. 3.1, but here, we
use monotone translation hypotheses of the full IBM
Model 4 as initialization, whereas in (Wu, 1996) a
single-word based lexicon model is used. In (Vilar,
1998) a model similar to Wu’s method was consid-
ered.

8 Conclusions

We have described the ITG constraints in detail and
compared them to the IBM constraints. We draw the
following conclusions: especially for long sentences
the ITG constraints allow for higher flexibility in
word-reordering than the IBM constraints. Regard-
ing the Viterbi alignment in training, the baseline
ITG constraints yield a similar coverage as the IBM
constraints on the Verbmobil task. On the Canadian
Hansards task the baseline ITG constraints were not
sufficient. With the extended ITG constraints the
coverage improves significantly on both tasks. On
the Canadian Hansards task the coverage increases
from about 87% to about 96%.

We have presented a polynomial-time search al-
gorithm for statistical machine translation based on
the ITG constraints and its extension for the gen-
eration of word graphs. We have shown the trans-
lation results for the Verbmobil task. On this task,
the translation quality of the search with the base-
line ITG constraints is already competitive with the
results for the IBM constraints. Therefore, we ex-
pect the search with the extended ITG constraints to
outperform the search with the IBM constraints.

Future work will include the automatic extraction
of the bilingual grammar as well as the use of this
grammar for the translation process.
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