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Abstract
In statistical pattern recognition, we use probabilistic models within the task of assigning observations to one of
a set of predefined classes, like e.g. images of handwritten digits to one of the classes ‘0’ to ‘9’. The principle
of maximum entropy is a powerful framework that can be used toestimate class posterior probabilities for
pattern recognition tasks. It is a conceptually simple and easily extensible model that allows to estimate a
large number of free parameters reliably. We show how to apply this framework to object recognition and
compare the results to other state-of-the-art approaches in experiments with the well known US Postal Service
handwritten digits recognition task. We also introduce a simple but effective heuristic method for speeding up
the algorithms used to determine the model parameters.

1 Introduction

In pattern recognition, our goal is to assign an observationrepresented as a feature vectorx 2 IRD to one
of a set of predefined classesf1; : : : ;Kg. For example, in handwritten digit classification, the feature vectors
may represent the greyvalues within a digitized image scanned from a postal envelope. In this case, we want to
determine which of theK = 10 classes labeled with ‘0’ to ‘9’ the image belongs to. To classify an observationx, we use Bayes’ decision rule [1]:x 7�! r(x) = argmaxk fp(kjx)g = argmaxk fp(k) p(xjk)g
Here,p(kjx) is the class posterior probability of classk 2 f1; : : : ;Kg given the observationx, p(k) is the
a priori probability,p(xjk) is the class conditional probability for the observationx given classk, andr(x)
is the decision of the classifier. Hence, Bayes’ decision rule tells us to choose the class that has the highest
probability given the observed information. This decisionrule is known to be optimal with respect to the
number of decision errors, if the correct distributions areknown. This is generally not the case in practical
situations, which means that we need to choose appropriate models for the distributions. In the training
phase, the parameters of the distribution are estimated from a set of training dataf(xn; kn)g, n = 1; : : : ; N ,kn 2 1; : : : ;K. If we denote by� the set of free parameters of the distribution, the maximum likelihood
approach consists in choosing the parameters�̂ that maximize the log-likelihood on the training data:�̂ = argmax� Xn log p�(xnjkn) (1)

Alternatively, we can maximize the log-probability of the class posteriors,�̂ = argmax� Xn log p�(knjxn) ; (2)

which is also called discriminative training, since the information of out-of-class data is used. This criterion is
often referred to as mutual information criterion.

2 Maximum Entropy Modeling for Pattern Recognition

The principle of maximum entropy has origins in statisticalthermodynamics, is related to information theory
and has been applied to pattern recognition tasks such as language modeling and text classification. Applied
to classification, the basic idea is the following: We are given information about a probability distribution
by samples from that distribution (training data). Now, we choose the distribution such that it fulfills all the
constraints given by that information, but otherwise has the highest possible entropy. (This inherently serves
as regularization to avoid overfitting.) It can be shown thatthis approach leads to so-called log-linear models
for the distribution to be estimated.
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Consider a set of so-called feature functionsffig; i = 1; : : : ; I that are supposed to compute ‘useful’ informa-
tion for classification:fi : IRD � f1; : : : ;Kg �! IR : (x; k) 7�! fi(x; k)
Now, the maximum entropy principle consists in maximizing the entropymaxp(kjx)n�Xn Xk p(kjxn) log p(kjxn)o
over all possible distributions with the requirements:

- normalization constraint for each observationx:
Xk p(kjx) = 1

- feature constraint for each featurei: Xn Xk p(kjxn)fi(xn; k) =Xn fi(xn; kn) =: Ni
It can be shown that the resulting distribution has the following log-linear or exponential functional form:p�(kjx) = exp [Pi �ifi(x; k)℄Pk0 exp [Pi �ifi(x; k0)℄ ; � = f�ig: (3)

Interestingly, it can also be shown that the stated optimization problem is convex and has a unique global
maximum. Furthermore, this unique solution is also the solution to the following dual problem: Maximize
the log-probability (2) on the training data using the model(3). A second desirable property of the discussed
model is that effective algorithms are known that compute the global maximum of the log-probability (2)
given a set of training data. These algorithms fall into two categories: On the one hand, we have an algorithm
known as generalized iterative scaling (GIS, [2]) and related algorithms that can be proven to converge to the
global maximum. On the other hand, due to the convex nature ofthe criterion (2), we can also use general
optimization strategies as e.g. conjugate gradient methods. The crucial problem in maximum entropy modeling
is the choice of the appropriate feature functionsffig.

3 Parameter Estimation and Heuristic Speed-up

The GIS algorithm [2] proceeds as follows to determine the free parameters of the model (3). First, we choose
an initial parameter set�(0) = f�(0)i g. Then, for each iterationm = 1; : : : ;M the parameters are updated
according to�(m)i = �(m�1)i +��(m)i = �(m�1)i + 1F log NiQ(m)i ; whereQ(m)i :=Xn Xk p�(m)(kjxn)fi(xn; k)
andF is a constant depending on the training data. (Because of space limitations we refer to the references
for details on the computation of the updates.) This computation is expensive as it requires one pass over the
training data to determine the probabilitiesp(kjxn) for each classk, while summing values for each featurefi.
Furthermore, the convergence of the algorithm may take manyiterations for complex distributions, resulting
in a high computational cost.
Interestingly, it can be observed for different tasks that consecutive update vectors tend to be similar to each
other especially for increasing numbers of iterations. This similarity can be measured by the cosine of the
angle between two consecutive update vectors. Now, we can assume that in regions where the cosine is close
to one (i.e. the vectors point into very similar directions in the vector space of possible parameter sets), the
update vector can be multiplied by a factor greater than one.This yields a faster convergence of the algorithm
(i.e. convergence within a smaller number of iterations). This procedure implies that we cannot theoretically
guarantee convergence of the algorithm any more, but experiments show possible speed-ups up to 20 times
faster convergence. Furthermore, we can ensure convergence of the algorithm by observing the log-probability
(2) on the training data in each iteration and falling back tothe conventional update strategy if it decreases.
Note that there exists an enhanced version of the GIS algorithm known as improved iterative scaling [3] which
in most cases converges faster. The speed-up method presented here may also be applied effectively to this
improved version. This is especially true in the case where feature normalization (see below) is applied, as in
that case both algorithms are identical.



Table 1: Summary of results for the USPS corpus (error rates,[%]).�: training set extended with 2,400 machine-printed digits
method reference ER[%]

human performance [SIMARD et al. 1993] [4] 2.5

relevance vector machine [T IPPINGet al. 2000] [5] 5.1
neural net (LeNet1) [LECUN et al. 1990] [4] 4.2
invariant support vectors [SCHÖLKOPFet al. 1998] [6] 3.0
neural net + boosting [DRUCKERet al. 1993] [4] �2.6
tangent distance [SIMARD et al. 1993] [4] �2.5
extended tangent distance [KEYSERSet al. 2000] [7] 2.4

4 Experiments and Results

We performed experiments on the well known US Postal Servicehandwritten digit recognition task (USPS).
It contains normalized greyscale images of handwritten digits of size 16�16 pixels taken from US zip codes.
The corpus is divided into a training set of 7,291 images and atest set of 2,007 images. Reported recognition
error rates are summarized in Table 1. It needs to be emphasized that the best results are highly optimized on
the specific task while the maximum entropy approach used here does not use specific domain knowledge.
We used the most direct features possible in the experiments, which also have an interesting relation to Gaus-
sian Models [8]. Features of order 0, 1 and 2 are given byfk(x; k0) = Æ(k; k0) ;fk;i(x; k0) = Æ(k; k0) xi ; andfk;i;j(x; k0) = Æ(k; k0) xixj ; i � j ;
respectively, whereÆ(k; k0) := 1 if k = k0, and 0 otherwise denotes the Kronecker delta function. In the con-
text of image recognition, we may call these functions appearance based image features, as they represent the
image pixel values. The duplication of the features for eachclass is necessary to distinguish the hypothesized
classes.
In most of the experiments performed we obtained better results using ‘feature normalization’. This means
that we enforced for each observation during training and testing that the sum of all feature values is equal to
one by scaling the feature values appropriately. Thus, we obtain new feature functionsf ~fig:8x; k; i : ~fi(x; k) = �Xi0 fi0(x; k)��1 � fi(x; k)
In the following, we only report result obtained using feature normalization.
Table 2 shows the main results obtained in comparison to other approaches along with the number of free
parameters of the respective models [8]. Taking into account the class information in training using the maxi-
mum entropy framework (i.e. switching from maximum likelihood to maximum mutual information criterion)
improves the recognition accuracy for first-order featuresfrom 18.6% to 8.2% error rate. Furthermore, it can
be observed that the maximum entropy models perform better for second-order features than for first-order
features, which stands in contrast to the experience gainedwith maximum likelihood estimation of Gaussian
densities[9]. Note e.g. that the maximum likelihood estimation of class specific diagonal covariance matrices
already imposes problems for the USPS data as in some of the classes some of the dimensions have zero
variance in the training data. Here, the maximum entropy framework offers an effective way to overcome
these problems. Using the equivalent of a full class specificcovariance matrix, i.e. second-order features, the

Table 2: Overview of the results obtained on the USPS corpus using maximum entropy modeling in compar-
ison to other models (error rates, [%]). ML: maximum likelihood, MMI: maximum mutual information,�:
with pooled diagonal covariance matrix.

model training criterion # parameters ER[%]

Gaussian model� ML 2 816 18.6
maximum entropy, first-order features MMI 2 570 8.2

second-order featuresMMI 331 530 5.7
nearest neighbor classifier 1 866 496 5.6
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Figure 1: Log-probability (2) on the training data (USPS, first-order features) as a function of the number of
iterations for standard GIS and heuristic speed-up GIS.

error rate of 5.7% approaches that of a nearest neighbor classifier, which has more than five times as many
parameters.
Figure 1 shows the log-probability (2) on the training data for first-order features as a function of the number
of iterations for standard GIS and heuristic speed-up GIS. It can be observed that on this data the proposed
speed-up can save around 90% of training time.

5 Conclusion

We showed the use of the maximum entropy framework for objectrecognition and introduced a new heuristic
speed-up technique for the training of maximum entropy models. The framework allows the estimation of a
large number of parameters reliably and the corresponding optimization problem has a number of desirable
properties. A further advantage of the maximum entropy approach is that it is easily possible to include new
feature functions into the classifier, which promises further reduction of the error rate.
We evaluated the approach for image object recognition using the US Postal Service handwritten digits recog-
nition task. The best result of 5.7% error rate using second-order features is competitive with other results
reported on this dataset, although approaches with significantly better performance exist. (Note that the latter
are highly tuned to the specific task at hand while the maximumentropy approach is of very general nature.)
The accuracy of the resulting model shows that the maximum entropy approach allows robust estimation of a
large number of parameters even on this small training set, which may be a problem for approaches based on
maximum likelihood.
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