-

View metadata, citation and similar papers at core.ac.uk brought to you byji CORE

provided by Publikationsserver der RWTH Aachen University

Efficient Maximum Entropy Training for Statistical Object R ecognition

Daniel Keysers, Franz Josef Och, and Hermann Ney
keysers@s. rwt h-aachen. de

Lehrstuhl fir Informatik VI, Computer Science Department
RWTH Aachen — University of Technology, D-52056 Aachen, @any

Supervisor:  Prof. Dr.-Ing H. Ney
Type: PhD thesis
Gl subjects: image understanding (1.0.4), machine legiiirL.3)

Abstract

In statistical pattern recognition, we use probabilistadels within the task of assigning observationsto one of
a set of predefined classes, like e.g. images of handwrittgts tb one of the classes ‘0’ to ‘9’. The principle
of maximum entropy is a powerful framework that can be usedstimate class posterior probabilities for
pattern recognition tasks. It is a conceptually simple aaslly extensible model that allows to estimate a
large number of free parameters reliably. We show how toyaftyg framework to object recognition and
compare the results to other state-of-the-art approaatesgieriments with the well known US Postal Service
handwritten digits recognition task. We also introducenagsé but effective heuristic method for speeding up
the algorithms used to determine the model parameters.

1 Introduction

In pattern recognition, our goal is to assign an observagpmesented as a feature vecioe IR” to one

of a set of predefined classgs, . . ., K'}. For example, in handwritten digit classification, the éeatvectors
may represent the greyvalues within a digitized image sedffom a postal envelope. In this case, we want to
determine which of th& = 10 classes labeled with ‘0’ to ‘9’ the image belongs to. To dfgsan observation

x, we use Bayes’ decision rule [1]:

xr — r(z)= argkmax{p(k|x)} = argkmax{p(k) p(z|k)}

Here,p(k|z) is the class posterior probability of classe {1,..., K} given the observatiom, p(k) is the

a priori probability,p(z|k) is the class conditional probability for the observatiogiven classt, andr(z)

is the decision of the classifier. Hence, Bayes’ decisioa tells us to choose the class that has the highest
probability given the observed information. This decisroite is known to be optimal with respect to the
number of decision errors, if the correct distributions lamewn. This is generally not the case in practical
situations, which means that we need to choose appropriatielsi for the distributions. In the training
phase, the parameters of the distribution are estimated &rset of training daté(z,, k,)}, n =1,..., N,

k, € 1,..., K. If we denote byA the set of free parameters of the distribution, the maximikeiihood
approach consists in choosing the paramételisat maximize the log-likelihood on the training data:

A = argmax  lo T lkn 1
or Zn: gPA(Znlkn) 1)
Alternatively, we can maximize the log-probability of thags posteriors,
A = argmaxd " lo knlxn) , 2
or Z g A (knlzn) (2)

which is also called discriminative training, since theoimhation of out-of-class data is used. This criterion is
often referred to as mutual information criterion.

2 Maximum Entropy Modeling for Pattern Recognition

The principle of maximum entropy has origins in statistitedrmodynamics, is related to information theory
and has been applied to pattern recognition tasks such ggdga modeling and text classification. Applied
to classification, the basic idea is the following: We areegiinformation about a probability distribution
by samples from that distribution (training data). Now, vimase the distribution such that it fulfills all the
constraints given by that information, but otherwise hastighest possible entropy. (This inherently serves
as regularization to avoid overfitting.) It can be shown thig approach leads to so-called log-linear models
for the distribution to be estimated.
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Consider a set of so-called feature functidrfs},i = 1, ..., I that are supposed to compute ‘useful’ informa-
tion for classification:

fi : RPx{1,....K} —R : (x,k)— fi(z,k)

Now, the maximum entropy principle consists in maximizihg entropy

m/f\lf){ ZZP (k|2n) log p( k|$n)}

over all possible distributions with the requwements.

- normalization constraint for each observation Zp(kpc) =1
k

- feature constraint for each featute > > p(k|zy) fi(zn, k Zfl (T, kn) =: N;
n k

It can be shown that the resulting distribution has the foilhg log-linear or exponential functional form:

B exp [D; i fi(x, k)] — 1),
palkle) = >k exp [0 A filz, )] A= <

Interestingly, it can also be shown that the stated optititimgoroblem is convex and has a unique global
maximum. Furthermore, this unique solution is also thetgmiuto the following dual problem: Maximize
the log-probability (2) on the training data using the mg@®! A second desirable property of the discussed
model is that effective algorithms are known that computedlobal maximum of the log-probability (2)
given a set of training data. These algorithms fall into twtegories: On the one hand, we have an algorithm
known as generalized iterative scaling (GIS, [2]) and eslatlgorithms that can be proven to converge to the
global maximum. On the other hand, due to the convex natutkeo€riterion (2), we can also use general
optimization strategies as e.g. conjugate gradient msthbae crucial problem in maximum entropy modeling
is the choice of the appropriate feature functi¢iis.

3 Parameter Estimation and Heuristic Speed-up

The GIS algorithm [2] proceeds as follows to determine the fsarameters of the model (3). First, we choose

an initial parameter set(®) = {AEO)}. Then, for each iteratiom = 1,..., M the parameters are updated
according to

A = AT AR =z % log % where Q™ == 3" 5" pyom (klzn) fi(n, k)
13 n K
and F' is a constant depending on the training data. (Because oédpaitations we refer to the references
for details on the computation of the updates.) This contfmutds expensive as it requires one pass over the
training data to determine the probabilitigg: |z, ) for each clas&, while summing values for each featyfe
Furthermore, the convergence of the algorithm may take nitargtions for complex distributions, resulting
in a high computational cost.
Interestingly, it can be observed for different tasks thatsecutive update vectors tend to be similar to each
other especially for increasing numbers of iterations.sHimilarity can be measured by the cosine of the
angle between two consecutive update vectors. Now, we camesthat in regions where the cosine is close
to one (i.e. the vectors point into very similar directionghe vector space of possible parameter sets), the
update vector can be multiplied by a factor greater than ©his. yields a faster convergence of the algorithm
(i.e. convergence within a smaller number of iterationd)isTprocedure implies that we cannot theoretically
guarantee convergence of the algorithm any more, but arpets show possible speed-ups up to 20 times
faster convergence. Furthermore, we can ensure convergétite algorithm by observing the log-probability
(2) on the training data in each iteration and falling bactheaconventional update strategy if it decreases.
Note that there exists an enhanced version of the GIS dhigokhown as improved iterative scaling [3] which
in most cases converges faster. The speed-up method medert may also be applied effectively to this
improved version. This is especially true in the case wheatufre normalization (see below) is applied, as in
that case both algorithms are identical.



Table 1: Summary of results for the USPS corpus (error ri&3,
*: training set extended with 2,400 machine-printed digits

| method reference ER[%]

| human performance SimARD et al. 1993 [4] 2.5 |
relevance vector machine Tiprincet al. 2000 [5] 5.1
neural net (LeNetl) LeCun et al. 1999 [4] 4.2
invariant support vectors  SgHoLkopFet al. 1993 [6] 3.0
neural net + boosting Druckeret al. 1993 [4] *2.6
tangent distance S[MARD et al. 1993 [4] *2.5
extended tangent distance Kefyserset al. 2004 [7] 2.4

4 Experiments and Results

We performed experiments on the well known US Postal Sehacalwritten digit recognition task (USPS).
It contains normalized greyscale images of handwritteitslaf size 16<16 pixels taken from US zip codes.
The corpus is divided into a training set of 7,291 images atestset of 2,007 images. Reported recognition
error rates are summarized in Table 1. It needs to be emtkitiat the best results are highly optimized on
the specific task while the maximum entropy approach usesldaes not use specific domain knowledge.
We used the most direct features possible in the experimehish also have an interesting relation to Gaus-
sian Models [8]. Features of order 0, 1 and 2 are given by

fr(z, k") = ok, K),
fri(z, k') = 6(k, k') x;, and
frij(x, k) = 6k k) ziz;, i>7],

respectively, wheré(k, k') := 1if k = k', and 0 otherwise denotes the Kronecker delta function.drctn-

text of image recognition, we may call these functions apgreze based image features, as they represent the
image pixel values. The duplication of the features for edahbs is necessary to distinguish the hypothesized
classes.

In most of the experiments performed we obtained bettedteegging ‘feature normalization’. This means
that we enforced for each observation during training astirtg that the sum of all feature values is equal to
one by scaling the feature values appropriately. Thus, waimbew feature functionigfi}:

Vi, kit fila,k) = (Zfir<w,k>)l i k)

In the following, we only report result obtained using featnormalization.

Table 2 shows the main results obtained in comparison tor @ijpieroaches along with the number of free
parameters of the respective models [8]. Taking into actthenclass information in training using the maxi-
mum entropy framework (i.e. switching from maximum likelird to maximum mutual information criterion)
improves the recognition accuracy for first-order featdires 18.6% to 8.2% error rate. Furthermore, it can
be observed that the maximum entropy models perform beitesefcond-order features than for first-order
features, which stands in contrast to the experience gaiitbdnaximum likelihood estimation of Gaussian
densities[9]. Note e.g. that the maximum likelihood estioraof class specific diagonal covariance matrices
already imposes problems for the USPS data as in some of dseed some of the dimensions have zero
variance in the training data. Here, the maximum entropgnéwork offers an effective way to overcome
these problems. Using the equivalent of a full class spenifi@riance matrix, i.e. second-order features, the

Table 2: Overview of the results obtained on the USPS corpiimgunmaximum entropy modeling in compar-
ison to other models (error rates, [%]). ML: maximum lik@dd, MMI: maximum mutual informatiort;:
with pooled diagonal covariance matrix.

| model | training criterion| # parameters ER[%] ]
Gaussian modél ML 2816 18.6
maximum entropy, first-order features | MMI 2570 8.2
second-order featuresMMI 331530 5.7
nearest neighbor classifier 1866 496 5.6
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Figure 1: Log-probability (2) on the training data (USPSstfiorder features) as a function of the number of
iterations for standard GIS and heuristic speed-up GIS.

error rate of 5.7% approaches that of a nearest neighbaifidaswhich has more than five times as many

parameters.

Figure 1 shows the log-probability (2) on the training datiafirst-order features as a function of the number

of iterations for standard GIS and heuristic speed-up Gl8ah be observed that on this data the proposed
speed-up can save around 90% of training time.

5 Conclusion

We showed the use of the maximum entropy framework for olbggzignition and introduced a new heuristic
speed-up technique for the training of maximum entropy neodehe framework allows the estimation of a
large number of parameters reliably and the corresponditighn@ation problem has a number of desirable
properties. A further advantage of the maximum entropy @gq is that it is easily possible to include new
feature functions into the classifier, which promises fertteduction of the error rate.

We evaluated the approach for image object recognitiorgubia US Postal Service handwritten digits recog-
nition task. The best result of 5.7% error rate using seamdgr features is competitive with other results
reported on this dataset, although approaches with significbetter performance exist. (Note that the latter
are highly tuned to the specific task at hand while the maxirentropy approach is of very general nature.)
The accuracy of the resulting model shows that the maximunopy approach allows robust estimation of a
large number of parameters even on this small training d@thamay be a problem for approaches based on
maximum likelihood.

References

[1] R. O. Duda, P. E. Hart, and D. G. Storlattern Classification John Wiley & Sons, Inc., New York, 2nd edition,
2001.

[2] J.N. Darroch and D. Ratcliff. Generalized Iterative Bugfor Log-Linear Models Annals of Mathematical Statistics
43(5):1470-1480, 1972.

[3] S. Della Pietra, V. Della Pietra, and J. Lafferty. IncdugiFeatures of Random FieldEEEE Trans. Pattern Analysis
and Machine Intelligencel9(4):380-393, April 1997.

[4] P. Simard, Y. Le Cun, J. Denker, and B. Victorri. Transhation Invariance in Pattern Recognition — Tangent
Distance and Tangent Propagation. volume 1524, Springadetberg, pages 239-274, 1998.

[5] M. E. Tipping. The Relevance Vector Machine. Audvances in Neural Information Processing SystemsMIZ
Press, pages 332-388, 2000.

[6] B. Scholkopf, P. Simard, A. Smola, and V. Vapnik. PriondWledge in Support Vector Kernels. Advances in
Neural Information Processing Systems MT Press, pages 640-646, 1998.

[7] D. Keysers, J. Dahmen, T. Theiner, and H. Ney. Experimerith an Extended Tangent Distance.Aroc. 15th Int.
Conf. on Pattern Recognitiprolume 2, Barcelona, Spain, pages 38-42, September 2000.

[8] D. Keysers, F. J. Och, and H. Ney. Maximum Entropy and GeusModels for Image Object Recognition. 28.
DAGM Symposium for Pattern Recognitj@iirich, Switzerland, September 2002. In press.

[9] J. Dahmen, D. Keysers, H. Ney, and M. O. Gld. Statisticeage Object Recognition using Mixture Densitiek.
Mathematical Imaging and Visioi4(3):285-296, May 2001.



