
IMPLEMENTATION OF WORD BASEDSTATISTICAL LANGUAGE MODELSFrank Wessel, Stefan Ortmanns and Hermann NeyLehrstuhl f�ur Informatik VI, RWTH Aachen, University of Technology,D-52056 Aachen, Germany, Phone/Fax: +49 241 f8021616/8888219g,E-mail: wessel@informatik.rwth-aachen.deAbstract. In this paper we present an e�cient data structure for storingtrigram, bigram and unigram counts. The amount of memory requiredhas been reduced by 53% compared to straightforward approaches. Theaverage access time for retrieving information from the data structurehas also slightly been reduced. Based upon this special data structurewe have implemented several types of language models and applied themto the North American Business (NAB '94) recognition task. We showthat both, the perplexity and the error rate could be reduced comparedto the o�cial NAB '94 trigram language model.1 INTRODUCTIONThe main task of statistical language modelling is to provide a speech recognitionsystem with the a-priori probabilities for a word sequence w1:::wN . In order to beable to compute the widely used bigram and trigram language models, we haveto count how often a trigram or bigram, i.e. a word triple or a word pair, hasbeen seen in a training corpus. We can then compute the probability estimatefor the trigram u; v; w as: p(wju; v) �= N(u; v; w)N(u; v) ;with N(u; v; w) denoting the number of times the trigram u; v; w has occured inthe training corpus. To overcome the well-known zero frequency problem, somesort of discounting must be applied to the relative freqencies. The words areusually replaced by word indices which correspond to their position in a lexicallysorted vocabulary. Using this text representation, there are several approachesto compute the relative frequency of a trigram:{ The whole training corpus can then easily be stored in a one-dimensionalarray. Whenever the probability of a speci�c trigram is needed, its frequencycan simply be calculated by counting the occurrences of the event in thecorpus. Assigning two bytes for each word we need 480 MByte to store thewhole NAB '94 Corpus consisting of about 240 million words. It is usefulto introduce another array, in which the next occurence of a word in thetraining corpus is stored. The memory cost then rises up to 1.4 GByte.55

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publikationsserver der RWTH Aachen University

https://core.ac.uk/display/36478166?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Table 1. Statistics for the NAB'94 Corpus.corpus size 240 million wordsbigrams: N(u; v) = 1 51 888 4221 < N(u; v) < 256 4 848 006N(u; v) > 255 100 779trigrams: N(u; v; w) = 1 41 885 9191 < N(u; v; w) < 256 17 956 245N(u; v; w) > 255 71 907{ The second approach computes the smoothed relative frequencies of all tri-grams beforehand and stores these probability estimates, herewith avoidingthe time consuming computations during the speech recognition process. Thetrigram probabilities can be easily retrieved using the word indices of thewords in the trigram. As the main disadvantage, experiments which requiremodi�cations of the counts N(u; v; w) (e.g. computing Leaving-One-Out-probabilities on the training corpus) can no longer be performed. Anotherdisadvantage is the still large amount of memory needed, when no cut-o�sare applied to the counts.{ The third approach which we have decided to follow is to store the countsof the trigrams instead of their probabilities. Nevertheless, the memory re-quirement is very high as presented below. We will show that by using thespecial structure of the counts the memory cost and the average access timecan be reduced.2 STORING THE COUNTSA rather straigthforward solution to the storing problem is the following:Unigrams, bigrams and trigrams are stored in one array each. Starting with the�rst word u in the trigram u; v; w, we look for the second word v in the list ofsuccessors which make up a certain part in the bigram list. Applying the samescheme to the trigram list, we can easily �nd the word w and the correspondingcount N(u; v; w) using binary search. With this approach the memory cost sumsup to 420 MByte. Assuming, that the trigram frequencies are almost identicalfor training and testing, we can easily compute the average number of accessesto the data structure which is needed to �nd a speci�c trigram:Xu Xv N(u; v)N � [ld (SUC(u) + 1)� 1 + ld (SUC(u; v) + 1)� 1] ; (1)with SUC(u; v) denoting the number of di�erent words w succeeding the word-pair u; v in the training and N being the training corpus length. With this ap-proximation we obtain the following results: Finding a trigram takes 17.8 searchaccesses on average and 29 accesses in the worst case.56



Unigrams Bigrams Trigrams

4
2 1

4 4 4 2 1 4 4

4 4 4 4
2

2
4

2

2

N
(u

)

N
(u

,v
)

N
(u

,v
,w

)

N
(u

,v
)

N
(u

,v
,w

)

v

w

v

w
w

v

N(u,v) >= 256

1 < N(u,v) < 256

N(u,v) = 1 N(u,v,w) = 1

1 < N(u,v,w) < 256

N(u,v,w) >= 256

u

1

20000

Fig. 1. Data structure used for storing trigram, bigram and unigram counts.The drastic reduction of memory in our approach is based on the usage ofdi�erent data types for the counts. When analysing the corpus statistics in Table1 it becomes obvious that a lot of memory is wasted on singleton events, i.e.events seen only once in the trainging corpus. Furthermore, storing the countsof all events, which have been observed less than 256 times we only need onebyte for each count instead of four. Bigram and trigram singletons are storedwithout their counts and events, whose frequency ranges from 2 to 255 are storedin arrays of the type unsigned char, i.e. one byte only. For counts larger than255 we have to use arrays of the type unsigned long, i.e. four bytes. The gainis most dramatic for all events u; v; w, with: N(u; v) = N(u; v; w) = 1. In this57



special case there only exists one successor w following v and the position ofthe word w in the trigram singleton list exactly corresponds with the positionof v in the bigram singleton list. Using the di�erent arrays for the counts, thememory requirement has been reduced from 420 to 198 MByte. The links intothe successor lists are stored as array indices and not as pointers, so that thewhole data structure can be created once in the memory and then be written tostorage media. The time spent on initializing any of the count based languagemodels which we have implemented, can be kept very low this way. Searchingthe data structure for a trigram is, of course, more complicated now. On theother hand, the average access time could be reduced, regarding the unigramcount N(u): if u is observed only once during the training, the search for thesucceeding word v can be restricted to the upper two arrays in the bigram levelof the data structure. The same applies, of course, to searching for trigrams. Inthe average case, we need 14.6 accesses before a trigram is found and 48 accessesin the worst case.3 LANGUAGE MODELWe have implemented several language models, extending the idea of absolutediscounting in several directions [Ney et al. 97]. Due to its simplicity and goodperformance we have decided to perform recognition experiments with the fol-lowing model:p(wjh) = max�0; N(h;w) � bN(h) �+ b � W � n0(h)N(h) � �(wjh) ; (2)with h denoting the history of the word w, i.e. its predecessing words, b denotingthe discount parameter, W the vocabulary size, no(h) the number of wordsnot seen following the history h and �(wjh) a less-speci�c distribution with itsgeneralized history h.3.1 EXPERIMENTAL RESULTSThe recognition experiments have been performed on all of the 310 sentences ofthe NAB '94 H1 development corpus with a closed vocabulary containing 20000words. 199 spoken words are not part of this vocabulary. We have used the wordgraph method, as described in [Ortmanns et al. 97], comparing several variantsof the above trigram language model (RWTH) and the o�cial NAB '94 referencetrigram language model (NAB) as de�ned in [Rosenfeld 95]. As table 2 shows,the error rate could be reduced with all models. In using a singleton backing o�distribution, we have achieved the best result; when using a compact trigram,i.e. omitting all trigram singletons, the error rate has increased a little. Thevery low memory requirement of the reference model is due to higher cut-o�sin the model. In [Rosenfeld 95] all trigrams, seen less than four times, and evenall bigram singletons have been omitted from the language model. In order toverify the o�cial results we have applied the same cutting scheme to the bigrams58



Table 2. Experimental results for the word graph search with various trigram languagemodels on the NAB '94 H1 development corpus (20 speakers = 310 sentences = 7387words).trigram language model perplexity memory cost recognition errors [%][MByte] del/ins WERNAB model 132.7 65 1.6/2.7 14.3RWTH model 141.1 60 1.6/2.8 14.3full RTWH model: standard dist. 132.0 198 1.5/2.9 13.9singleton dist. 121.8 221 1.7/2.2 13.5compact RTWH model: standard dist. 135.8 109 1.5/2.7 14.0singleton dist. 124.3 132 1.7/2.5 13.7and trigrams in our model, adding the probability mass of these events to thediscounting mass. With this small model we have achieved identical results.Adding a bigram cache to the best of the above trigram language models, wehave achieved another reduction of the word error rate down to 13.1%.4 CONCLUSIONSIn this paper, we have presented an e�cient data structure for storing trigram,bigram and unigram counts. We have achieved a drastic reduction of the memorycost and we have also slightly decreased the average search time within thedata structure. Based on the implementation of this data structure we haveimplemented several extensions of the well-know absolute discounting models[Generet et al. 95, Ney et al. 97] and applied the best of them to the NAB '94recognition task. Using the word graph search, the word error rate could bereduced from 14.3% to 13.5% and to 13.1% adding a bigram cache to the besttrigram language model.References[Generet et al. 95] M. Generet, H. Ney, F. Wessel: \Extensions of Absolute Discount-ing for Language Modelling", Fourth European Conference on Speech Commu-nication and Technology, Madrid, pp. 1245-1248, Sep. 1995.[Ney et al. 97] H. Ney, S. Martin, F. Wessel: \Statistical Language Modeling UsingLeaving-One-Out", to appear in Elsnet Utrecht Summer School Proceedings.[Ortmanns et al. 97] S. Ortmanns, H. Ney, X. Aubert: \A Word Graph Algorithm forLarge Vocabulary Continuous Speech Recognition", to appear in ComputerSpeech and Language.[Rosenfeld 95] R. Rosenfeld: \The CMU Statistical Language Modeling Toolkit forLanguage Modeling and its Use in the 1994 ARPA CSR Evaluation", Proc. `Spo-ken Language Systems Technology Workshop', Austin, TX, pp. 74-50, Jan. 1995.This article was processed using the LATEX macro package with LLNCS style59


