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Abstract

We present an approach using Gaussian mixture models for part-based object
recognition where spatial relationships of the parts are explicitly modeled
and parameters of the generative model are tuned discriminatively. These
extensions lead to great improvements of the classification accuracy. Fur-
thermore we evaluate several improvements over our baseline system which
incrementally improve the obtained results which compare favorable well to
other published results for the three Caltech tasks and the PASCAL evalua-
tion 05 tasks.

1 Introduction
Recently, part-based models in general and patch-based models in particular have gained
an enormous amount of interest in the computer vision community [13, 6, 16]. This
approach offers some immediate advantages like translation invariance and robustness
against occlusion because the parts can be modeled more or less independently. Thus, an
object that is partly occluded can be classifed correctly as long as the visible parts can be
recognized.

In this paper, we present an approach that uses Gaussian mixture densities to model
and recognize objects in unconstrained images. The parameters of these generative mod-
els are refined discriminatively. In addition to the appearance of the extracted patches, we
consider absolute and relative positions of the patches.

Previous work on part-based object recognition can be divided wrt. the type of mod-
elling (generative vs. discriminative) and whether spatial information is used or not. Al-
though recently, some other groups proposed to take advantage from a mix of generative
and discriminative methods [17, 15, 7] most approaches in this area are either generative
like the star model [6] or discriminative [16, 9, 13]. In [16] a comparison of generative
and discriminative models is given and the conclusion is drawn that neither approach is
sufficient for large scale object recognition. Our approach directly addresses this point as
we start from a probabilistic generative model that is refined discriminatively.

While in the star model [6] and in the constellation model [5] spatial relationships are
explicitely modelled, other successful approaches disregard them [13, 1].

In contrast to these approaches, our approach consists of a generative model where
some of the parameters are refined discriminatively. An advantage over other mixed mod-
els is that only the training step is modified but the classification itself is done using a
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Figure 1: Patches extracted around interest points (left) and randomly chosen points
(right).

generative model. Thus it is an effective combination of the advantages of both worlds:
Generative approaches have the advantages that they can handle missing or partially la-
belled data, that new classes can be added incrementally, and that compositionality can
easily be handled. Discriminative methods directly model the decision function and do
not consider data that may be irrelevant for the classification decision and thus lead to
better predictive performance in many cases and they are usually very fast in predicting
the class label for an unseen observation [16].

Spatial information (absolute positions as well as relative positions) can be incorpo-
rated into the model and improve the recognition performance. This approach obtains
very good results for the rather easy Caltech tasks and for the more difficult PASCAL
Visual Object Classes Challenge Tasks. In particular we have the best result published so
far for the considered Caltech tasks and very competitive results for the PASCAL tasks.

2 Feature Extraction
We use square image patches of different sizes as features that are extracted from the
images around interest points. We do not use other descriptors as e.g. the SIFT descrip-
tor [12] as we want to focus on the model and not on the features. For dimensionality re-
duction the patches are PCA transformed keeping 40 coefficients. The feature extraction
points are obtained from a) a wavelet-based interest point detector proposed by Loupias et
al. [11] and b) randomly chosen points in the images. The interest points capture regions
of the image where “something happens” and the random points also capture homoge-
neous regions. Figure 1 shows an image with both types of extraction points marked.

At these extraction points, we extract patches of different sizes (7×7, 11×11, 21×21,
and 31× 31 pixels). This multi-scale extraction allows us to represent object parts of
different sizes and it allows us to handle scale changes to some degree. The same approach
was used in [2] to obtain partial scale invariance.

Figure 2 shows the process of deriving a feature vector from an image: first, the
extraction point of the patch is determined. Then, the patch is extracted, resulting in an
n×n subimage. Its pixels form a vector of n2 gray-level components which is reduced to
40 coefficients by PCA transformation.
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Figure 2: Deriving feature vectors from images.

3 Gaussian Mixture Models
Gaussian mixture models are a generative model: for each object class a class-dependent
mixture p(x | k) is used. To decide which object is depicted in an image, Bayes’ decision
rule is used:
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1}) = argmax
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p(k|{xL
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}
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where {xL
1} denotes the set of patches x1, . . . ,xL extracted from image X . An alterna-

tive to the above given decision rule is to classify each patch individually and combine
the decisions e.g. using sum rule to one classification decision. Then, we can consider
the posterior probability of X , p(k|{xL

1}), to be proportional to the sum of the posterior
probabilities of the individual patches, p(k|xl):
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In both cases, the feature vectors are assumed to be independent.
For detection tasks, where it has to be decided whether an object of interest is con-

tained in an image or not, a different decision rule has become quite common, which
allows us to calculate the equal error rate (EER). Here, an image is accepted, i.e. classi-
fied to contain the object of interest, if the probability for the “positive” class exceeds a
certain threshold probability pT , otherwise it is rejected:

r({xL
1}) =

{
1 if p(k = 1|{xL

1})≥ pT

0 otherwise
(3)

Here, “1” denotes “acceptance” and “0” denotes “rejection”. The threshold probability
pT is set such that the false positive rate equals the false negative rate.

In our model, the class-dependent distributions p(xl |k) are modeled by Gaussian mix-
ture densities and we distinguish two cases:



Untied mixtures (class-dependent) :

p(xl |k) =
Ck

∑
c=1

p(c|k) · p(xl |c,k) =
Ck

∑
c=1

p(c|k) ·N (xl |µck,Σck) (4)

Tied mixtures (class-independent) :

p(xl |k) =
C

∑
c=1

p(c|k) · p(xl |c) =
C

∑
c=1

p(c|k) ·N (xl |µc,Σc) (5)

In the untied case, further classes can be added easily by estimating the corresponding
class-dependent distributions for these classes without the need to reestimate the distribu-
tions for all other classes.

The class-dependent distributions are trained by maximum likelihood training using a
top-down EM clustering approach known as the Linde-Buzo-Gray algorithm [10].

Discriminative Training. To improve recognition performance, the parameters of the
generative model can be refined using discriminative methods. In contrast to the common
maximum likelihood approach, where the class representation is optimized, here we are
interested in optimizing the discrimination performance. We propose to tune the parame-
ters by maximizing the posterior probability (also known as maximum mutual information
(MMI) criterion) instead of maximizing the likelihood. Following this approach it is pos-
sible to refine all parameters of the Gaussian mixture models, but here we only refine
the mixture weights p(c | k). This approach can be compared to the method presented
in [1] where maximum entropy training is used to train the discriminativeness of clusters
of patches.

Combining Eq. (2) with Eq. (4) or Eq. (5), the dependency of the posterior probability
p(k|{xL

1}) on the mixture weights p(c|k) becomes obvious:
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We define an auxiliary function F of the mixture weights as the sum of the logarithmic
posterior probabilities for the correct class kn with the set of feature vectors {xL

1}n over all
N training images:

F (p(c|k)) =
N

∑
n=1

log p(kn|{xL
1}n). (6)

Maximizing F is known as MMI training: The derivative of F wrt. the mixture weights
p(c|k) is calculated and the mixture weights are iteratively updated using gradient descent.

p(c|k)← p(c|k)− ε · ∂F (p(c|k))
∂ p(c|k)

(7)



Figure 3: 1, 2, 4, and 8 probability distributions for patches of a given density.

If ε is chosen small enough, convergence towards a local maximum is guaranteed. The
p(c|k) are initialized using the Maximum-Likelihood estimates, i.e. the relative cluster
sizes are chosen. This discriminative updating of the mixture weights gives higher weights
to densities with higher discriminatory relevance and lower weights to densities less rele-
vant for the classification.

4 Spatial Information
While many approaches to object recognition ( [1,3,13]) ignore spatial relations between
the parts completely, we believe that the incorporation of the position information allows
for substantial improvement in recognition. We present two extensions to the Gaussian
mixture model incorporating relative and absolute patch positions respectively.

4.1 Absolute Patch Positions
Let xl be the feature vector accounting for the appearance of the l-th patch of an image
as before. Further, let yl be the position of the patch. Let x′l be the combination of
both vectors, we propose to model the emission probabilities p(x′l |c,k) of the mixtures by
products of the emission probabilities for appearance and position, p(xl |c,k) · p(yl |c,k),
such that the class-dependent distributions p(x′l |k) becomes:

p(x′l |k) =
Ck

∑
c=1

p(c|k) p(xl |c,k) p(yl |c,k) =
Ck

∑
c=1

p(c|k) N (xl |µxck,Σxck) N (yl |µyck,Σyck)

for untied mixtures and the analogous form for tied mixtures. The distribution for p(yl |c,k)
is estimated from the positions of all patches from which c is estimated. To account for
object parts occurring more than once in an object, multiple position probability distri-
butions can be estimated per cluster, thus the emission probability of the patch position
becomes a mixture density itself:

p(yl |c,k) =
Ick

∑
i=1

p(i|c,k) p(yl |i,c,k) =
Ick

∑
i=1

p(i|c,k) N (yl |µyick,Σyick).

A visualization of different numbers of probability distributions for patches of a given
density is shown in Figure 3, where dark areas account for a high patch position probabil-
ity and light areas for a low probability.

4.2 Relative Patch Positions
A problem in using the absolute position of patches is the loss of invariance wrt. transla-
tion: if an object appears in all training images at a fixed position, it cannot be recognized



at different positions anymore. To overcome this problem, we propose using relative po-
sitions instead of absolute positions. For objects of the same scale, the relative positions
of their parts remain constant regardless of the absolute position of the object. In the
following, we extend the proposed model to incorporate relative positions.

Let xl be the l-th patch of the image X , let {zL−1
1 }l denote the set of position differ-

ences to all other patches in X : {zL
1}l = {z1,l , . . . ,zl−1,l ,zl+1,l , . . . ,zL,l}, where zλ ,l denotes

the position difference between the l-th and the λ -th patch of X : zλ ,l = yl− yλ .
Now, let x′′l be our new feature vector consisting of the appearance xl and the relative

position information {zL
1}l of the l-patch. The decision rule is then reformulated as

r({x′′L1}) = argmax
k

{
p(k)

L

∏
l=1

Ck

∑
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p(c|k) p(xl |c,k)1−α p({zL
1}l |c,k)α

}
where α is a weighting factor and the class- and cluster-dependent probability for the set
of position differences, p({zL

1}l |c,k), is modeled as a product of the probabilities for the
individual position differences:

p({zL
1}l |c,k) ∝

(
∏
λ 6=l

p(zλ l |cλ ,cl ,k)

) 1
L−1

We apply maximum approximation to determine cl and cλ : cl = argmax
c
{p(xl |c,k)},

cλ = argmax
c
{p(xλ |c,k)} to reduce computation time. For each pair cl ,cλ of (appearance)

densities, a set of Jcλ cl q Gaussian distributions over the relative positions is estimated
from training data:

p(zλ ,l |cλ ,cl ,k) =
Jc

λ
cl

∑
j=1

p( j|cλ clk)N (zλ ,l |µzcλ clk,Σzcλ clk)

5 Databases and Experimental Results
We use two different databases to experimentally evaluate the performance of the pro-
posed approach: the Caltech database and the PASCAL visual object classes challenge
tasks.

Caltech databases. The Caltech tasks were introduced by Fergus et al. [5]. The task is
to determine whether an object is present in an image or not. For this purpose, several
sets of images containing certain objects (airplanes, faces, and motorbikes) and a set of
background images not containing any of these objects1 are given. The images are of
various sizes and for the experiments they were converted to gray images. The airplanes
and the motorbikes task consist of 800 training and 800 test images each, the faces task
consists of 436 training and 434 test images. For each of these tasks, half of the images
contain the object of interest and the other half does not. An example image of each set
is shown in Figure 4. Many different groups have published results for these data. The
Caltech tasks turn out to be quite easy, because the objects to be recognized dominate the
images, have little scale variances, and are fully visible.

1http://www.robots.ox.ac.uk/∼vgg/data
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Figure 4: Example images from the Caltech database.

Figure 5: Example images from the PASCAL database.

PASCAL databases. In contrast to these tasks, the PASCAL database2 is far more chal-
lenging. This database was used for the PASCAL Visual Object Classes Challenge 2005.
It contains images of four different object classes: bicycles, cars, motorbikes and people.
Unlike the Caltech database, no background class is given, for each of the four object
classes, the remaining three form the negative class. While the whole database contains
684 training and 689 testing images, the different classes are not uniformly distributed.
Example images for the four object classes are shown in Figure 5. We use the images
from the PASCAL 1 tasks.

Recognizing the objects in the images of the PASCAL database is much harder. The
objects appear at very different scales, where the smallest of the objects make up only a
negligible part of the image at all. The objects are also shown from different view points.
For example, some cars are shown from the right, others from the front, and even images
showing cars from above are present. Furthermore, some objects are partially occluded
by other objects and thus are not fully visible. To complicate recognition further, a few
objects appear rotated, and others are depicted at different lighting conditions. These
circumstances turn out to be tough for object recognition.

Experimental Results In the following we describe the experiments we performed with
the Gaussian mixture models. We start from a baseline system that we use to tune the
parameters of our system, which can obtain very competitive results. Then, spatial infor-
mation is added and discriminative training is applied, which leads to a significant gain in
classification performance.

For the baseline experiments, we extract 200 patches around interest points per image

2available at http://www.pascal-network.org/challenges/VOC/voc2005/index.html
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of the size 11 × 11 pixels. These features are PCA transformed keeping 40 dimensions.
For each class a mixture of 256 densities is estimated. In the first step, these parameters
are optimized:

Extraction points: The choice of the extraction points is changed and in informal exper-
iments different types of extraction points have been tested. We found that using
more points usually leads to better results and that 200 random points in addition to
the 200 wavelet-based salient points are sufficient to gain nearly optimal results [8].

Extraction size: The use of patches of different sizes simultaneously leads to better re-
sults than using one single size alone. Thus, at each extraction position, patches of
four different scales are extracted (7 × 7, 11 × 11, 21 × 21, 31 × 31).

The results of these experiments can be seen in the first three lines of Table 1. It
can clearly be seen that in all cases the use of more extraction points and multiple sizes
strongly reduces the equal error rates.

Starting from this improved baseline, the effect of spatial information is tested (cf.
Table 1). Absolute and relative positions lead to improvements over the previous results.
Interestingly, despite the loss of translation invariance, absolute patch positions outper-
form relative patch positions. One explanation for this observation may be that the tasks
addressed do not strictly require translation invariance or that the necessary translations
are sufficiently represented in the training data and can thus be recognized correctly in the
test data.

Due to these results and the fact that the incorporation of relative patch positions
requires a lot of additional time during training and classification, we use absolute patch
positions for the remaining experiments.

Initial informal experiments with the discriminative refinement of the cluster weights
have shown that the method presented in Section 3 did not improve the equal error rates
in the experiments. Still, we observed that the confidences for the classification of the
patches were strongly improved. To overcome this problem, we apply a variant called
“falsifying training” that has been used in the domain of speech recognition before [14].
Therefore, in Eq. (6), the sum does not range over all training images N, but only over
those images which have been classified worst in the previous training iterations, i.e. those
images for which the probability for the correct class is least. In our experiments, we take
the 20% worst classified images in each training iteration and from Table 1 it can be seen
that the results were improved.

Table 1 also compares our results with the best results other groups have reported for
the Caltech and the PASCAL database. It can be seen that our method clearly outperforms
all other methods for the Caltech tasks. For the PASCAL tasks, our method is nearly as
good as the best result from the 2005 PASCAL visual object classes challenge [4].

Figure 6 gives example classification results of our method where the most discrimi-
native patches are depicted by green and red squares drawn into the image. While green
squares denote patches with high probability for the object class, red squares denote
patches with high probability against the object class.

6 Conclusion
We have presented a novel part-based approach to object recognition using Gaussian mix-
ture densities, which is completely based on probability theory. Starting from a generative



Table 1: Results (EER) of other approaches compared to our method.
Caltech PASCAL

Spatial relationships Airpl. Faces Motb. Bicyc. Cars Motb. Peop.
This work, baseline 1.5 3.2 3.5 11.0 11.1 10.6 22.6
+ Random points 1.3 0.5 3.5 11.3 9.1 9.3 19.0
+ Multiple scale 0.8 0.0 2.3 8.9 9.1 7.4 16.7
+ Absolute patch positions 0.5 0.0 0.8 2.6 6.3 3.7 13.1

Relative patch positions 0.8 0.0 1.5 7.9 7.5 5.7 13.1
+ Discr. training 0.5 0.0 0.3 1.6 5.1 3.0 8.6
Boosting hypothesis [13] 2.5 0.0 5.7
Discr. trained histograms [2] 1.4 3.7 1.1 13.2 7.5 6.0 13.9
PCA SIFT [18] 1.7 0.3 1.0
Star model [6] 6.4 9.7 2.7
Discr. sc. inv. descriptors [3] 7.0 3.9 2.3 8.3
SIFT features [12] 31.3 20.7 27.8 42.9

Figure 6: A correctly classified face, a correctly classified motorbike, and a background
image classified as motorbike.

model that is refined using a discriminative training criterion, we present an effective way
of combining generative and discriminative ideas. The final model is a generative model
with all its merits but achieves the classification performance of discriminative models. It
is extended to incorporate absolute and relative positions of the parts. The use of spatial
information leads to a significant improvement of the results.

By combining these methods, i.e. incorporating spatial information and discriminative
training of the mixture weights, we obtained very good results on several databases. The
very promising results on the four tasks of the PASCAL database prove that the proposed
method is able to successfully classify images under challenging conditions.

Two aspects of this work require further research: first, the incorporation of relative
patch positions needs to be investigated further, as theoretically it should lead to better
results than absolute patch positions, but in practice is outperformed. Second, it is also
possible to refine the means and the variances of the mixture densities and our first infor-
mal experiments have shown that this approach is promising.
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