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ABSTRACT search algorithm is based on the time-synchronous bearohsea
strategy using a tree-organized pronunciation lexicon. eliVas-

In this paper, we compare the search effort of the word cimait ing m-gram language models, such as bigram £ 2) or trigram
and the time conditioned tree search methods. Both metheds qm — 3) |anguage mode|sy we face the pr0b|em that during the
based on a time-synchronous, left-to-right beam searciyasiree-  search the word identity is only known when a leaf of the lakic
organized lexicon. Whereas the word conditioned methodeit w tree is reached. To solve this problem, we have to keep aaepar
known and Wldely Used, the time conditioned method is nawvel icopy of the lexical tree for each of t}ﬁm _ ]_) predecessor words.
the context of20 000—word vocabulary recognition. We extend
both methods to handle trigram language models in a onespass For a bigram language model [3], a separate copy of the lexam
tegy. Both methods were tested on a train schedule inqusly tais needed for each predecessor werdVhen going from a bigram
(1850 words, telephone speech) and on the North American Busie a trigram language model, we have to take into account fibrat

ness (Nov.'94) development corp) (000 words). a trigram language model, the probabilities are conditiome the
previous two predecessor wor(is, v) rather than one predecessor
1. INTRODUCTION word v in the bigram case [6, 7]. Therefore, we have to make the

copies dependent on theo predecessor words. To formulate the
The paper describes two variants of the time-synchronoasnbe dynamic programming approach, we introduce the auxiliargng
search algorithm using a tree-organized pronunciatiorcdex[6].  tity Q.. (t,s) and the backpointer®,,(t,s). These quantities
Both methods are based on a one-pass concept and utilizefixpr must be made dependent on the two predecessor wards to
tree organization of the pronunciation lexicon [3]. Thealiénce account for the delayed application of the trigram languagelel:
between the two search methods is the organization of thetsea
space. In the word conditioned method, we structure theckear Quv(t, s) := score of the best path up to timehat ends in
space by using word conditioned copies of the pronunciaties, states of the lexical tree for the two-word histofy, v).
i.e. for each word history required by the language model LM Bu..(t,s) := starting time of the best path up to timehat
there is a separate copy of the lexical tree. In the time tamdid ends in states of the lexical tree for the two-word history
method, there is a separate copy of the lexical tree for eaigmpal (1, v).
starting time. To analyze both search methods, experirtrgis

were carried out. The dynamic programming recursion within the tree copiesaias

Ehe same as for the bigram case. So we have the usual dynamic

The paper is organized as follows. In Section 2, we review th : . s
programming recursion for the word interior:

word conditioned search along with an extension for hagdiii

gram language models. In Section 3, we present the time -condi Quov(t,s) = max {q(z¢,8)0) Quo(t—1,0)}
tioned search. In particular, we focus on the incorporatibbi- v o
gram and trigram language models in the time conditionedhoukt Buy(t,s) = Buy(t—1,00"(t5)),

and an efficient implementation of the language model reawmb \yhereq(z, s|o) is the product of transition and emission probabil-
tions. In the last section, we present recognition expemmper- jties of the underlying Hidden Markov Modet™** (¢, s) denotes
formed on a 1850-word telephone-based train schedulerintask  the optimum predecessor state for the hypothésis) and two-
and on the North American Business (Nov.'94) developmen(ase \ord history(u, v). The backpointers3,, (¢, s) are propagated ac-
speaker-independeR0 000-word task). cording to the dynamic programming decision. The recontlina

equation at the word boundaries can be written as:
2. WORD CONDITIONED SEARCH
H(v,wit) = max {p(wlu,v) Quv(t,Sw)} ,
In this section, we review the word conditioned search [3] de- ) . ) .
scribe an extension for handling trigram language modelge T Wherep(wlu, v) is the conditional trigram probability for the word
triple (u, v, w) andS,, denotes a terminal state of the lexical tree
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for word w. To start up new words, we have to pass on the scordote that in the time conditioned search method the hypethes

and the time index:

qu(t - 1,0)
B,,(t —1,0)

H(u,v;t —1)
t—1,

where we have introduced the fictitious state 0 for initialization.

Q- (t, s) are organized according to starting timeand are started
by using the best predecessor word. Therefore, backpsifitas
employed in the word conditioned search method are not eede
However, the language model recombination across worddoun
aries is more complicated. For an efficient organizatiorheflan-
guage model recombination, it is useful to introduce an tauidil

For a trigram language model, we have to keep track of the twa@uxiliary quantity:

word history rather than one-word history in the bigram casuus,
the tree copies must be determined uniquely according totthe-
word history. This can be efficiently achieved by using a tabte.

The hash index of this table can be interpreted as the word pai

index of the two-word historyv, w). To get a unique word pair
index, a bijective function is usefl(v, w), e.g. f(v,w) = W -

H(v;7)

max H (u; )

T

H(v,w;t) = max{ ~Qr(t,5w)} .

To select the best predecessor word for each (pait), i.e. word
w with ending timet, two optimization steps have to be performed.

v + w whereW is the vocabulary size. To allow for intraphraseThe first step is to maximize over all possible starting timesf
silence, we use the same concept as for the bigram languade moword w. This optimization results in a list of predecessor wards

[3], which requires a separate copy of the silence model dohe
predecessor word. In particular, each intraphrase sileygethesis
is associated with its immediate non-silence predecessaipair.

3. TIME CONDITIONED SEARCH

Another natural way is to structure the search space by uiirey
conditioned tree copies. Unlike the word conditioned mdthbe
search hypotheses are organized according to the stairting bf
the word hypotheses. To take the language model into accannt
additional effort is required for the recombination of weetjuence
hypotheses at potential word boundaries. The concept ef ¢ion-
ditioned copies has already been used in other contextgpaon-
nected digit recognition [10] and word lattice generatiéh [We
will describe the method first for a bigram language modeltard
for a trigram language model.

3.1. Bigram Language Models

To describe the time conditioned search algorithm, we ddfire
following quantities as introduced in [6]:

h(w;T,t) = probability that wordw produces the acoustic
Vectorse,41...7+.

H(v;T) = probability that the acoustic vectors ...z, are
generated by a word/state sequence witas the last word
andr as the word boundary.

Stretching notation, we will use the symh@l. (¢, s) to denote tree
internal search hypotheses with respect to starting im€o start
up a new tree, i.e. new words, we initialize this quantityaoivs:

max H(u;t —1) ifs=0

u

Qtfl(t - ].,S) =
ifs>0

Again, the state = 0 is used for initialization. The usual dynamic
programming recursion for the word interior is:

Q-(t,5) = max [ g(as, slo) Q-(t—1,0) .

of wordw. In the equation above, a normalization is necessary since
each tree hypothesis is started with the best predecessdr $ec-
ond, we have to maximize the hypothesis score over the peedec
wordswv for eachw:

H(w;t) = m;lx{ p(w|v) - I:I(U,w;t)} .

The best of the scorell (w; t) is used to start up the new tree for
time (¢ + 1).

3.2. Extension to Trigram Language Models

To extend the time conditioned search algorithm from a longicdvi

to a trigram LM, we have to distinguish the word sequence thgo
ses according to their lasivo words. Therefore, we replace the
quantity H (v; 7) by H(u, v; 7):

H (u,v; T) = probability that the acoustic vectots...z, are
generated by a word/state sequence withas the lastwo
words andr as the word boundary.

The definition of@- (¢, s), i.e. the state hypotheses within a tree,
remains unchanged. To start up a new tree, we initializeuhetity
by using the best wordpair:

max H(u,v;t —1) ifs=0

(u,v)

Qi-1(t—1,5) =

0 if s>0

For the word (or tree) interior, we have the usual dynamigmm-
ming equation:

Q-(t,s) = max {q(zt, 50) Q-(t —1,0)}
and the recursive equation at word level can be expressed as:
H(v,w;t) = max { p(w|uv) - fI(u,v,w; T)} ,
where

- H(u,v;T)
H AN [ St Rt
(uv v, w; ) mTa‘X (Hlla},() H(u’, U,; 7.)

. QT(ta Sw)



Table 1: Search effort and recognition results for the word condéib (WC) and time conditioned (TC) tree search methods otrtin
schedule task using a bigram language moffdby; = 15.2).

average number of DEL-INS—-SUB=TOTAL WER [%]
method || states arcs trees wordends LM recomb.

384 113 12 19 19| 141-258- 615= 1014 14.5

867 249 17 34 34 134-202- 559= 895 12.8

4701 1255 28 130 130 132-184- 541= 857 12.3

10649 2664 33 266 266 133-174- 536= 843 12.1

1191 335 37 62 243 155-229- 645= 1029 14.8

2143 596 39 86 458 147-184- 564= 895 12.8

4488 1201 43 144 1009 140-175- 539= 854 12.3

14824 3545 50 374 3408 142-167- 533= 842 12.1

The termp(w|uwv) denotes the trigram probability for the word 4.2. NAB’94 Corpus

triple (u, v, w).

The algorithm using a trigram language model can be destebe
follows. At the acoustic level, the algorithm is similar toeetone
in the bigram case. However, due to the recombination at tird w
level, additional computation steps are needed. In a feptwe de-
termine for each woray with ending timet all possible start times
7. This information is collected in a list. Then we can calteiffor
each fixed wordv the best valuation for each word triple, v, w)

Second, the two methods were compared on the North American
Business (Nov.'94) H1 development data. In this task 4688 co
text dependent phoneme models were used sharing 4623 @missi
probability distributions [2]. The training of the emissiprobabil-

ity distributions was performed on WSJ0 and WSJ 1 training.da
For this experiment we used about 290000 mixture densites f
each gender. The test set contairsd@ sentences wittt387 spo-

ken words. In the experiments,28 000—word vocabulary and the

denoting by the tern#l (u, v, w; t). The corresponding starting time standard language model with a test set perplexity Bf; = 205.4

7 of w and the two-word historu, v) are stored in temporary lists.
In a second step, the recombination by applying the commditityi-

and PP;,.; = 135.5 for the bigram and for the trigram case, re-
spectively. 2.7% (199 words) of the spoken words were out-of-

gram probabilitiep(w|uv) can be carried out. Finally, we cash thevocabulary words.

tree start-up scored (u, v, w; 7) associated with the best word tri-
gram for normalization. This allows us to determine effithethe
best two-word history of a word) by hashing. As in the word con-
ditioned search, special care must be taken for intraptsiéesce,
because it has to be treated differently for acoustic seanchfor
LM recombinations.

4. EXPERIMENTAL RESULTS

To analyze the search effort, recognition experiments warged

4.3. Comparison: Word Conditioned vs. Time
Conditioned Search

Tables 1 and 2 summarize the results of both recognitiorstadke
tables show the word error rate (WER[%]) as a function of the
search space which is given in terms of average number afeacti
states, arcs, trees and word ends per time frame. In additien
tables show the recombination effort (averaged over ticumés) at
the word level which is measured as the average number ekacti

out on a German train schedule inquiry corpus [1] and on thBAR 614 end hypotheses considered in the language model récamb

North American Business (NAB’94) H1 development corpus [4]
the word conditioned search, we used the three pruning icpobs,
namely acoustic pruning, language model pruning and hiatog
pruning as described in [9]. The acoustic pruning is refingéb
unigram language model look-ahead [11]. In the time comaéd

tions (LM recomb.).

In the bigram case, it can be seen that there is nearly ndisemi
difference in the size of search space for the NAB'94 task.(P.
For high word error rates (i.6.2.8 % to 14.8 %) in the case of the

search, the language model pruning is modified so that omly thrain schedule inquiry task, the word conditioned methaglires
most likely word end hypotheses are retained in the worgl. list

4.1. Train Schedule Inquiry Corpus

First, the two methods were compared in the context of thipBhi
automatic telephone-based train timetable informaticsiesy [1].
Its speaker-independent recognizer Ws#R strongly tied context-

2 — 3 times less states than the time conditioned method (Tab. 1).
For this task, the small vocabulary sizZs8§0 words) and the low
perplexity (P P,; = 15.2) result in a significantly smaller number of
word conditioned tree copies in comparison with the NAB’agkt

When using a trigram language model, a small advantage aufav
of the time conditioned method can be observed. In partictda

dependent phonemes that sh@ad8 emission probability distribu- the same number of active states, the average number of &retés
tions. They have been trained 88 081 spontaneous utterances per time frame is typically much lower than in the word coiutied

recorded over the telephone network during a field test, cising
a total of12.1 hours of speech. The test corpus contdi®ig’ spo-
ken words 2278 utterances) wittP P,; = 15.2, the lexicon size is

1850. The out-of-vocabulary word rate 257 % (191 words).

method. The reason for this is that a tree is started for every
frame at which at least one word end hypothesis is produckidhw
holds for nearly every time frame. This effect is fairly ipgadent
of perplexity and vocabulary size. In both tasks, the nurobéees



Table 2: Search effort and recognition results for the word condéib (WC) and the time conditioned (TC) tree search methodben

NAB’'94 H1 development data.

LM type search average number of DEL-INS-SUB=TOTAL WER [%]
method || states arcs trees wordends LM recomb.
bigram wcC 5022 1416 20 86 84 185-198- 879= 1262 17.1
PPy; =205.4 9335 2593 28 156 156 181-197- 860= 1238 16.8
26493 7222 45 540 540 179-195- 846= 1220 16.5
52786 13968 60 560 560 179-193- 842= 1214 16.4
TC 6175 1781 27 117 1539 177-217- 884= 1278 17.3
11280 3101 31 197 2976 180-199- 857= 1236 16.7
30019 7998 37 520 8761 179-195- 845= 1219 16.5
60692 15877 43 1075 1808l 179-193- 840= 1212 16.4
trigram wcC 4714 1392 29 80 80 128-211- 757= 1096 14.8
PP;.; =135.5 18734 5430 70 294 294 120-206- 721= 1047 14.2
48940 13877 112 702 702 120-204- 717= 1041 14.1
86772 23688 145 1223 1228 121-200- 709= 1030 13.9
TC 8573 2459 28 136 1477 119-216- 735= 1070 14.5
15103 4194 31 234 2806 118-205-— 720= 1043 14.1
24914 6780 34 388 4858 118-201- 717= 1036 14.0
71757 18953 42 1202 142938 118-199- 715= 1032 14.0

is betweer27 and 50, which seems to correlate with the average 4. F. Kubala: “Design of the 1994 CSR Benchmark Tests”, Proc.

word duration.

So far, we have not considered the computational effortferdan-
guage model recombination. This computational effort icimu
greater in the time-conditioned search, where, for eactu iriple
(or word pair) under consideration, a separate optiminaiier the
unknown word boundary has to be carried out. In contrasthén t
word conditioned method, the optimization over the wordrzbu
aries is already taken into account when starting up the.trégp-
ically in the time conditioned search, the effort for thedaage
model recombination is higher by a factor of approximatelyfor
both bigram and trigram language models. All in all, the expe
ments indicate that both search methods are suitable fge ha-
cabulary recognition and are comparable in terms of effagien
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