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ABSTRACT

In this paper, we compare the search effort of the word conditioned
and the time conditioned tree search methods. Both methods are
based on a time-synchronous, left-to-right beam search using a tree-
organized lexicon. Whereas the word conditioned method is well
known and widely used, the time conditioned method is novel in
the context of20 000–word vocabulary recognition. We extend
both methods to handle trigram language models in a one–passstra-
tegy. Both methods were tested on a train schedule inquiry task
(1 850 words, telephone speech) and on the North American Busi-
ness (Nov.’94) development corpus (20 000 words).

1. INTRODUCTION

The paper describes two variants of the time-synchronous beam-
search algorithm using a tree-organized pronunciation lexicon [6].
Both methods are based on a one-pass concept and utilize a (prefix)
tree organization of the pronunciation lexicon [3]. The difference
between the two search methods is the organization of the search
space. In the word conditioned method, we structure the search
space by using word conditioned copies of the pronunciationtree,
i.e. for each word history required by the language model (LM),
there is a separate copy of the lexical tree. In the time conditioned
method, there is a separate copy of the lexical tree for each potential
starting time. To analyze both search methods, experimental tests
were carried out.

The paper is organized as follows. In Section 2, we review the
word conditioned search along with an extension for handling tri-
gram language models. In Section 3, we present the time condi-
tioned search. In particular, we focus on the incorporationof bi-
gram and trigram language models in the time conditioned method
and an efficient implementation of the language model recombina-
tions. In the last section, we present recognition experiments per-
formed on a 1850-word telephone-based train schedule inquiry task
and on the North American Business (Nov.’94) development set (a
speaker-independent20 000–word task).

2. WORD CONDITIONED SEARCH

In this section, we review the word conditioned search [3] and de-
scribe an extension for handling trigram language models. The

search algorithm is based on the time-synchronous beam-search
strategy using a tree-organized pronunciation lexicon. When us-
ing m-gram language models, such as bigram (m = 2) or trigram
(m = 3) language models, we face the problem that during the
search the word identity is only known when a leaf of the lexical
tree is reached. To solve this problem, we have to keep a separate
copy of the lexical tree for each of the(m� 1) predecessor words.

For a bigram language model [3], a separate copy of the lexical tree
is needed for each predecessor wordv. When going from a bigram
to a trigram language model, we have to take into account that, for
a trigram language model, the probabilities are conditioned on the
previous two predecessor words(u; v) rather than one predecessor
word v in the bigram case [6, 7]. Therefore, we have to make the
copies dependent on thetwo predecessor words. To formulate the
dynamic programming approach, we introduce the auxiliary quan-
tity Quv(t; s) and the backpointersBuv(t; s). These quantities
must be made dependent on the two predecessor words(u; v) to
account for the delayed application of the trigram languagemodel:Quv(t; s) := score of the best path up to timet that ends in

states of the lexical tree for the two-word history(u; v).Buv(t; s) := starting time of the best path up to timet that
ends in states of the lexical tree for the two-word history(u; v).

The dynamic programming recursion within the tree copies remains
the same as for the bigram case. So we have the usual dynamic
programming recursion for the word interior:Quv(t; s) = max� f q(xt; sj�) �Quv(t� 1; �) gBuv(t; s) = Buv(t� 1; �maxuv (t; s)) ;
whereq(xt; sj�) is the product of transition and emission probabil-
ities of the underlying Hidden Markov Model.�maxuv (t; s) denotes
the optimum predecessor state for the hypothesis(t; s) and two-
word history(u; v). The backpointersBuv(t; s) are propagated ac-
cording to the dynamic programming decision. The recombination
equation at the word boundaries can be written as:H(v; w; t) := maxu f p(wju; v) �Quv(t; Sw) g ;
wherep(wju; v) is the conditional trigram probability for the word
triple (u; v; w) andSw denotes a terminal state of the lexical tree
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for wordw. To start up new words, we have to pass on the score
and the time index:Quv(t� 1; 0) = H(u; v; t� 1)Buv(t� 1; 0) = t� 1 ;
where we have introduced the fictitious states = 0 for initialization.
For a trigram language model, we have to keep track of the two-
word history rather than one-word history in the bigram case. Thus,
the tree copies must be determined uniquely according to their two-
word history. This can be efficiently achieved by using a hashtable.
The hash index of this table can be interpreted as the word pair
index of the two-word history(v; w). To get a unique word pair
index, a bijective function is usedf(v; w), e.g. f(v; w) = W �v + w whereW is the vocabulary size. To allow for intraphrase
silence, we use the same concept as for the bigram language model
[3], which requires a separate copy of the silence model for each
predecessor word. In particular, each intraphrase silencehypothesis
is associated with its immediate non-silence predecessor wordpair.

3. TIME CONDITIONED SEARCH

Another natural way is to structure the search space by usingtime
conditioned tree copies. Unlike the word conditioned method, the
search hypotheses are organized according to the starting times of
the word hypotheses. To take the language model into account, an
additional effort is required for the recombination of wordsequence
hypotheses at potential word boundaries. The concept of time con-
ditioned copies has already been used in other contexts, namely con-
nected digit recognition [10] and word lattice generation [8]. We
will describe the method first for a bigram language model andthen
for a trigram language model.

3.1. Bigram Language Models

To describe the time conditioned search algorithm, we definethe
following quantities as introduced in [6]:h(w; �; t) = probability that wordw produces the acoustic

vectorsx�+1:::xt.H(v; � ) = probability that the acoustic vectorsx1:::x� are
generated by a word/state sequence withv as the last word
and� as the word boundary.

Stretching notation, we will use the symbolQ� (t; s) to denote tree
internal search hypotheses with respect to starting time� . To start
up a new tree, i.e. new words, we initialize this quantity as follows:Qt�1(t� 1; s) =8<: maxu H(u; t� 1) if s = 00 if s > 0
Again, the states = 0 is used for initialization. The usual dynamic
programming recursion for the word interior is:Q� (t; s) = max� [ q(xt; sj�) Q� (t� 1; �) ] :

Note that in the time conditioned search method the hypothesesQ� (t; s) are organized according to starting times� and are started
by using the best predecessor word. Therefore, backpointers [5] as
employed in the word conditioned search method are not needed.
However, the language model recombination across word bound-
aries is more complicated. For an efficient organization of the lan-
guage model recombination, it is useful to introduce an additional
auxiliary quantity:Ĥ(v; w; t) := max� ( H(v; � )maxu H(u; � ) �Q�(t; Sw)) :
To select the best predecessor word for each pair(w; t), i.e. wordw with ending timet, two optimization steps have to be performed.
The first step is to maximize over all possible starting times� of
wordw. This optimization results in a list of predecessor wordsv
of wordw. In the equation above, a normalization is necessary since
each tree hypothesis is started with the best predecessor word. Sec-
ond, we have to maximize the hypothesis score over the predecessor
wordsv for eachw:H(w; t) = maxv � p(wjv) � Ĥ(v; w; t)	 :
The best of the scoresH(w; t) is used to start up the new tree for
time (t+ 1).
3.2. Extension to Trigram Language Models

To extend the time conditioned search algorithm from a bigram LM
to a trigram LM, we have to distinguish the word sequence hypothe-
ses according to their lasttwo words. Therefore, we replace the
quantityH(v; � ) byH(u; v; � ):H(u; v; � ) = probability that the acoustic vectorsx1:::x� are

generated by a word/state sequence withuv as the lasttwo
words and� as the word boundary.

The definition ofQ� (t; s), i.e. the state hypotheses within a tree,
remains unchanged. To start up a new tree, we initialize the quantity
by using the best wordpair:Qt�1(t� 1; s) =8<: max(u;v)H(u; v; t� 1) if s = 00 if s > 0
For the word (or tree) interior, we have the usual dynamic program-
ming equation:Q�(t; s) = max� fq(xt; sj�) Q� (t� 1; �)g
and the recursive equation at word level can be expressed as:H(v; w; t) = maxu � p(wjuv) � Ĥ(u; v; w; � )	 ;
whereĤ(u; v; w; t) := max� 8<: H(u; v; � )max(u0;v0)H(u0; v0; � ) �Q� (t; Sw)9=; :



Table 1: Search effort and recognition results for the word conditioned (WC) and time conditioned (TC) tree search methods for the train
schedule task using a bigram language model (PPbi = 15:2).

search average number of DEL – INS – SUB = TOTAL WER [%]
method states arcs trees word ends LM recomb.

WC 384 113 12 19 19 141 – 258 – 615 = 1014 14.5
867 249 17 34 34 134 – 202 – 559 = 895 12.8

4701 1255 28 130 130 132 – 184 – 541 = 857 12.3
10649 2664 33 266 266 133 – 174 – 536 = 843 12.1

TC 1191 335 37 62 243 155 – 229 – 645 = 1029 14.8
2143 596 39 86 458 147 – 184 – 564 = 895 12.8
4488 1201 43 144 1009 140 – 175 – 539 = 854 12.3

14824 3545 50 374 3408 142 – 167 – 533 = 842 12.1

The termp(wju v) denotes the trigram probability for the word
triple (u; v; w).
The algorithm using a trigram language model can be described as
follows. At the acoustic level, the algorithm is similar to the one
in the bigram case. However, due to the recombination at the word
level, additional computation steps are needed. In a first step we de-
termine for each wordw with ending timet all possible start times� . This information is collected in a list. Then we can calculate for
each fixed wordw the best valuation for each word triple(u; v; w)
denoting by the term̂H(u; v; w; t). The corresponding starting time� ofw and the two-word history(u; v) are stored in temporary lists.
In a second step, the recombination by applying the conditional tri-
gram probabilitiesp(wjuv) can be carried out. Finally, we cash the
tree start-up scoreŝH(u; v; w; � ) associated with the best word tri-
gram for normalization. This allows us to determine efficiently the
best two-word history of a wordw by hashing. As in the word con-
ditioned search, special care must be taken for intraphrasesilence,
because it has to be treated differently for acoustic searchand for
LM recombinations.

4. EXPERIMENTAL RESULTS

To analyze the search effort, recognition experiments werecarried
out on a German train schedule inquiry corpus [1] and on the ARPA
North American Business (NAB’94) H1 development corpus [4]. In
the word conditioned search, we used the three pruning techniques,
namely acoustic pruning, language model pruning and histogram
pruning as described in [9]. The acoustic pruning is refined by a
unigram language model look-ahead [11]. In the time conditioned
search, the language model pruning is modified so that only the
most likely word end hypotheses are retained in the word lists.

4.1. Train Schedule Inquiry Corpus

First, the two methods were compared in the context of the Philips
automatic telephone-based train timetable information system [1].
Its speaker-independent recognizer uses3502 strongly tied context-
dependent phonemes that share703 emission probability distribu-
tions. They have been trained on33 081 spontaneous utterances
recorded over the telephone network during a field test, comprising
a total of12:1 hours of speech. The test corpus contains7078 spo-
ken words (2278 utterances) withPPbi = 15:2, the lexicon size is1850. The out-of-vocabulary word rate is2:7 % (191 words).

4.2. NAB’94 Corpus

Second, the two methods were compared on the North American
Business (Nov.’94) H1 development data. In this task 4688 con-
text dependent phoneme models were used sharing 4623 emission
probability distributions [2]. The training of the emission probabil-
ity distributions was performed on WSJ 0 and WSJ 1 training data.
For this experiment we used about 290 000 mixture densities for
each gender. The test set contained310 sentences with7387 spo-
ken words. In the experiments, a20 000–word vocabulary and the
standard language model with a test set perplexity ofPPbi = 205:4
andPPtri = 135:5 for the bigram and for the trigram case, re-
spectively. 2:7% (199 words) of the spoken words were out-of-
vocabulary words.

4.3. Comparison: Word Conditioned vs. Time
Conditioned Search

Tables 1 and 2 summarize the results of both recognition tasks. The
tables show the word error rate (WER[%]) as a function of the
search space which is given in terms of average number of active
states, arcs, trees and word ends per time frame. In addition, the
tables show the recombination effort (averaged over time frames) at
the word level which is measured as the average number of active
word end hypotheses considered in the language model recombina-
tions (LM recomb.).

In the bigram case, it can be seen that there is nearly no significant
difference in the size of search space for the NAB’94 task (Tab. 2).
For high word error rates (i.e.12:8 % to14:8 %) in the case of the
train schedule inquiry task, the word conditioned method requires2 � 3 times less states than the time conditioned method (Tab. 1).
For this task, the small vocabulary size (1850 words) and the low
perplexity (PPbi = 15:2) result in a significantly smaller number of
word conditioned tree copies in comparison with the NAB’94 task.

When using a trigram language model, a small advantage in favour
of the time conditioned method can be observed. In particular, for
the same number of active states, the average number of active trees
per time frame is typically much lower than in the word conditioned
method. The reason for this is that a tree is started for everytime
frame at which at least one word end hypothesis is produced, which
holds for nearly every time frame. This effect is fairly independent
of perplexity and vocabulary size. In both tasks, the numberof trees



Table 2: Search effort and recognition results for the word conditioned (WC) and the time conditioned (TC) tree search methods onthe
NAB’94 H1 development data.

LM type search average number of DEL – INS – SUB = TOTAL WER [%]
method states arcs trees word ends LM recomb.

bigram WC 5022 1416 20 86 86 185 – 198 – 879 = 1262 17.1PPbi = 205:4 9335 2593 28 156 156 181 – 197 – 860 = 1238 16.8
26493 7222 45 540 540 179 – 195 – 846 = 1220 16.5
52786 13968 60 560 560 179 – 193 – 842 = 1214 16.4

TC 6175 1781 27 117 1539 177 – 217 – 884 = 1278 17.3
11280 3101 31 197 2976 180 – 199 – 857 = 1236 16.7
30019 7998 37 520 8761 179 – 195 – 845 = 1219 16.5
60692 15877 43 1075 18081 179 – 193 – 840 = 1212 16.4

trigram WC 4714 1392 29 80 80 128 – 211 – 757 = 1096 14.8PPtri = 135:5 18734 5430 70 294 294 120 – 206 – 721 = 1047 14.2
48940 13877 112 702 702 120 – 204 – 717 = 1041 14.1
86772 23688 145 1223 1223 121 – 200 – 709 = 1030 13.9

TC 8573 2459 28 136 1477 119 – 216 – 735 = 1070 14.5
15103 4194 31 234 2806 118 – 205 – 720 = 1043 14.1
24914 6780 34 388 4858 118 – 201 – 717 = 1036 14.0
71757 18953 42 1202 14293 118 – 199 – 715 = 1032 14.0

is between27 and50, which seems to correlate with the average
word duration.

So far, we have not considered the computational effort for the lan-
guage model recombination. This computational effort is much
greater in the time-conditioned search, where, for each word triple
(or word pair) under consideration, a separate optimization over the
unknown word boundary has to be carried out. In contrast, in the
word conditioned method, the optimization over the word bound-
aries is already taken into account when starting up the trees. Typ-
ically in the time conditioned search, the effort for the language
model recombination is higher by a factor of approximately10 for
both bigram and trigram language models. All in all, the experi-
ments indicate that both search methods are suitable for large vo-
cabulary recognition and are comparable in terms of efficiency.
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